Calcular el percentil w0=95 y w0=25 en cada uno de los siguientes casos:

1. En una distribución t-Student con 3 grados de libertad.

2. En una distribución t-Student con 30 grados de libertad.

R=

1. Recordemos que w0=95 es aquel número real que verifica: S [W · w0=95] =
0=95

Para encontrar este valor en la tabla de la distribución t-Student bastará:

- ) Localizar en la primera columna los grados de libertad, en este caso: 3.

- ) Localizar en la primer fila la probabilidad acumulada, en nuestro caso: 0=95=

- ) Movernos horizontal y verticalmente desde las posiciones anteriores hasta
cruzarnos en el punto w0=95.

Por tanto el percentil w0=95, en una t-Student con 3 grados de libertad será el
valor: w0=95 = 2=3534

Es decir, si desde el valor 2.3534 nos movemos horizontalmente hasta la primera
columna, llegaremos al valor 3 (grados de libertad), y si lo hacemos verticalmente
hacia la primera fila la llegaremos al valor 0.95 (probabilidad acumulada).

Como en la tabla únicamente tenemos tabulada la t-Student para colas
probabilísticas que van desde 0=75 hasta 0=999, para calcular el percentil
w0=25, tendremos que realizar la siguiente consideración: S [W · w0=25] = 1 ¡
s[W ¸ w0=25]

Como la distribución t-Student es simétrica, se verifica:

                                  w0=25 = ¡w0=75

Y resulta: s[W · w0=25] = 1 ¡ s[W · w0=75]
Por tanto, buscando en la tabla con los datos:

Grados de libertad: 3

Cola de probabilidad: 0.75

Tenemos: w0=25 = ¡w0=75 = ¡0=7649

2. En el caso de 30 grados de libertad actuaremos de modo similar al caso
anterior, pero buscando en la fila 30 de la tabla. Resultando:

w0=95 = 1=6973

Y w0=25 = ¡w0=75 = ¡0=6828




Calcular los percentiles I8>7;0=99 y I8>7;0=01

R= Para buscar en la tabla de la F-Snedecor el percentil I8>7; 0=99 hemos de
tener en cuenta que:

df_1 = 8 (1d Fila de la tabla)

df_2 = 7 (1 d Columna de la tabla)

0=99 = Probabilidad acumulada (Última columna de la tabla)

El valor donde se cruzan todos estos datos será el percentil buscado.

                             Por tanto: I9>7; 099 = 6=840




Un fabricante de focos afirma que su producto durará un promedio de 500 horas
de trabajo. Para conservar este promedio esta persona verifica 25 focos cada
mes. Si el valor y calculado cae entre –t 0.05 y t 0.05, él se encuentra satisfecho
con esta afirmación. ¿Qué conclusión deberá él sacar de una muestra de 25 focos
cuya duración fue?:
520     521      511       513        510   µ=500 h
                513     522      500       521        495   n=25
                496     488      500       502        512   Nc=90%
                510     510      475       505        521   X=505.36
                506     503      487       493        500   S=12.07



t= x -μ

           SI   n                α = 1- Nc = 10%

v = n-1 = 24

t = 2.22




La longitud de los tornillos fabricados en una fábrica tienen media μ=10 mm y
desviación s=1 mm, calcular la probabilidad de que en una muestra de tamaño
n=25, la longitud media del tornillo sea inferior a 20.5 mm:



P (μ<20.5)

Estandarizamos T=(X-μ)/(s/√n) que sigue una distribución t de n-1 grados de
libertad

T=(20.5-20)/(1/√25) = 2.5
P (μ<20.5) --> P (T<2.5) ~ t(24)

P (T<2.5) = 0.9902

P (μ<20.5)=0.9902

La probabilidad que la longitud media de la muestra de 25 tornillos sea inferior a
20.5 mm es del 99.02%




El profesor Pérez olvida poner su despertador 3 de cada 10 días. Además, ha
comprobado que uno de cada 10 días en los que pone el despertador acaba no
levantándose a tiempo de dar su primera clase, mientras que 2 de cada 10 días en
los que olvida poner el despertador, llega a tiempo adar su primera clase.

(a) Identifica y da nombre a los sucesos que aparecen en el enunciado.

(b) ¿Cual es la probabilidad de que el profesor Pérez llegue a tiempo a dar su
primera clase?

R=: En primer lugar conviene identificar el experimento aleatorio que estamos
realizando. Este consiste en tomar un dia al azar en la vida del profesor Pérez y
analizarlo en base a los siguientes sucesos.

(a) Para un día al azar decimos que se ha dado el suceso:

O ≡ cuando el profesor ha olvidado poner el despertador

T ≡ cuando el profesor ha llegado tarde a su primera clase.

Notemos que tanto {O, O} como {T, T} forman un sistema completo de sucesos. A
continuación traducimos en términos de probabilidad de los sucesos anteriores
todos los datos que nos dan en el enunciado.

                 P(O) = ,    P (T |O) = ,   P(O) = , P(T |O) = .

(b) El suceso”llegar a tiempo a su clase” es el complementario de T , por tanto nos
piden que calculemos P(T¯). Puesto que {O, O} es un sistema completo de
sucesos, podemos aplicar la formulas de la probabilidad total, de donde tenemos
que:
P (T¯) = P (T |O¯) P(O) + P (T | ¯ O¯) P (O¯).

En la expresión anterior aparecen varios de los datos que nos ha proporcionando
el enunciado, sin embargo no conocemos directamente el valor de P(T |¯ O¯).
Para calcularlo utilizamos que

P(T |¯ O¯) = 1 − P(T |O¯) = 1 − = De esta forma, la expresión anterior se puede
escribir como: P(T¯) =    +     =0.69

T student ejemplos

  • 1.
    Calcular el percentilw0=95 y w0=25 en cada uno de los siguientes casos: 1. En una distribución t-Student con 3 grados de libertad. 2. En una distribución t-Student con 30 grados de libertad. R= 1. Recordemos que w0=95 es aquel número real que verifica: S [W · w0=95] = 0=95 Para encontrar este valor en la tabla de la distribución t-Student bastará: - ) Localizar en la primera columna los grados de libertad, en este caso: 3. - ) Localizar en la primer fila la probabilidad acumulada, en nuestro caso: 0=95= - ) Movernos horizontal y verticalmente desde las posiciones anteriores hasta cruzarnos en el punto w0=95. Por tanto el percentil w0=95, en una t-Student con 3 grados de libertad será el valor: w0=95 = 2=3534 Es decir, si desde el valor 2.3534 nos movemos horizontalmente hasta la primera columna, llegaremos al valor 3 (grados de libertad), y si lo hacemos verticalmente hacia la primera fila la llegaremos al valor 0.95 (probabilidad acumulada). Como en la tabla únicamente tenemos tabulada la t-Student para colas probabilísticas que van desde 0=75 hasta 0=999, para calcular el percentil w0=25, tendremos que realizar la siguiente consideración: S [W · w0=25] = 1 ¡ s[W ¸ w0=25] Como la distribución t-Student es simétrica, se verifica: w0=25 = ¡w0=75 Y resulta: s[W · w0=25] = 1 ¡ s[W · w0=75]
  • 2.
    Por tanto, buscandoen la tabla con los datos: Grados de libertad: 3 Cola de probabilidad: 0.75 Tenemos: w0=25 = ¡w0=75 = ¡0=7649 2. En el caso de 30 grados de libertad actuaremos de modo similar al caso anterior, pero buscando en la fila 30 de la tabla. Resultando: w0=95 = 1=6973 Y w0=25 = ¡w0=75 = ¡0=6828 Calcular los percentiles I8>7;0=99 y I8>7;0=01 R= Para buscar en la tabla de la F-Snedecor el percentil I8>7; 0=99 hemos de tener en cuenta que: df_1 = 8 (1d Fila de la tabla) df_2 = 7 (1 d Columna de la tabla) 0=99 = Probabilidad acumulada (Última columna de la tabla) El valor donde se cruzan todos estos datos será el percentil buscado. Por tanto: I9>7; 099 = 6=840 Un fabricante de focos afirma que su producto durará un promedio de 500 horas de trabajo. Para conservar este promedio esta persona verifica 25 focos cada mes. Si el valor y calculado cae entre –t 0.05 y t 0.05, él se encuentra satisfecho con esta afirmación. ¿Qué conclusión deberá él sacar de una muestra de 25 focos cuya duración fue?:
  • 3.
    520 521 511 513 510 µ=500 h 513 522 500 521 495 n=25 496 488 500 502 512 Nc=90% 510 510 475 505 521 X=505.36 506 503 487 493 500 S=12.07 t= x -μ SI n α = 1- Nc = 10% v = n-1 = 24 t = 2.22 La longitud de los tornillos fabricados en una fábrica tienen media μ=10 mm y desviación s=1 mm, calcular la probabilidad de que en una muestra de tamaño n=25, la longitud media del tornillo sea inferior a 20.5 mm: P (μ<20.5) Estandarizamos T=(X-μ)/(s/√n) que sigue una distribución t de n-1 grados de libertad T=(20.5-20)/(1/√25) = 2.5
  • 4.
    P (μ<20.5) -->P (T<2.5) ~ t(24) P (T<2.5) = 0.9902 P (μ<20.5)=0.9902 La probabilidad que la longitud media de la muestra de 25 tornillos sea inferior a 20.5 mm es del 99.02% El profesor Pérez olvida poner su despertador 3 de cada 10 días. Además, ha comprobado que uno de cada 10 días en los que pone el despertador acaba no levantándose a tiempo de dar su primera clase, mientras que 2 de cada 10 días en los que olvida poner el despertador, llega a tiempo adar su primera clase. (a) Identifica y da nombre a los sucesos que aparecen en el enunciado. (b) ¿Cual es la probabilidad de que el profesor Pérez llegue a tiempo a dar su primera clase? R=: En primer lugar conviene identificar el experimento aleatorio que estamos realizando. Este consiste en tomar un dia al azar en la vida del profesor Pérez y analizarlo en base a los siguientes sucesos. (a) Para un día al azar decimos que se ha dado el suceso: O ≡ cuando el profesor ha olvidado poner el despertador T ≡ cuando el profesor ha llegado tarde a su primera clase. Notemos que tanto {O, O} como {T, T} forman un sistema completo de sucesos. A continuación traducimos en términos de probabilidad de los sucesos anteriores todos los datos que nos dan en el enunciado. P(O) = , P (T |O) = , P(O) = , P(T |O) = . (b) El suceso”llegar a tiempo a su clase” es el complementario de T , por tanto nos piden que calculemos P(T¯). Puesto que {O, O} es un sistema completo de sucesos, podemos aplicar la formulas de la probabilidad total, de donde tenemos que:
  • 5.
    P (T¯) =P (T |O¯) P(O) + P (T | ¯ O¯) P (O¯). En la expresión anterior aparecen varios de los datos que nos ha proporcionando el enunciado, sin embargo no conocemos directamente el valor de P(T |¯ O¯). Para calcularlo utilizamos que P(T |¯ O¯) = 1 − P(T |O¯) = 1 − = De esta forma, la expresión anterior se puede escribir como: P(T¯) = + =0.69