Números Enteros Adición y Sustracción Raúl Ponce Yalico Universidad Nacional de Educación 21enmathe.blogspot.com
Buena temperatura: + 20 ºC +20 +5000 +7 –  7 –  5000 –  20 0 Mucho frío:  – 20 ºC Soy rico: tengo +5000 euros Debo dinero: “tengo” -5000 euros Los números naturales se consideran enteros positivos. Por cada entero positivo hay un  entero negativo.   Van precedidos por un signo menos (–) De los números naturales a los enteros Los  números enteros   están formados por: enteros positivos, enteros negativos y el cero Los juegos olímpicos empezaron en el año 776 antes de Cristo –  250 El submarino navega a 250 m bajo el nivel del mar –  776
1º.  Se traza una recta y se elige un punto para representar el 0. 2º.  A la derecha del 0 se representa el +1. 3º.  La distancia entre 0 y +1 será la que  exista entre cada dos enteros consecutivos. 4º.  A la  derecha del 0  se  colocan los  enteros positivos . 4º.  A la  izquierda del 0  se  colocan los  enteros negativos . Es útil representar los números enteros en la recta. Se siguen los pasos: +1 +2 +3 +4 +5 +6 – 1 0 – 2 – 3 – 4 – 5 Representación de los números enteros Positivos Negativos
Se llama  valor absoluto  de un número entero al número natural que sigue al signo.  Se indica escribiéndolo entre barras Es evidente que +2 y –2 están asociados al número natural 2. Por eso:  Los números +2 y –2 están a la misma distancia del cero: El número natural 2 se llama valor absoluto de + 2 y –2.  Se indica así: Otro ejemplo: Valor absoluto de un número entero +1 +2 +3 +4 +5 +6 – 1 0 – 2 – 3 – 4 – 5 – 2 +2
Ordenación: Valor absoluto de un número entero  es el número natural que sigue al signo Se indica escribiéndolo entre barras. Así: Gráficamente, un número entero es mayor que otro cuando  en la recta numérica está a la derecha.  Cualquier número  entero positivo  es  mayor que  cualquier  entero negativo . El cero  es  mayor que  cualquier  negativo  y  menor que  cualquier  positivo . Dados dos números  enteros positivos es mayor el que tiene mayor valor absoluto.  Dados dos números  enteros negativos es mayor el que tiene menor valor absoluto.   Valor absoluto y ordenación de los números enteros 0 +1 +3 +2 +4 +6 – 5  +5 – 4  – 3  – 2  – 1  Más grandes Más pequeños
(+2) + (+3) = +5 Para  sumar dos números enteros del mismo signo: 1.º Se suman sus valores absolutos. (–2) + (–3) =  –5 2.º Al resultado se añade el signo que tienen. +2 +3 – 2 – 3 (+6) + (+12) = +18 (+4) + (+21) = +25 (–4) + (–11) = –15 (–17) + (–31) = –48 Suma de enteros del mismo signo 0 +1 +3 +2 +4 +6 +5 – 2  – 1  – 4 – 3 – 1 – 2 0 +2 +1 – 6  – 5
(+12) + (–9) = +3 Para  sumar dos números enteros de distinto signo: 1.º Se restan sus valores absolutos, el menor del mayor. (+18) + (–19) = –1 2.º Al resultado se le pone el signo del sumando de mayor valor absoluto. Teresa y Miguel hacen cuentas ... Nos han dado 12 euros Y hemos gastado 9 euros Les quedan 3 euros Carola y Pablo también hacen sus cuentas ... Nos han dado 18 euros Y hemos gastado 19 euros Deben 1 euro ¿Les queda o deben dinero? (Observa que el resultado es  negativo,  como el número de mayor valor absoluto). Suma de números enteros de distinto signo
Para  sumar varios números enteros: 1.º Se suman separadamente los positivos y los negativos. 2.º Se suman el número positivo y el negativo obtenido. Otros ejemplos: (+5) + (–4)  + (+11) + (–7) = (+5) + (+11) + (–4) + (–7) = (+16) +(–11) = +5  (+15) + (–8)  + (–31) + (+7) = (+15) + (+7) + (–8) + (–31) = (+22) +(–39) = –17  Observa que sumamos por separado los  positivos  y los  negativos . (+100) + (–40)  + (–70) + (+50) = =  ( +150 ) + ( –110 ) = +40  Veamos un ejemplo: (+100) + (+50) + (–40) + (–70) = Suma de varios números enteros
4  y  –4  son dos números enteros simétricos respecto de  0. Tiene el mismo valor absoluto, pero distinto signo. 4 = op.(–4)  –4 = op. (+4) El opuesto del opuesto de un número es igual al mismo número 8  6 – 2 – 8 – 6 – 6 – 7 – 12 7 12 Se llaman  opuestos. Opuesto del opuesto: op.(–5) = 5 op.(5) = –5 Observa que el opuesto de la suma es la suma de los opuestos. 2 – 5 5 12 Opuesto de un número entero +1 +2 +3 +4 +5 +6 – 1 0 – 2 – 3 – 4 – 5 – 6 a  b  a + b  op. (a)  op. (b)  op. (a+b)  op. (a) + op. (b)
Para restar dos números enteros se suma al primero el opuesto del segundo. 1º. Como signo de la operación resta:  9 – 5  (+9) – (+5) = 9 – 5 = 4 2º. Como indicador de número negativo: –3  (+8) +(–8) = (–8) + (+8) = 0.  (Observa que un número más su opuesto vale 0). (–7) + (–8) – (–17) + (–10) = –7 – 8 + 17 – 10 = – 25 + 17 = –8  (–9) – (+5) = –9 – 5 = –14 (–9) – (–5) =  –9 + 5 = –4 (+9) – (–5) = 9 + 5 = 14 Algunos ejemplos: – 7 – 12  + 32  – 19  + 49 =  –7 – 12 – 19  + 32 + 49 =  – 38  + 81 = 43  Resta de números enteros El signo  –  tiene dos significados:
Cuando un paréntesis tiene delante el signo menos (–) se puede operar de dos maneras: 1º. Haciendo las operaciones del paréntesis. 2º. Suprimiendo el paréntesis cambiando el signo a los números que contiene. 9 – (12 + 3)  =  9 – 15 = –6 1º. Haciendo antes las operaciones del paréntesis: 9 – (12 + 3) =  9 + op. (12 + 3) = 9 + op. (12) + op. (3) = 9 – 12 – 3 = 9 – 15 = –6 2º. También se puede hacer así: 12 – (10 – 6)  =  12 – 4 = 8 1º. Operando antes el paréntesis: Como ves, sale el mismo resultado. 12 – (10 – 6) =  12 + op. (10 – 6) = 12 + op. (10) + op. (–6) = 12 – 10 + 6 = 8  2º. También se puede hacer así: El uso del paréntesis 9 – (12 + 3)  Vamos a calcular: 12 –  (10 – 6)  Calculamos ahora: Son iguales
( a)  15 + (17 – 38) – (–14 + 17) = 15 – 21 – 3 = – 9  (operando dentro de los paréntesis). Otros ejemplos: Un signo  –  delante de un paréntesis cambia el signo de todos los números de dentro.  8 + (4 – 14)  =  8 – 10 = – 2 (c)  8 – (–7 + 14 – 19) = 8 + 7  – 14 + 19 = 34 – 14 = 20  (quitando el paréntesis). 1º. Haciendo antes las operaciones del paréntesis: 8 + (4 – 14)  =  8 + 4 – 14 = 12 – 14 = – 2 2º. Quitando el paréntesis: 15 – (12 – 2)  =  15 – 10 = 5 1º. Operando antes el paréntesis: 2º. Quitando el paréntesis: 15 – (12 – 2)  =  15 – 12  + 2 = 3 + 2 = 5 Un signo  +  delante de un paréntesis no cambia el signo de ningún número de él.  Operar con paréntesis 8 + (4 – 14)  La expresión: se puede calcular de dos maneras: 15 –  (12 – 2)  Análogamente: se puede calcular de dos maneras:

TriáNgulos

  • 1.
    Números Enteros Adicióny Sustracción Raúl Ponce Yalico Universidad Nacional de Educación 21enmathe.blogspot.com
  • 2.
    Buena temperatura: +20 ºC +20 +5000 +7 – 7 – 5000 – 20 0 Mucho frío: – 20 ºC Soy rico: tengo +5000 euros Debo dinero: “tengo” -5000 euros Los números naturales se consideran enteros positivos. Por cada entero positivo hay un entero negativo. Van precedidos por un signo menos (–) De los números naturales a los enteros Los números enteros están formados por: enteros positivos, enteros negativos y el cero Los juegos olímpicos empezaron en el año 776 antes de Cristo – 250 El submarino navega a 250 m bajo el nivel del mar – 776
  • 3.
    1º. Setraza una recta y se elige un punto para representar el 0. 2º. A la derecha del 0 se representa el +1. 3º. La distancia entre 0 y +1 será la que exista entre cada dos enteros consecutivos. 4º. A la derecha del 0 se colocan los enteros positivos . 4º. A la izquierda del 0 se colocan los enteros negativos . Es útil representar los números enteros en la recta. Se siguen los pasos: +1 +2 +3 +4 +5 +6 – 1 0 – 2 – 3 – 4 – 5 Representación de los números enteros Positivos Negativos
  • 4.
    Se llama valor absoluto de un número entero al número natural que sigue al signo. Se indica escribiéndolo entre barras Es evidente que +2 y –2 están asociados al número natural 2. Por eso: Los números +2 y –2 están a la misma distancia del cero: El número natural 2 se llama valor absoluto de + 2 y –2. Se indica así: Otro ejemplo: Valor absoluto de un número entero +1 +2 +3 +4 +5 +6 – 1 0 – 2 – 3 – 4 – 5 – 2 +2
  • 5.
    Ordenación: Valor absolutode un número entero es el número natural que sigue al signo Se indica escribiéndolo entre barras. Así: Gráficamente, un número entero es mayor que otro cuando en la recta numérica está a la derecha. Cualquier número entero positivo es mayor que cualquier entero negativo . El cero es mayor que cualquier negativo y menor que cualquier positivo . Dados dos números enteros positivos es mayor el que tiene mayor valor absoluto. Dados dos números enteros negativos es mayor el que tiene menor valor absoluto. Valor absoluto y ordenación de los números enteros 0 +1 +3 +2 +4 +6 – 5 +5 – 4 – 3 – 2 – 1 Más grandes Más pequeños
  • 6.
    (+2) + (+3)= +5 Para sumar dos números enteros del mismo signo: 1.º Se suman sus valores absolutos. (–2) + (–3) = –5 2.º Al resultado se añade el signo que tienen. +2 +3 – 2 – 3 (+6) + (+12) = +18 (+4) + (+21) = +25 (–4) + (–11) = –15 (–17) + (–31) = –48 Suma de enteros del mismo signo 0 +1 +3 +2 +4 +6 +5 – 2 – 1 – 4 – 3 – 1 – 2 0 +2 +1 – 6 – 5
  • 7.
    (+12) + (–9)= +3 Para sumar dos números enteros de distinto signo: 1.º Se restan sus valores absolutos, el menor del mayor. (+18) + (–19) = –1 2.º Al resultado se le pone el signo del sumando de mayor valor absoluto. Teresa y Miguel hacen cuentas ... Nos han dado 12 euros Y hemos gastado 9 euros Les quedan 3 euros Carola y Pablo también hacen sus cuentas ... Nos han dado 18 euros Y hemos gastado 19 euros Deben 1 euro ¿Les queda o deben dinero? (Observa que el resultado es negativo, como el número de mayor valor absoluto). Suma de números enteros de distinto signo
  • 8.
    Para sumarvarios números enteros: 1.º Se suman separadamente los positivos y los negativos. 2.º Se suman el número positivo y el negativo obtenido. Otros ejemplos: (+5) + (–4) + (+11) + (–7) = (+5) + (+11) + (–4) + (–7) = (+16) +(–11) = +5 (+15) + (–8) + (–31) + (+7) = (+15) + (+7) + (–8) + (–31) = (+22) +(–39) = –17 Observa que sumamos por separado los positivos y los negativos . (+100) + (–40) + (–70) + (+50) = = ( +150 ) + ( –110 ) = +40 Veamos un ejemplo: (+100) + (+50) + (–40) + (–70) = Suma de varios números enteros
  • 9.
    4 y –4 son dos números enteros simétricos respecto de 0. Tiene el mismo valor absoluto, pero distinto signo. 4 = op.(–4) –4 = op. (+4) El opuesto del opuesto de un número es igual al mismo número 8 6 – 2 – 8 – 6 – 6 – 7 – 12 7 12 Se llaman opuestos. Opuesto del opuesto: op.(–5) = 5 op.(5) = –5 Observa que el opuesto de la suma es la suma de los opuestos. 2 – 5 5 12 Opuesto de un número entero +1 +2 +3 +4 +5 +6 – 1 0 – 2 – 3 – 4 – 5 – 6 a b a + b op. (a) op. (b) op. (a+b) op. (a) + op. (b)
  • 10.
    Para restar dosnúmeros enteros se suma al primero el opuesto del segundo. 1º. Como signo de la operación resta: 9 – 5 (+9) – (+5) = 9 – 5 = 4 2º. Como indicador de número negativo: –3 (+8) +(–8) = (–8) + (+8) = 0. (Observa que un número más su opuesto vale 0). (–7) + (–8) – (–17) + (–10) = –7 – 8 + 17 – 10 = – 25 + 17 = –8 (–9) – (+5) = –9 – 5 = –14 (–9) – (–5) = –9 + 5 = –4 (+9) – (–5) = 9 + 5 = 14 Algunos ejemplos: – 7 – 12 + 32 – 19 + 49 = –7 – 12 – 19 + 32 + 49 = – 38 + 81 = 43 Resta de números enteros El signo – tiene dos significados:
  • 11.
    Cuando un paréntesistiene delante el signo menos (–) se puede operar de dos maneras: 1º. Haciendo las operaciones del paréntesis. 2º. Suprimiendo el paréntesis cambiando el signo a los números que contiene. 9 – (12 + 3) = 9 – 15 = –6 1º. Haciendo antes las operaciones del paréntesis: 9 – (12 + 3) = 9 + op. (12 + 3) = 9 + op. (12) + op. (3) = 9 – 12 – 3 = 9 – 15 = –6 2º. También se puede hacer así: 12 – (10 – 6) = 12 – 4 = 8 1º. Operando antes el paréntesis: Como ves, sale el mismo resultado. 12 – (10 – 6) = 12 + op. (10 – 6) = 12 + op. (10) + op. (–6) = 12 – 10 + 6 = 8 2º. También se puede hacer así: El uso del paréntesis 9 – (12 + 3) Vamos a calcular: 12 – (10 – 6) Calculamos ahora: Son iguales
  • 12.
    ( a) 15 + (17 – 38) – (–14 + 17) = 15 – 21 – 3 = – 9 (operando dentro de los paréntesis). Otros ejemplos: Un signo – delante de un paréntesis cambia el signo de todos los números de dentro. 8 + (4 – 14) = 8 – 10 = – 2 (c) 8 – (–7 + 14 – 19) = 8 + 7 – 14 + 19 = 34 – 14 = 20 (quitando el paréntesis). 1º. Haciendo antes las operaciones del paréntesis: 8 + (4 – 14) = 8 + 4 – 14 = 12 – 14 = – 2 2º. Quitando el paréntesis: 15 – (12 – 2) = 15 – 10 = 5 1º. Operando antes el paréntesis: 2º. Quitando el paréntesis: 15 – (12 – 2) = 15 – 12 + 2 = 3 + 2 = 5 Un signo + delante de un paréntesis no cambia el signo de ningún número de él. Operar con paréntesis 8 + (4 – 14) La expresión: se puede calcular de dos maneras: 15 – (12 – 2) Análogamente: se puede calcular de dos maneras: