SlideShare una empresa de Scribd logo
1 de 6
MEDIDORES DE FLUJOS PARA FLUIDOS
EL PRINCIPIO DE BERNOULLI
A estos efectos es de aplicación el Principio de Bernoulli, que no es sino la
formulación, a lo largo de una línea de flujo, de la Ley de conservación de la
energía. Para un fluido ideal, sin rozamiento, se expresa:
h + (v2 / 2g) + (P / ρg) = constante, donde:
 g aceleración de la gravedad
 ρ peso específico del fluido
 P presión
Se aprecia que los tres sumandos son, dimensionalmente, una longitud (o
altura), por lo que el Principio normalmente se expresa enunciando que, a lo
largo de una línea de corriente la suma de la altura geométrica, la altura de
velocidad y la altura de presión se mantiene constante.
Cuando el fluido es real, para circular entre dos secciones de la conducción
deberá vencer las resistencias debidas al rozamiento con las paredes interiores
de la tubería, así como las que puedan producirse al atravesar zonas
especiales como válvulas, ensanchamientos, codos, etc. Para vencer estas
resistencias deberá emplear o perder una cierta cantidad de energía o, con la
terminología derivada del Principio de Bernoulli de altura, que ahora se puede
formular, entre las secciones 1 y 2:
, o lo que es igual
,
Donde pérdidas (1,2) representa el sumando de las pérdidas continuas (por
rozamiento contra las paredes) y las localizadas (al atravesar secciones
especiales).
DISPOSITIVOS PARA MEDIR CAUDAL Y VELOCIDAD DE FLUJOS O
FLUIDOS
1. TUVO VENTURIMETRO
Es un tipo de boquilla especial, seguida de un cono que se ensancha
gradualmente, accesorio que evita en gran parte la pérdida de energía cinética
debido al rozamiento. Es por principio un medidor de área constante y de caída
de presión variable.
En la figura se representa esquemáticamente un medidor tipo Venturí.
2. MEDIDOR DE ORIFICIO
El medidor de Orificio es un elemento más simple, consiste en un agujero
cortado en el centro de una placa intercalada en la tubería. El paso del
fluido a través del orificio, cuya área es constante y menor que la sección
transversal del conducto cerrado, se realiza con un aumento apreciable de
la velocidad (energía cinética) a expensa de una disminución de la presión
estática (caída de presión). Por esta razón se le clasifica como un medidor
de área constante y caída de presión variable.
1. TUBO DE PITOT
Es uno de los medidores más exactos para medir la velocidad de un fluido
dentro de una tubería. El equipo consta de un tubo cuya abertura está
dirigida agua arriba, de modo que el fluido penetre dentro de ésta y suba
hasta que la presión aumente lo suficiente dentro del mismo y equilibre el
impacto producido por la velocidad. El Tubo de Pitot mide las presiones
dinámicas y con ésta se puede encontrar la velocidad del fluido, hay que
anotar que con este equipo se puede verificar la variación de la velocidad
del fluido con respecto al radio de la tubería (perfil de velocidad del fluido
dentro de la tubería).
4. ROTAMETROS
Es un medidor de caudal en tuberías de área variable, de caída de presión
constante. El Rotámetro consiste de un flotador (indicador) que se mueve
libremente dentro de un tubo vertical ligeramente cónico, con el extremo
angosto hacia abajo. El fluido entra por la parte inferior del tubo y hace que el
flotador suba hasta que el área anular entre él y la pared del tubo sea tal, que
la caída de presión de este estrechamiento sea lo suficientemente para
equilibrar el peso del flotador. El tubo es de vidrio y lleva grabado una escala
lineal, sobre la cual la posición del flotador indica el gasto o caudal.
5. MEDIDORES DE DESPLAZAMIENTO POSITIVO
Son el fundamento o la base de muchos elementos de control. El medidor de
desplazamiento positivo es un instrumento sensible al flujo. Este responde a
variaciones en el valor del flujo y responde a señales mecánicas
correspondiente a la rotación del eje. Se aplican en las siguientes
circunstancias: donde se encuentre un flujo grande, donde se requiere una
respuesta directa al valor de la variación del flujo y donde la acción mecánica
es necesaria.
FLUXOMETRO DE VORTICE
Una obstrucción chata colocada en la corriente del flujo provoca la creación de
vortices y se derrama del cuerpo a una frecuencia que es proporcional a la
velocidad del flujo. Un sensor en el fluxometro detecta los vortices y genera una
indicación en la lectura del dispositivo medidor.
Esta figura muestra un bosquejo del fenómeno de derramamiento de vortice. La
forma del cuerpo chato, también llamada elemento de derramamiento de
vortice, puede variar de fabricante a fabricante. Conforme el flujo se aproxima a
la cara frontal del elemento de derramamiento, este se divide en dos corrientes.
El fluido cerca del cuerpo tiene una velocidad baja en relación con la
correspondiente en las líneas de corrientes principales.
La diferencia en velocidad provoca que se generen capas de corte las cuales
eventualmente se rompen en vortices en forma alternada sobre los dos lados
del elemento de derramamiento. La frecuencia de los vortices creados es
directamente proporcional a la velocidad del flujo y, por lo tanto, a la frecuencia
del flujo del volumen.
FLUXOMETRO ELECTROMAGNÉTICO
Su principio de medida esta basado en la Ley de Faraday, la cual expresa que
al pasar un fluido conductivo a través de un campo magnético, se produce una
fuerza electromagnética (F.E.M.), directamente proporcional a la velocidad del
mismo, de donde se puede deducir también el caudal.
Está formado por un tubo, revestido interiormente con material aislante. Sobre
dos puntos diametralmente opuestos de la superficie interna se colocan dos
electrodos metálicos, entre los cuales se genera la señal eléctrica de medida.
En la parte externa se colocan los dispositivos para generar el campo
magnético, y todo se recubre de una protección externa, con diversos grados
de seguridad.
El flujo completamente sin obstrucciones es una de las ventajas de este
medidor. El fluido debe ser ligeramente conductor debido a que el medidor
opera bajo el principio de que cuando un conductor en movimiento corta un
campo magnético, se induce un voltaje.
FLUXOMETRO DE ULTRASONIDO
El convertidor de medida determina los tiempos de propagación del sonido en
sentido y contrasentido del flujo en un medio líquido y calcula su velocidad de
circulación a partir de ambos tiempos. Y a partir de la velocidad se determina el
caudal que además necesita alimentación eléctrica.
Hay dos tipos de medidores de flujo por ultrasonidos:
 DOPPLER: Miden los cambios de frecuencia causados por el flujo del
líquido. Se colocan dos sensores cada uno a un lado del flujo a medir y se
envía una señal de frecuencia conocida a través del líquido. Sólidos,
burbujas y discontinuidades en el líquido harán que el pulso enviado se
refleje, pero como el líquido que causa la reflexión se está moviendo la
frecuencia del pulso que retorna también cambia y ese cambio de frecuencia
será proporcional a la velocidad del líquido.
 TRÁNSITO: Tienen transductores colocados a ambos lados del flujo. Su
configuración es tal que las ondas de sonido viajan entre los dispositivos con
una inclinación de 45 grados respecto a la dirección de flujo del líquido.
La velocidad de la señal que viaja entre los transductores aumenta o disminuye
con la dirección de transmisión y con la velocidad del líquido que está siendo
medido Tendremos dos señales que viajan por el mismo elemento, una a favor
de la corriente y otra en contra de manera que las señales no llegan al mismo
tiempo a los dos receptores.
Se puede hallar una relación diferencial del flujo con el tiempo transmitiendo la
señal alternativamente en ambas direcciones. La medida del flujo se realiza
determinando el tiempo que tardan las señales en viajar por el flujo.

Más contenido relacionado

La actualidad más candente

Viscosímetro de Saybolt
Viscosímetro de SayboltViscosímetro de Saybolt
Viscosímetro de SayboltAlexis Zamir
 
Informe de práctica de pérdida de carga en tuberías y accesorios
Informe de práctica de pérdida de carga en tuberías y accesoriosInforme de práctica de pérdida de carga en tuberías y accesorios
Informe de práctica de pérdida de carga en tuberías y accesoriosRodrigo Gabrielli González
 
Tema 1-ciclo-de-vapor
Tema 1-ciclo-de-vaporTema 1-ciclo-de-vapor
Tema 1-ciclo-de-vaporwasmeque
 
Física II - Fluidodinámica
Física II - FluidodinámicaFísica II - Fluidodinámica
Física II - Fluidodinámicajcm931
 
Calculo de la viscosidad y comportamiento de los fluidos
Calculo de la viscosidad y comportamiento de los fluidosCalculo de la viscosidad y comportamiento de los fluidos
Calculo de la viscosidad y comportamiento de los fluidosHiginio Flores
 
Ejercicios termodinamica
Ejercicios termodinamicaEjercicios termodinamica
Ejercicios termodinamicacromerce
 
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...Catherine Maria Centanaro Chavez
 
Mecanica de Fluidos - Flujo en Canales Abiertos
Mecanica de Fluidos - Flujo en Canales AbiertosMecanica de Fluidos - Flujo en Canales Abiertos
Mecanica de Fluidos - Flujo en Canales AbiertosRobin Gomez Peña
 
Ejercicios tema 2
Ejercicios tema 2 Ejercicios tema 2
Ejercicios tema 2 Miguel Rosas
 
Ecuación de continuidad y de Bernoulli
Ecuación de continuidad y de BernoulliEcuación de continuidad y de Bernoulli
Ecuación de continuidad y de BernoulliYuri Milachay
 

La actualidad más candente (20)

Viscosímetro de Saybolt
Viscosímetro de SayboltViscosímetro de Saybolt
Viscosímetro de Saybolt
 
Semejanza geometrica
Semejanza geometricaSemejanza geometrica
Semejanza geometrica
 
Ciclo de carnot pdf
Ciclo de carnot pdf Ciclo de carnot pdf
Ciclo de carnot pdf
 
Ecuaciones flujo fluidos
Ecuaciones flujo fluidosEcuaciones flujo fluidos
Ecuaciones flujo fluidos
 
Informe de práctica de pérdida de carga en tuberías y accesorios
Informe de práctica de pérdida de carga en tuberías y accesoriosInforme de práctica de pérdida de carga en tuberías y accesorios
Informe de práctica de pérdida de carga en tuberías y accesorios
 
Tema 1-ciclo-de-vapor
Tema 1-ciclo-de-vaporTema 1-ciclo-de-vapor
Tema 1-ciclo-de-vapor
 
Tubos Pitot
Tubos PitotTubos Pitot
Tubos Pitot
 
Teorema de transporte de reynolds
Teorema de transporte de reynoldsTeorema de transporte de reynolds
Teorema de transporte de reynolds
 
Unidad 1 hidraulica
Unidad 1 hidraulicaUnidad 1 hidraulica
Unidad 1 hidraulica
 
Física II - Fluidodinámica
Física II - FluidodinámicaFísica II - Fluidodinámica
Física II - Fluidodinámica
 
Calculo de la viscosidad y comportamiento de los fluidos
Calculo de la viscosidad y comportamiento de los fluidosCalculo de la viscosidad y comportamiento de los fluidos
Calculo de la viscosidad y comportamiento de los fluidos
 
Caso bomba ed3
Caso bomba ed3Caso bomba ed3
Caso bomba ed3
 
Tema 3. Turbomaquinas
Tema 3. TurbomaquinasTema 3. Turbomaquinas
Tema 3. Turbomaquinas
 
Ejercicios termodinamica
Ejercicios termodinamicaEjercicios termodinamica
Ejercicios termodinamica
 
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
 
Mecanica de Fluidos - Flujo en Canales Abiertos
Mecanica de Fluidos - Flujo en Canales AbiertosMecanica de Fluidos - Flujo en Canales Abiertos
Mecanica de Fluidos - Flujo en Canales Abiertos
 
Ejercicios tema 2
Ejercicios tema 2 Ejercicios tema 2
Ejercicios tema 2
 
Diagramas de moody
Diagramas de moodyDiagramas de moody
Diagramas de moody
 
Ecuación de continuidad y de Bernoulli
Ecuación de continuidad y de BernoulliEcuación de continuidad y de Bernoulli
Ecuación de continuidad y de Bernoulli
 
Ecuacion de bernoulli
Ecuacion de bernoulliEcuacion de bernoulli
Ecuacion de bernoulli
 

Destacado

1 problemas de_ing_qmc_de_ocon_tojo_tomo_ii
1 problemas de_ing_qmc_de_ocon_tojo_tomo_ii1 problemas de_ing_qmc_de_ocon_tojo_tomo_ii
1 problemas de_ing_qmc_de_ocon_tojo_tomo_iiBerenice Morales
 
FLUXOMETROS HELVEX
FLUXOMETROS HELVEXFLUXOMETROS HELVEX
FLUXOMETROS HELVEXPARTICULAR
 
RPBI Residuos Peligrosos Biológico-Infecciosos
RPBI Residuos Peligrosos Biológico-InfecciososRPBI Residuos Peligrosos Biológico-Infecciosos
RPBI Residuos Peligrosos Biológico-InfecciososOsvaldo Mendoza
 
FLUXOMETROS HELVEX JORGE GONZALES CEL 997392620
FLUXOMETROS HELVEX JORGE GONZALES CEL 997392620FLUXOMETROS HELVEX JORGE GONZALES CEL 997392620
FLUXOMETROS HELVEX JORGE GONZALES CEL 997392620PARTICULAR
 
Sistema de gestion de la calidad en el mantenimiento en el grupo modelo (1)
Sistema de gestion de la calidad en el mantenimiento en el grupo modelo (1)Sistema de gestion de la calidad en el mantenimiento en el grupo modelo (1)
Sistema de gestion de la calidad en el mantenimiento en el grupo modelo (1)Osvaldo Mendoza
 
Instalación de Llaves Temporizadas y Fluxómetros
Instalación de Llaves Temporizadas y FluxómetrosInstalación de Llaves Temporizadas y Fluxómetros
Instalación de Llaves Temporizadas y FluxómetrosSodimac-Constructor
 
Instrumentación básica en medición
Instrumentación básica en mediciónInstrumentación básica en medición
Instrumentación básica en mediciónJorge Lopez
 
Situacion actual de salud public.a.
Situacion actual de salud public.a.Situacion actual de salud public.a.
Situacion actual de salud public.a.Osvaldo Mendoza
 
Metodo de sistema de trabajo
Metodo de sistema de trabajoMetodo de sistema de trabajo
Metodo de sistema de trabajoOsvaldo Mendoza
 
Dispositivos termodinamicos termodinamica.
Dispositivos termodinamicos   termodinamica.Dispositivos termodinamicos   termodinamica.
Dispositivos termodinamicos termodinamica.Osvaldo Mendoza
 
Diferencia entre masa y peso
Diferencia entre masa y pesoDiferencia entre masa y peso
Diferencia entre masa y pesoOsvaldo Mendoza
 
Carro rojo y rehanimacion
Carro rojo y rehanimacionCarro rojo y rehanimacion
Carro rojo y rehanimacionOsvaldo Mendoza
 
Unidad V : Medición de Fluidos.
Unidad V : Medición de Fluidos. Unidad V : Medición de Fluidos.
Unidad V : Medición de Fluidos. EmilitoEG30
 
Sistema de-llenado-de-recipientes-automatizado2
Sistema de-llenado-de-recipientes-automatizado2Sistema de-llenado-de-recipientes-automatizado2
Sistema de-llenado-de-recipientes-automatizado2Elias Log
 
Circuitos eléctricos 1º Bto
Circuitos eléctricos 1º BtoCircuitos eléctricos 1º Bto
Circuitos eléctricos 1º Btorlopez33
 

Destacado (20)

Medidores de flujo
Medidores de flujoMedidores de flujo
Medidores de flujo
 
1 problemas de_ing_qmc_de_ocon_tojo_tomo_ii
1 problemas de_ing_qmc_de_ocon_tojo_tomo_ii1 problemas de_ing_qmc_de_ocon_tojo_tomo_ii
1 problemas de_ing_qmc_de_ocon_tojo_tomo_ii
 
FLUXOMETROS HELVEX
FLUXOMETROS HELVEXFLUXOMETROS HELVEX
FLUXOMETROS HELVEX
 
RPBI Residuos Peligrosos Biológico-Infecciosos
RPBI Residuos Peligrosos Biológico-InfecciososRPBI Residuos Peligrosos Biológico-Infecciosos
RPBI Residuos Peligrosos Biológico-Infecciosos
 
Dios hubiera dicho
Dios hubiera dichoDios hubiera dicho
Dios hubiera dicho
 
FLUXOMETROS HELVEX JORGE GONZALES CEL 997392620
FLUXOMETROS HELVEX JORGE GONZALES CEL 997392620FLUXOMETROS HELVEX JORGE GONZALES CEL 997392620
FLUXOMETROS HELVEX JORGE GONZALES CEL 997392620
 
Sistema de gestion de la calidad en el mantenimiento en el grupo modelo (1)
Sistema de gestion de la calidad en el mantenimiento en el grupo modelo (1)Sistema de gestion de la calidad en el mantenimiento en el grupo modelo (1)
Sistema de gestion de la calidad en el mantenimiento en el grupo modelo (1)
 
Instalación de Llaves Temporizadas y Fluxómetros
Instalación de Llaves Temporizadas y FluxómetrosInstalación de Llaves Temporizadas y Fluxómetros
Instalación de Llaves Temporizadas y Fluxómetros
 
Instrumentación básica en medición
Instrumentación básica en mediciónInstrumentación básica en medición
Instrumentación básica en medición
 
Àlgebra de Baldor.
Àlgebra de Baldor.Àlgebra de Baldor.
Àlgebra de Baldor.
 
Situacion actual de salud public.a.
Situacion actual de salud public.a.Situacion actual de salud public.a.
Situacion actual de salud public.a.
 
Deduccion de Bernoulli
Deduccion de BernoulliDeduccion de Bernoulli
Deduccion de Bernoulli
 
Metodo de sistema de trabajo
Metodo de sistema de trabajoMetodo de sistema de trabajo
Metodo de sistema de trabajo
 
Dispositivos termodinamicos termodinamica.
Dispositivos termodinamicos   termodinamica.Dispositivos termodinamicos   termodinamica.
Dispositivos termodinamicos termodinamica.
 
Cinetica%2 bquimica
Cinetica%2 bquimicaCinetica%2 bquimica
Cinetica%2 bquimica
 
Diferencia entre masa y peso
Diferencia entre masa y pesoDiferencia entre masa y peso
Diferencia entre masa y peso
 
Carro rojo y rehanimacion
Carro rojo y rehanimacionCarro rojo y rehanimacion
Carro rojo y rehanimacion
 
Unidad V : Medición de Fluidos.
Unidad V : Medición de Fluidos. Unidad V : Medición de Fluidos.
Unidad V : Medición de Fluidos.
 
Sistema de-llenado-de-recipientes-automatizado2
Sistema de-llenado-de-recipientes-automatizado2Sistema de-llenado-de-recipientes-automatizado2
Sistema de-llenado-de-recipientes-automatizado2
 
Circuitos eléctricos 1º Bto
Circuitos eléctricos 1º BtoCircuitos eléctricos 1º Bto
Circuitos eléctricos 1º Bto
 

Similar a Medidores de flujos para fluidos

Similar a Medidores de flujos para fluidos (20)

Medidores de flujo
Medidores de flujoMedidores de flujo
Medidores de flujo
 
Instrumentación De Control Clase 8 Caudal
Instrumentación De Control   Clase 8 CaudalInstrumentación De Control   Clase 8 Caudal
Instrumentación De Control Clase 8 Caudal
 
Medidores de flujo
Medidores de flujoMedidores de flujo
Medidores de flujo
 
medicioncaudal1
medicioncaudal1medicioncaudal1
medicioncaudal1
 
medicioncaudal1
 medicioncaudal1 medicioncaudal1
medicioncaudal1
 
Medidores de flujo
Medidores de flujoMedidores de flujo
Medidores de flujo
 
Instrumento 4 caudal
Instrumento 4 caudalInstrumento 4 caudal
Instrumento 4 caudal
 
Caudal y medicion
Caudal y medicionCaudal y medicion
Caudal y medicion
 
Caudal
CaudalCaudal
Caudal
 
Instrumentos caudal
Instrumentos caudalInstrumentos caudal
Instrumentos caudal
 
Presentación flujo
Presentación flujoPresentación flujo
Presentación flujo
 
Medidores de flujo.PPT
Medidores de flujo.PPTMedidores de flujo.PPT
Medidores de flujo.PPT
 
MEDIDAS DE CAUDAL
MEDIDAS DE CAUDALMEDIDAS DE CAUDAL
MEDIDAS DE CAUDAL
 
S0305MedicionCaudal1.pdf
S0305MedicionCaudal1.pdfS0305MedicionCaudal1.pdf
S0305MedicionCaudal1.pdf
 
Presentación slideshare cproyecto d control
Presentación slideshare cproyecto d controlPresentación slideshare cproyecto d control
Presentación slideshare cproyecto d control
 
TRANSDUCTORES DE FLUJO
TRANSDUCTORES DE FLUJOTRANSDUCTORES DE FLUJO
TRANSDUCTORES DE FLUJO
 
Medicionesde flujo
Medicionesde flujoMedicionesde flujo
Medicionesde flujo
 
Diapo de electiva
Diapo de electivaDiapo de electiva
Diapo de electiva
 
Diapo de electiva
Diapo de electivaDiapo de electiva
Diapo de electiva
 
Unidad V. Medicion de Flujos.
Unidad V. Medicion de Flujos.Unidad V. Medicion de Flujos.
Unidad V. Medicion de Flujos.
 

Último

Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico EcuatorianoEstadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico EcuatorianoEduardoBriones22
 
Sistema de lubricación para motores de combustión interna
Sistema de lubricación para motores de combustión internaSistema de lubricación para motores de combustión interna
Sistema de lubricación para motores de combustión internamengual57
 
Tinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaTinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaAlexanderimanolLencr
 
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTAPORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTElisaLen4
 
Minería convencional: datos importantes y conceptos
Minería convencional: datos importantes y conceptosMinería convencional: datos importantes y conceptos
Minería convencional: datos importantes y conceptosisauVillalva
 
Trazos paileros para realizar trazos, cortes y calculos.pptx
Trazos paileros para realizar trazos, cortes y calculos.pptxTrazos paileros para realizar trazos, cortes y calculos.pptx
Trazos paileros para realizar trazos, cortes y calculos.pptxmiguelmateos18
 
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...GuillermoRodriguez239462
 
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdfCONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdfwduranteg
 
tesis maíz univesidad catolica santa maria
tesis maíz univesidad catolica santa mariatesis maíz univesidad catolica santa maria
tesis maíz univesidad catolica santa mariasusafy7
 
TIPOS DE SOPORTES - CLASIFICACION IG.pdf
TIPOS DE SOPORTES - CLASIFICACION IG.pdfTIPOS DE SOPORTES - CLASIFICACION IG.pdf
TIPOS DE SOPORTES - CLASIFICACION IG.pdfssuser202b79
 
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERUQUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERUManuelSosa83
 
Clasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docxClasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docxwilliam801689
 
Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...Dr. Edwin Hernandez
 
Six Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo processSix Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo processbarom
 
nomenclatura de equipo electrico en subestaciones
nomenclatura de equipo electrico en subestacionesnomenclatura de equipo electrico en subestaciones
nomenclatura de equipo electrico en subestacionesCarlosMeraz16
 
Ficha Tecnica de Ladrillos de Tabique de diferentes modelos
Ficha Tecnica de Ladrillos de Tabique de diferentes modelosFicha Tecnica de Ladrillos de Tabique de diferentes modelos
Ficha Tecnica de Ladrillos de Tabique de diferentes modelosRamiroCruzSalazar
 
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCarlosGabriel96
 
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZgustavoiashalom
 
Control estadistico de procesos Primera parte.pdf
Control estadistico de procesos Primera parte.pdfControl estadistico de procesos Primera parte.pdf
Control estadistico de procesos Primera parte.pdfLucianaGomez67
 

Último (20)

Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico EcuatorianoEstadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano
 
Sistema de lubricación para motores de combustión interna
Sistema de lubricación para motores de combustión internaSistema de lubricación para motores de combustión interna
Sistema de lubricación para motores de combustión interna
 
Tinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaTinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiología
 
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTAPORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
 
Minería convencional: datos importantes y conceptos
Minería convencional: datos importantes y conceptosMinería convencional: datos importantes y conceptos
Minería convencional: datos importantes y conceptos
 
Trazos paileros para realizar trazos, cortes y calculos.pptx
Trazos paileros para realizar trazos, cortes y calculos.pptxTrazos paileros para realizar trazos, cortes y calculos.pptx
Trazos paileros para realizar trazos, cortes y calculos.pptx
 
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
 
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdfCONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
 
tesis maíz univesidad catolica santa maria
tesis maíz univesidad catolica santa mariatesis maíz univesidad catolica santa maria
tesis maíz univesidad catolica santa maria
 
TIPOS DE SOPORTES - CLASIFICACION IG.pdf
TIPOS DE SOPORTES - CLASIFICACION IG.pdfTIPOS DE SOPORTES - CLASIFICACION IG.pdf
TIPOS DE SOPORTES - CLASIFICACION IG.pdf
 
422382393-Curso-de-Tableros-Electricos.pptx
422382393-Curso-de-Tableros-Electricos.pptx422382393-Curso-de-Tableros-Electricos.pptx
422382393-Curso-de-Tableros-Electricos.pptx
 
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERUQUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
 
Clasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docxClasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docx
 
Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...
 
Six Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo processSix Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo process
 
nomenclatura de equipo electrico en subestaciones
nomenclatura de equipo electrico en subestacionesnomenclatura de equipo electrico en subestaciones
nomenclatura de equipo electrico en subestaciones
 
Ficha Tecnica de Ladrillos de Tabique de diferentes modelos
Ficha Tecnica de Ladrillos de Tabique de diferentes modelosFicha Tecnica de Ladrillos de Tabique de diferentes modelos
Ficha Tecnica de Ladrillos de Tabique de diferentes modelos
 
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
 
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
 
Control estadistico de procesos Primera parte.pdf
Control estadistico de procesos Primera parte.pdfControl estadistico de procesos Primera parte.pdf
Control estadistico de procesos Primera parte.pdf
 

Medidores de flujos para fluidos

  • 1. MEDIDORES DE FLUJOS PARA FLUIDOS EL PRINCIPIO DE BERNOULLI A estos efectos es de aplicación el Principio de Bernoulli, que no es sino la formulación, a lo largo de una línea de flujo, de la Ley de conservación de la energía. Para un fluido ideal, sin rozamiento, se expresa: h + (v2 / 2g) + (P / ρg) = constante, donde:  g aceleración de la gravedad  ρ peso específico del fluido  P presión Se aprecia que los tres sumandos son, dimensionalmente, una longitud (o altura), por lo que el Principio normalmente se expresa enunciando que, a lo largo de una línea de corriente la suma de la altura geométrica, la altura de velocidad y la altura de presión se mantiene constante. Cuando el fluido es real, para circular entre dos secciones de la conducción deberá vencer las resistencias debidas al rozamiento con las paredes interiores de la tubería, así como las que puedan producirse al atravesar zonas especiales como válvulas, ensanchamientos, codos, etc. Para vencer estas resistencias deberá emplear o perder una cierta cantidad de energía o, con la terminología derivada del Principio de Bernoulli de altura, que ahora se puede formular, entre las secciones 1 y 2: , o lo que es igual ,
  • 2. Donde pérdidas (1,2) representa el sumando de las pérdidas continuas (por rozamiento contra las paredes) y las localizadas (al atravesar secciones especiales). DISPOSITIVOS PARA MEDIR CAUDAL Y VELOCIDAD DE FLUJOS O FLUIDOS 1. TUVO VENTURIMETRO Es un tipo de boquilla especial, seguida de un cono que se ensancha gradualmente, accesorio que evita en gran parte la pérdida de energía cinética debido al rozamiento. Es por principio un medidor de área constante y de caída de presión variable. En la figura se representa esquemáticamente un medidor tipo Venturí. 2. MEDIDOR DE ORIFICIO El medidor de Orificio es un elemento más simple, consiste en un agujero cortado en el centro de una placa intercalada en la tubería. El paso del fluido a través del orificio, cuya área es constante y menor que la sección transversal del conducto cerrado, se realiza con un aumento apreciable de la velocidad (energía cinética) a expensa de una disminución de la presión estática (caída de presión). Por esta razón se le clasifica como un medidor de área constante y caída de presión variable.
  • 3. 1. TUBO DE PITOT Es uno de los medidores más exactos para medir la velocidad de un fluido dentro de una tubería. El equipo consta de un tubo cuya abertura está dirigida agua arriba, de modo que el fluido penetre dentro de ésta y suba hasta que la presión aumente lo suficiente dentro del mismo y equilibre el impacto producido por la velocidad. El Tubo de Pitot mide las presiones dinámicas y con ésta se puede encontrar la velocidad del fluido, hay que anotar que con este equipo se puede verificar la variación de la velocidad del fluido con respecto al radio de la tubería (perfil de velocidad del fluido dentro de la tubería). 4. ROTAMETROS Es un medidor de caudal en tuberías de área variable, de caída de presión constante. El Rotámetro consiste de un flotador (indicador) que se mueve libremente dentro de un tubo vertical ligeramente cónico, con el extremo angosto hacia abajo. El fluido entra por la parte inferior del tubo y hace que el flotador suba hasta que el área anular entre él y la pared del tubo sea tal, que la caída de presión de este estrechamiento sea lo suficientemente para equilibrar el peso del flotador. El tubo es de vidrio y lleva grabado una escala lineal, sobre la cual la posición del flotador indica el gasto o caudal.
  • 4. 5. MEDIDORES DE DESPLAZAMIENTO POSITIVO Son el fundamento o la base de muchos elementos de control. El medidor de desplazamiento positivo es un instrumento sensible al flujo. Este responde a variaciones en el valor del flujo y responde a señales mecánicas correspondiente a la rotación del eje. Se aplican en las siguientes circunstancias: donde se encuentre un flujo grande, donde se requiere una respuesta directa al valor de la variación del flujo y donde la acción mecánica es necesaria. FLUXOMETRO DE VORTICE Una obstrucción chata colocada en la corriente del flujo provoca la creación de vortices y se derrama del cuerpo a una frecuencia que es proporcional a la velocidad del flujo. Un sensor en el fluxometro detecta los vortices y genera una indicación en la lectura del dispositivo medidor. Esta figura muestra un bosquejo del fenómeno de derramamiento de vortice. La forma del cuerpo chato, también llamada elemento de derramamiento de vortice, puede variar de fabricante a fabricante. Conforme el flujo se aproxima a
  • 5. la cara frontal del elemento de derramamiento, este se divide en dos corrientes. El fluido cerca del cuerpo tiene una velocidad baja en relación con la correspondiente en las líneas de corrientes principales. La diferencia en velocidad provoca que se generen capas de corte las cuales eventualmente se rompen en vortices en forma alternada sobre los dos lados del elemento de derramamiento. La frecuencia de los vortices creados es directamente proporcional a la velocidad del flujo y, por lo tanto, a la frecuencia del flujo del volumen. FLUXOMETRO ELECTROMAGNÉTICO Su principio de medida esta basado en la Ley de Faraday, la cual expresa que al pasar un fluido conductivo a través de un campo magnético, se produce una fuerza electromagnética (F.E.M.), directamente proporcional a la velocidad del mismo, de donde se puede deducir también el caudal. Está formado por un tubo, revestido interiormente con material aislante. Sobre dos puntos diametralmente opuestos de la superficie interna se colocan dos electrodos metálicos, entre los cuales se genera la señal eléctrica de medida. En la parte externa se colocan los dispositivos para generar el campo magnético, y todo se recubre de una protección externa, con diversos grados de seguridad. El flujo completamente sin obstrucciones es una de las ventajas de este medidor. El fluido debe ser ligeramente conductor debido a que el medidor opera bajo el principio de que cuando un conductor en movimiento corta un campo magnético, se induce un voltaje.
  • 6. FLUXOMETRO DE ULTRASONIDO El convertidor de medida determina los tiempos de propagación del sonido en sentido y contrasentido del flujo en un medio líquido y calcula su velocidad de circulación a partir de ambos tiempos. Y a partir de la velocidad se determina el caudal que además necesita alimentación eléctrica. Hay dos tipos de medidores de flujo por ultrasonidos:  DOPPLER: Miden los cambios de frecuencia causados por el flujo del líquido. Se colocan dos sensores cada uno a un lado del flujo a medir y se envía una señal de frecuencia conocida a través del líquido. Sólidos, burbujas y discontinuidades en el líquido harán que el pulso enviado se refleje, pero como el líquido que causa la reflexión se está moviendo la frecuencia del pulso que retorna también cambia y ese cambio de frecuencia será proporcional a la velocidad del líquido.  TRÁNSITO: Tienen transductores colocados a ambos lados del flujo. Su configuración es tal que las ondas de sonido viajan entre los dispositivos con una inclinación de 45 grados respecto a la dirección de flujo del líquido. La velocidad de la señal que viaja entre los transductores aumenta o disminuye con la dirección de transmisión y con la velocidad del líquido que está siendo medido Tendremos dos señales que viajan por el mismo elemento, una a favor de la corriente y otra en contra de manera que las señales no llegan al mismo tiempo a los dos receptores. Se puede hallar una relación diferencial del flujo con el tiempo transmitiendo la señal alternativamente en ambas direcciones. La medida del flujo se realiza determinando el tiempo que tardan las señales en viajar por el flujo.