DISTRIBUCIÓN NORMAL
PROBLEMAS…
Cinthia Yamile Medina Morán
2º D
Lic. Gerardo Edgar Mata Ortiz
PROBLEMA 4.39
Las láminas de aluminio utilizadas para fabricar latas de bebida
tienen un espesor (en milésimas de pulgada) que se distribuye
normalmente con una media de 10 y desviación estándar de 1.3. Una
lámina particular tiene un espesor de 10.8 milésimas de pulgadas.
Determine el puntaje z.
PROBLEMA 4.45
Los tiempos de vida de las baterías en cierta aplicación se distribuyen
normalmente con media de 50 horas y desviación estándar de cinco
horas. Determine la probabilidad de que se elija aleatoriamente una
batería que dure entre 42 y 52 horas.
Solución:
Sea X el tiempo de vida de una batería elegida aleatoriamente.
Entonces X N. El área sombreada representa P(42 X 52), la
probabilidad de que una batería seleccionada de forma aleatoria
tenga una duración entre 42 y 52 horas. Para calcular esta área, se
hará uso de la tabla z. Primero se necesita convertir las cantidades 42
y 52 a unidades estándar. Se tiene:
De la tabla z, el área a la izquierda de z 1.60 es 0.0548, y el área a la
izquierda de z 0.40 es 0.6554. La probabilidad de que una batería
tenga tiempo de vida entre 42 y 52 horas es 0.6554 0.0548 0.6006.
PROBLEMA 4.46
Con referencia al ejemplo 4.45, determine el 40º percentil de los
tiempos de vida de las baterías.
De la tabla z, el área más cercana a 0.4000 es 0.4013,
correspondiente al puntaje z de 0.25. La población de los tiempos de
vida tiene una media de 50 y una desviación estándar de 5. El 40º
percentil es el punto 0.25 desviaciones estándar menor a la media.
Este valor se determina al convertir el puntaje z en uno nuevo.
PROBLEMA 4.47
Un proceso fabrica cojinetes de bolas cuyos diámetros se distribuye
normalmente con media de 2.505 cm y desviación estándar de 0.008
cm. Las especificaciones requieren que el diámetro esté dentro del
intervalo 2.5 0.01 cm. ¿Qué proporción de cojinetes de bolas cumple
con la especificación?
Solución
PROBLEMA 4.48
Con referencia al ejemplo 4.47, el proceso puede recalibrarse para
que la media sea igual a 2.5 cm, el centro del intervalo de la
especificación. La desviación estándar del proceso sigue siendo de
0.008 cm. ¿Qué proporción de los diámetros satisface la
especificación? Solución El método de solución es el mismo que en el
ejemplo 4.47. La media es de 2.500 en vez de 2.505. Los cálculos se
realizan de la siguiente manera:
El área a la izquierda de z= - 1.25 es 0.1056. El área a la izquierda
de z=1.25 es 0.8944. El área entre z=1.25 y z= -1.25 es 0.8944 -
0.1056 =0.7888. Véase la figura 4.12. El recalibrado aumenta a
78.88% la proporción de diámetros que satisface la especificación.
PROBLEMA 4.49
Con referencia a los ejemplos 4.47 y 4.48, suponga que se ha
recalibrado el proceso de tal forma que la media del diámetro mide
ahora 2.5 cm. ¿A qué valor debe reducirse la desviación estándar para
que 95% de los diámetros satisfaga la especificación?
Solución
DISTRIBUCIÓN NORMAL.

DISTRIBUCIÓN NORMAL.

  • 1.
    DISTRIBUCIÓN NORMAL PROBLEMAS… Cinthia YamileMedina Morán 2º D Lic. Gerardo Edgar Mata Ortiz
  • 3.
    PROBLEMA 4.39 Las láminasde aluminio utilizadas para fabricar latas de bebida tienen un espesor (en milésimas de pulgada) que se distribuye normalmente con una media de 10 y desviación estándar de 1.3. Una lámina particular tiene un espesor de 10.8 milésimas de pulgadas. Determine el puntaje z.
  • 5.
    PROBLEMA 4.45 Los tiemposde vida de las baterías en cierta aplicación se distribuyen normalmente con media de 50 horas y desviación estándar de cinco horas. Determine la probabilidad de que se elija aleatoriamente una batería que dure entre 42 y 52 horas. Solución: Sea X el tiempo de vida de una batería elegida aleatoriamente. Entonces X N. El área sombreada representa P(42 X 52), la probabilidad de que una batería seleccionada de forma aleatoria tenga una duración entre 42 y 52 horas. Para calcular esta área, se hará uso de la tabla z. Primero se necesita convertir las cantidades 42 y 52 a unidades estándar. Se tiene: De la tabla z, el área a la izquierda de z 1.60 es 0.0548, y el área a la izquierda de z 0.40 es 0.6554. La probabilidad de que una batería tenga tiempo de vida entre 42 y 52 horas es 0.6554 0.0548 0.6006.
  • 7.
    PROBLEMA 4.46 Con referenciaal ejemplo 4.45, determine el 40º percentil de los tiempos de vida de las baterías. De la tabla z, el área más cercana a 0.4000 es 0.4013, correspondiente al puntaje z de 0.25. La población de los tiempos de vida tiene una media de 50 y una desviación estándar de 5. El 40º percentil es el punto 0.25 desviaciones estándar menor a la media. Este valor se determina al convertir el puntaje z en uno nuevo.
  • 9.
    PROBLEMA 4.47 Un procesofabrica cojinetes de bolas cuyos diámetros se distribuye normalmente con media de 2.505 cm y desviación estándar de 0.008 cm. Las especificaciones requieren que el diámetro esté dentro del intervalo 2.5 0.01 cm. ¿Qué proporción de cojinetes de bolas cumple con la especificación? Solución
  • 11.
    PROBLEMA 4.48 Con referenciaal ejemplo 4.47, el proceso puede recalibrarse para que la media sea igual a 2.5 cm, el centro del intervalo de la especificación. La desviación estándar del proceso sigue siendo de 0.008 cm. ¿Qué proporción de los diámetros satisface la especificación? Solución El método de solución es el mismo que en el ejemplo 4.47. La media es de 2.500 en vez de 2.505. Los cálculos se realizan de la siguiente manera: El área a la izquierda de z= - 1.25 es 0.1056. El área a la izquierda de z=1.25 es 0.8944. El área entre z=1.25 y z= -1.25 es 0.8944 - 0.1056 =0.7888. Véase la figura 4.12. El recalibrado aumenta a 78.88% la proporción de diámetros que satisface la especificación.
  • 13.
    PROBLEMA 4.49 Con referenciaa los ejemplos 4.47 y 4.48, suponga que se ha recalibrado el proceso de tal forma que la media del diámetro mide ahora 2.5 cm. ¿A qué valor debe reducirse la desviación estándar para que 95% de los diámetros satisfaga la especificación? Solución