SlideShare una empresa de Scribd logo
1 de 17
REPÚBLICA BOLIVARIANA DE VENEZUELA
INSTITUTO UNIVERSITARIO POLITÉCNICO
“SANTIAGO MARIÑO”
ESCUELA DE INGENIERÍA ELECTRÓNICA
EXTENSIÓN MATURÍN
LUGAR GEOMÉTRICO DE LAS RAICES
Profesor: Realizado por:
Ing. Mariangela Pollonais Br. Palma, Marielys
C.I.19.692.699
Maturín, Agosto de 2013
DEFINICION DE LUGAR GEOMETRICO DE LAS RAICES (LGR)
Existe una estrecha relación entre la respuesta transitoria de un sistema y la
ubicación de las raíces de su ecuación característica en el Plano s. Conocer la ubicación
de las raíces en el Plano s ante variaciones de un parámetro, puede representar una
herramienta muy útil de análisis y diseño, ya que la variación de los parámetros físicos
de un sistema que logran una modificación de su ecuación característica, modifica las
raíces o polos de dicho sistema, de forma tal que se puede obtener una respuesta
particular o deseada.
Supongamos tener el sistema de la siguiente figura, donde KA es la ganancia de
nuestro controlador, el cual puede ser elegido por el diseñador.
Figura 1. Esquema de un sistema controlado con retroalimentación.
La función de transferencia de este sistema es:
Ec. [1]
Los polos de esta función de transferencia estarán dados por las raíces de la ecuación
característica: .
Dependiendo de la ganancia KA que elija el diseñador, será la respuesta dinámica
que tendrá el sistema retroalimentado (la ubicación de los polos depende de esta
ganancia).
Evans propuso que el diseñador del sistema de control construya el lugar
geométrico de todas las raíces posibles de la ecuación a medida
que KA varía desde 0 a infinito. De esta manera podemos elegir adecuadamente la
ganancia KA y ver los efectos de polos y ceros adicionales.
Tenemos que la función de transferencia de la planta es:
Ec. [2]
Donde a(s) y b(s) son polinomios de grado n y m respectivamente, y n m.
Estos polinomios los podemos escribir de las siguientes maneras:
Ec. [3]
Ec. [4]
Llamemos K a: K = KA . Kp.
Entonces la ecuación característica la podemos escribir de las siguientes maneras:
Ec. [5]
Ec. [6]
Ec. [7]
Ec. [8]
Consideraremos primeramente el caso en que K es positivo.
El grado de la ecuación característica es el grado mayor de los dos polinomios a(s)
y b(s) (observando la ecuación 7), y por lo tanto es de grado n. Esto significa que el
número de ramas del lugar geométrico de las raíces estará dado por n el grado del
polinomio denominador de la función de transferencia a lazo abierto.
De la ecuación 7 también podemos decir que para K = 0, las raíces de la ecuación
característica estará dada por los polos de la función de transferencia a lazo abierto
(las raíces de a(s)); y que para K infinito, las raíces de la ecuación característica estará
dada por los ceros de la función de transferencia a lazo abierto (las raíces de b(s)).
Conclusión: existirá n ramas en el lugar geométrico de las raíces que partirán de
los polos a lazo abierto y terminarán en los ceros a lazo abierto.
APLICACIONES DE (LGR)
El lugar de las raíces, además de ser útil para el análisis de la estabilidad de un
sistema lineal y continuo SISO, se puede emplear para el diseño de un controlador de
una variable dentro de un sistema, es decir, se aplica para determinar la función de
transferencia del controlador que además de la regulación haga que la respuesta del
sistema, ante cambios en su variable de proceso, muestre un perfil de acuerdo a
ciertos requerimientos. A continuación se desarrolla un ejemplo de lo anterior
valiéndose de la herramienta “Control System Toolbox” disponible en Matlab.
CARACTERISTICAS DEL (LGR)
La característica básica de la respuesta transitoria de un sistema en lazo
cerrado se relaciona estrechamente con la ubicación de los polos en lazo
cerrado.
Si el sistema tiene una ganancia de lazo variable, la ubicación de los polos en
lazo cerrado depende del valor de la ganancia de lazo elegida.
Es importante que el diseñador conozca cómo se mueven los polos en lazo
cerrado en el plano s conforme varía la ganancia de lazo.
Desde el punto de vista del diseño, un simple ajuste de la ganancia en algunos
sistemas mueve los polos en lazo cerrado a las posiciones deseadas.
Los polos en lazo cerrado son las raíces de la ecuación característica.
W. R. Evans diseñó un método sencillo para encontrar las raíces de la ecuación
característica, que se usa ampliamente en la ingeniería de control. Se denomina
método del lugar geométrico de las raíces, y en él se grafican las raíces de la
ecuación característica para todos los valores de un parámetro del sistema.
La idea básica detrás del método del LGR es que los valores que hacen que la
función de transferencia alrededor del lazo sea igual a - 1 deben satisfacer la
ecuación característica del sistema.
El método debe su nombre al lugar geométrico de las raíces de la ecuación
característica del sistema en lazo cerrado conforme la ganancia varía de cero a
infinito.
El método del LGR resulta muy útil, dado que indica la forma en la que deben
modificarse los polos y ceros en lazo abierto para que la respuesta cumpla las
Especificaciones de desempeño del sistema.
Algunos sistemas de control pueden tener más de un parámetro que deba
ajustarse. El diagrama del LGR, para un sistema que tiene parámetros
múltiples, se construye variando un parámetro a la vez.
En la mayor parte de los casos, el parámetro del sistema es la ganancia de lazo
K, aunque el parámetro puede ser cualquier otra variable del sistema Si el
diseñador sigue las reglas generales para construir los lugares geométricos, le
resultará sencillo trazar los LGR de un sistema específico.
Debido a que generar los lugares geométricos de las raíces usando MATLAB es
muy simple, se podría pensar que trazar los lugares geométricos de las raíces
en forma manual es una pérdida de tiempo y esfuerzo.
PASOS PARA DETERMINAR EL LGR
Cuando se trata de sistemas de control es sumamente importante conocer la
ubicación de las raíces de la ecuación característica del lazo cerrado, lo cual puede
conocerse utilizando un método sistemático y sencillo que muestra el movimiento de
dichas raíces cuando se modifica un parámetro de la ecuación. Dicho método permite
elaborar lo que se cono ce como el lugar geométrico de las raíces (LGR), que nos es
otra cosa que las soluciones de la ecuación característica a lazo cerrado cuando se
varía un parámetro
El método de construcción para el lugar geométrico de las raíces de la ecuación
característica a lazo cerrado cuando se varía un parámetro se fundamenta en un
esquema de control de retroalimentación simple como el que se muestra en la
FIGURA. 1.1, para el cual la ecuación característica a lazo cerrado es la que indica la
ECUACION 1.1, cuyas soluciones representan los polos del lazo cerrado
ECUACION 1.1
Para un esquema de realimentación simple como el de l figura 1.1
FIGURA 1.1
El lugar geométrico de las raíces se realiza para variaciones de K desde cero
hasta infinito, para las cuales dichas raíces deben satisfacer la ECUACION 1.1.
Como S es una variable compleja, es posible reescribir dicha ecuación en forma polar
como sigue:
ECUACION 1.2
A partir de allí se pueden identificar dos condiciones que deben cumplirse para
satisfacer la ecuación anterior, las cuales son conocidas como la Condición de Módulo
y la Condición de Ángulo y se muestran en las ECUACIONES. 1.3 y 1.4,
respectivamente
ECUACION 1.3 ECUACION 1.4
Donde k = 0, ±1, ±2,...
Si la función de transferencia a lazo abierto se factoríza en polos y ceros, tal
como se muestra en la ECUACIÓN 1.5, las condiciones de módulo y de ángulo pueden
reescribirse como se muestra en las ECUACIONES. 1.6 y 1.7, respectivamente.
ECUACIÓN 1.5 ECUACIÓN 1.6
ECUACIÓN 1.7
Las dos condiciones anteriores deben cumplirse para cada una de las raíces
que forme parte del lugar geométrico, de forma tal que se garantice que cada una de
ellas sea solución de la ecuación característica a lazo cerrado. Gracias a la condición de
ángulo se determina la ubicación geométrica de las raíces, es decir, la forma del lugar
geométrico, en tanto que la condición de módulo permite determinar el valor de la
ganancia K a lo largo de dicho lugar geométrico.
Para la construcción metódica del lugar geométrico se puede seguir un
procedimiento que hace posible realizar una rápida representación de la ubicación de
cada una de las raíces de la ecuación característica cuando se varía K desde cero a
infinito. En principio se debe reescribir la ecuación característica tal como se muestra
a continuación:
ECUACIÓN 1.8
Como se puede observar en la ECUACION 1.8, cuando K es igual a cero, la
solución de la ecuación característica a lazo cerrado coincide con los polos de la
función de transferencia a lazo abierto, en tanto que, cuando K tiende a infinito, la
solución de la ecuación característica a lazo cerrado coincide con los ceros de la
función de transferencia a lazo abierto. Es por ello que se concluye que el lugar
geométrico de las raíces comienza en los polos del lazo abierto y termina en los ceros
del lazo abierto a medida que K aumenta desde cero hasta infinito. También se puede
concluir que el número de tramos o ramas del lugar geométrico será igual al número
de polos de la función de transferencia de lazo abierto y que siempre será simétrico
respecto al eje real
Paso 1 Dibujar sobre el Plano s los polos y ceros del lazo abierto.
Paso 2 Determinar que parte del eje real pertenece al lugar geométrico. A
partir de la condición de ángulo se determina que las partes del eje real que
pertenecen al lugar geométrico son aquellas que se encuentran a la izquierda
de un número impar de polos y ceros.
Paso 3 Determinar el número de asíntotas, NA, la ubicación de su punto de
partida, σA y del ángulo de las mismas, φA, utilizando las ECUACIONES 1.14,
1.15 y 1.16, respectivamente.
Paso 4 Si existe, calcular los puntos de ruptura o despegue del eje real.
Paso 5 Dibujar un esbozo completo del lugar geométrico de las raíces.
Paso 6 Si existe, calcular el corte con el eje imaginario.
Utilizando el procedimiento anterior se puede obtener, de forma rápida y
eficaz, un esbozo del lugar geométrico de la raíces de la ecuación característica a lazo
cerrado cuando se varía K desde cero a infinito.
ECUACION 1.14 ECUACION 1.16
ECUACION 1.15
DEFINICIÓN DE MATLAB
MATLAB (abreviatura de MATrix LABoratory, "laboratorio de matrices") es
una herramienta de software matemático que ofrece un entorno de desarrollo
integrado (IDE) con un lenguaje de programación propio (lenguaje M). Está disponible
para las plataformas Unix, Windows y Mac OS X.
Entre sus prestaciones básicas se hallan: la manipulación de matrices, la
representación de datos y funciones, la implementación de algoritmos, la creación de
interfaces de usuario (GUI) y la comunicación con programas en otros lenguajes y con
otros dispositivos hardware. El paquete MATLAB dispone de dos herramientas
adicionales que expanden sus prestaciones, a saber, Simulink (plataforma de
simulación multidominio) y GUIDE (editor de interfaces de usuario - GUI). Además, se
pueden ampliar las capacidades de MATLAB con las cajas de herramientas
(toolboxes); y las de Simulink con los paquetes de bloques (blocksets).
Es un software muy usado en universidades y centros de investigación y
desarrollo. En los últimos años ha aumentado el número de prestaciones, como la de
programar directamente procesadores digitales de señal o crear código VHDL.
APLICACIONES DE MATLAB EN CONTROL
El control es quizás una de las áreas con más desarrollo dentro de la industria y
manufactura moderna. Especialistas del área han encontrado en MatLab una
herramienta muy poderosa para simular sistemas de control de muy diversos tipos.
Es por eso, que el Toolbox de control contenido en MatLab es uno de los más
completos actualmente.
Mediante las aplicaciones de esta área que hemos incluido se busca que todo
aquel usuario que pretenda utilizar esta herramienta, sepa que tipo de funciones
pueden ayudarlo para realizar la mayor cantidad de tareas que pudimos abarcar.
1. Comenzamos en el primer ejemplo, por mencionar los diversos tipos de respuestas
que se pueden esperar de un sistema. En este caso comentamos tres tipos,
dependiendo de la señal de entrada, la primera respuesta corresponde a un escalón, la
segunda corresponde a un impulso y la última a una rampa. Las primeras dos tienen
funciones propias dentro del Toolbox de control y son “step” e “impulse
“respectivamente, sin embargo el tercer tipo de señal de entrada no, por lo que
tendremos nuevamente que remitirnos a su definición matemática para generar una
expresión que la represente. Una vez logrado esto, se analiza la respuesta de un
sistema dado, determinado mediante su función de transferencia y listo. El usuario
podrá observar las salidas gráficamente. Es importante para estas alturas que el
usuario maneje a la perfección la representación de ecuaciones en MatLab, por lo que
constantemente se le recuerda del procedimiento requerido
Diferentes tipos de impulso generados mediante funciones de Matlab
2. El segundo ejemplo contempla el desarrollo de uno de los puntos de partida
primarios para un diseñador que pretenda implementar un sistema estable. Nos
referimos al concepto del Lugar Geométrico de las Raíces. Este procedimiento consiste
en colocar los polos y ceros de la función de transferencia en los lugares apropiados
dentro del plano imaginario, de manera que se asegure la estabilidad y la ganancia
deseada del sistema.
Para lograr esto se explican y se recurre a las funciones “roots” y “rlocus” que
desplegarán los puntos de interés en dicho plano. Es importante mencionar también
que dentro de este ejemplo se le muestra al usuario como convulsionar una función de
manera que la localización de ciertos puntos (en este caso los polos) sea más sencilla.
Función “conv”.
3. El tercer ejemplo muestra nuevamente una función muy propia del Toolbox de
control, conocida como “margin”, que representa la gráfica de Bode señalando el
margen de ganancia y de fase de la función de transferencia. Así mismo se presenta la
función Nyquist que genera el gráfico del mismo nombre de la función de
transferencia.
FUNCIÓN PARA CALCULAR EL LGR EN MATLAB
Los comandos más utilizados en matlab para el LGR y RF son:
Los comandos más utilizados en matlab para el LGR son:
rltool Sirve para manipular los polos y ceros en un LGR, se pueden obtener
también las gráficas de la respuesta a distintas entradas y los diagramas
de Bode, Nyquist y Nichols.
RLTOOL
rlocus Se utiliza para graficar el LGR
RLOCUS(SYS)
rlocfind Determina la ganancia del LGR, para un polo determinado.
RLOCFIND(SYS)
REFERENCIAS ELECTRONICAS
http://es.wikipedia.org/wiki/MATLAB
ciecfie.epn.edu.ec/CControlC/laboratorios/
www.slideshare.net/capillajo/teoria-del-lugar-geomtrico-de-las-raices
catarina.udlap.mx/u_dl_a/tales/documentos/lep/...n.../capitulo3
http://www.ib.cnea.gov.ar/~dsc/capitulo8/rootlocus.htm

Más contenido relacionado

La actualidad más candente

Definiciones de control
Definiciones de controlDefiniciones de control
Definiciones de control
Paolo Castillo
 
Electronica transitores efecto de cambio
Electronica transitores efecto de cambioElectronica transitores efecto de cambio
Electronica transitores efecto de cambio
Velmuz Buzz
 
Controladores (teoria de control)
Controladores (teoria de control)Controladores (teoria de control)
Controladores (teoria de control)
martinezeduardo
 

La actualidad más candente (20)

Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.
 
Función de transferencia
Función de transferenciaFunción de transferencia
Función de transferencia
 
Estabilidad relativa
Estabilidad relativaEstabilidad relativa
Estabilidad relativa
 
Ingeniería de control: Tema 2. compensación LGR
Ingeniería de control: Tema 2. compensación LGRIngeniería de control: Tema 2. compensación LGR
Ingeniería de control: Tema 2. compensación LGR
 
Estabilidad
EstabilidadEstabilidad
Estabilidad
 
Compensador de retraso, lugar de las raices.
Compensador de retraso, lugar de las raices.Compensador de retraso, lugar de las raices.
Compensador de retraso, lugar de las raices.
 
Fuente de alimentación simétrica regulada y variable
Fuente de alimentación simétrica regulada y variableFuente de alimentación simétrica regulada y variable
Fuente de alimentación simétrica regulada y variable
 
Compensadores adelanto-y-atraso
Compensadores adelanto-y-atrasoCompensadores adelanto-y-atraso
Compensadores adelanto-y-atraso
 
Lugar de las raices
Lugar de las raicesLugar de las raices
Lugar de las raices
 
Definiciones de control
Definiciones de controlDefiniciones de control
Definiciones de control
 
Diagrama de bloques y señaes y ft
Diagrama de bloques y señaes y ftDiagrama de bloques y señaes y ft
Diagrama de bloques y señaes y ft
 
Electronica transitores efecto de cambio
Electronica transitores efecto de cambioElectronica transitores efecto de cambio
Electronica transitores efecto de cambio
 
1.2 control pid INGENIERIA DEL CONTROL
1.2 control pid INGENIERIA DEL CONTROL1.2 control pid INGENIERIA DEL CONTROL
1.2 control pid INGENIERIA DEL CONTROL
 
Simplificación de los diagramas de bloques
Simplificación de los diagramas de bloquesSimplificación de los diagramas de bloques
Simplificación de los diagramas de bloques
 
Capítulo VI - Microondas - Osciladores
Capítulo VI - Microondas - OsciladoresCapítulo VI - Microondas - Osciladores
Capítulo VI - Microondas - Osciladores
 
Controladores (teoria de control)
Controladores (teoria de control)Controladores (teoria de control)
Controladores (teoria de control)
 
Practica Filtro pasa bajos
Practica Filtro pasa bajosPractica Filtro pasa bajos
Practica Filtro pasa bajos
 
Sesión 6: Teoría Básica de Transistores BJT
Sesión 6: Teoría Básica de Transistores BJTSesión 6: Teoría Básica de Transistores BJT
Sesión 6: Teoría Básica de Transistores BJT
 
Informe amplificador operacional
Informe amplificador operacionalInforme amplificador operacional
Informe amplificador operacional
 
Teoria de control analisis de la respuesta en frecuencia
Teoria de control analisis de la respuesta en frecuenciaTeoria de control analisis de la respuesta en frecuencia
Teoria de control analisis de la respuesta en frecuencia
 

Similar a Lugar geometrico de las raices m.p

Lugar Geométrico de las Raices
Lugar Geométrico de las RaicesLugar Geométrico de las Raices
Lugar Geométrico de las Raices
Ruben Armengol
 
Posición y desplazamiento
Posición y desplazamientoPosición y desplazamiento
Posición y desplazamiento
Ever Atencia
 
2 ldr
2 ldr2 ldr
2 ldr
UNEFA
 
Especificaciones en el cálculo del radio de curvatura de la leva del mecanism...
Especificaciones en el cálculo del radio de curvatura de la leva del mecanism...Especificaciones en el cálculo del radio de curvatura de la leva del mecanism...
Especificaciones en el cálculo del radio de curvatura de la leva del mecanism...
erick huacho
 

Similar a Lugar geometrico de las raices m.p (20)

Lgr jose millan
Lgr jose millanLgr jose millan
Lgr jose millan
 
Lgr manuel millan
Lgr manuel millanLgr manuel millan
Lgr manuel millan
 
Luis mendez lugar geomtrico de las raices
Luis mendez lugar geomtrico de las raicesLuis mendez lugar geomtrico de las raices
Luis mendez lugar geomtrico de las raices
 
Luis mendez lugar geomtrico de las raices
Luis mendez lugar geomtrico de las raicesLuis mendez lugar geomtrico de las raices
Luis mendez lugar geomtrico de las raices
 
Lugar geomtrico de las raices
Lugar geomtrico de las raicesLugar geomtrico de las raices
Lugar geomtrico de las raices
 
Lugar Geométrico de las Raices
Lugar Geométrico de las RaicesLugar Geométrico de las Raices
Lugar Geométrico de las Raices
 
Ps 2319 lgr
Ps 2319 lgrPs 2319 lgr
Ps 2319 lgr
 
Presentacion 1
Presentacion 1Presentacion 1
Presentacion 1
 
4_LUGAR_GEOMETRICO_DE_LAS_RAICES_ppt.ppt
4_LUGAR_GEOMETRICO_DE_LAS_RAICES_ppt.ppt4_LUGAR_GEOMETRICO_DE_LAS_RAICES_ppt.ppt
4_LUGAR_GEOMETRICO_DE_LAS_RAICES_ppt.ppt
 
Posición y desplazamiento
Posición y desplazamientoPosición y desplazamiento
Posición y desplazamiento
 
Ingeniería de control: análisis del lugar geométrico de la raíces
Ingeniería de control: análisis del lugar geométrico de la raícesIngeniería de control: análisis del lugar geométrico de la raíces
Ingeniería de control: análisis del lugar geométrico de la raíces
 
Teoría compensadores y controladores
Teoría compensadores y controladoresTeoría compensadores y controladores
Teoría compensadores y controladores
 
Control Analogico II
Control Analogico IIControl Analogico II
Control Analogico II
 
2 ldr
2 ldr2 ldr
2 ldr
 
Lgr 081 2
Lgr 081 2Lgr 081 2
Lgr 081 2
 
Coordenadas Polares.pdf
Coordenadas Polares.pdfCoordenadas Polares.pdf
Coordenadas Polares.pdf
 
Capitulo3 analisis lgr (1)
Capitulo3 analisis lgr (1)Capitulo3 analisis lgr (1)
Capitulo3 analisis lgr (1)
 
Lugar geometrico
Lugar geometricoLugar geometrico
Lugar geometrico
 
Especificaciones en el cálculo del radio de curvatura de la leva del mecanism...
Especificaciones en el cálculo del radio de curvatura de la leva del mecanism...Especificaciones en el cálculo del radio de curvatura de la leva del mecanism...
Especificaciones en el cálculo del radio de curvatura de la leva del mecanism...
 
Conversión de modelado de espacio de estados a función de transferencia
Conversión de modelado de espacio de estados a función de transferenciaConversión de modelado de espacio de estados a función de transferencia
Conversión de modelado de espacio de estados a función de transferencia
 

Último

RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
amelia poma
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
jlorentemartos
 
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdfPROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
EduardoJosVargasCama1
 

Último (20)

ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
 
Posición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxPosición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptx
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
 
Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024
 
Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024
 
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxLA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
 
Sesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdfSesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdf
 
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
 
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
 
Código Civil de la República Bolivariana de Venezuela
Código Civil de la República Bolivariana de VenezuelaCódigo Civil de la República Bolivariana de Venezuela
Código Civil de la República Bolivariana de Venezuela
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdf
 
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdfFICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
Los dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la VerdadLos dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la Verdad
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
 
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdfPROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
 
AEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptxAEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptx
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
 

Lugar geometrico de las raices m.p

  • 1.
  • 2. REPÚBLICA BOLIVARIANA DE VENEZUELA INSTITUTO UNIVERSITARIO POLITÉCNICO “SANTIAGO MARIÑO” ESCUELA DE INGENIERÍA ELECTRÓNICA EXTENSIÓN MATURÍN LUGAR GEOMÉTRICO DE LAS RAICES Profesor: Realizado por: Ing. Mariangela Pollonais Br. Palma, Marielys C.I.19.692.699 Maturín, Agosto de 2013
  • 3. DEFINICION DE LUGAR GEOMETRICO DE LAS RAICES (LGR) Existe una estrecha relación entre la respuesta transitoria de un sistema y la ubicación de las raíces de su ecuación característica en el Plano s. Conocer la ubicación de las raíces en el Plano s ante variaciones de un parámetro, puede representar una herramienta muy útil de análisis y diseño, ya que la variación de los parámetros físicos de un sistema que logran una modificación de su ecuación característica, modifica las raíces o polos de dicho sistema, de forma tal que se puede obtener una respuesta particular o deseada. Supongamos tener el sistema de la siguiente figura, donde KA es la ganancia de nuestro controlador, el cual puede ser elegido por el diseñador. Figura 1. Esquema de un sistema controlado con retroalimentación. La función de transferencia de este sistema es: Ec. [1] Los polos de esta función de transferencia estarán dados por las raíces de la ecuación característica: .
  • 4. Dependiendo de la ganancia KA que elija el diseñador, será la respuesta dinámica que tendrá el sistema retroalimentado (la ubicación de los polos depende de esta ganancia). Evans propuso que el diseñador del sistema de control construya el lugar geométrico de todas las raíces posibles de la ecuación a medida que KA varía desde 0 a infinito. De esta manera podemos elegir adecuadamente la ganancia KA y ver los efectos de polos y ceros adicionales. Tenemos que la función de transferencia de la planta es: Ec. [2] Donde a(s) y b(s) son polinomios de grado n y m respectivamente, y n m. Estos polinomios los podemos escribir de las siguientes maneras: Ec. [3] Ec. [4] Llamemos K a: K = KA . Kp. Entonces la ecuación característica la podemos escribir de las siguientes maneras: Ec. [5]
  • 5. Ec. [6] Ec. [7] Ec. [8] Consideraremos primeramente el caso en que K es positivo. El grado de la ecuación característica es el grado mayor de los dos polinomios a(s) y b(s) (observando la ecuación 7), y por lo tanto es de grado n. Esto significa que el número de ramas del lugar geométrico de las raíces estará dado por n el grado del polinomio denominador de la función de transferencia a lazo abierto. De la ecuación 7 también podemos decir que para K = 0, las raíces de la ecuación característica estará dada por los polos de la función de transferencia a lazo abierto (las raíces de a(s)); y que para K infinito, las raíces de la ecuación característica estará dada por los ceros de la función de transferencia a lazo abierto (las raíces de b(s)). Conclusión: existirá n ramas en el lugar geométrico de las raíces que partirán de los polos a lazo abierto y terminarán en los ceros a lazo abierto.
  • 6. APLICACIONES DE (LGR) El lugar de las raíces, además de ser útil para el análisis de la estabilidad de un sistema lineal y continuo SISO, se puede emplear para el diseño de un controlador de una variable dentro de un sistema, es decir, se aplica para determinar la función de transferencia del controlador que además de la regulación haga que la respuesta del sistema, ante cambios en su variable de proceso, muestre un perfil de acuerdo a ciertos requerimientos. A continuación se desarrolla un ejemplo de lo anterior valiéndose de la herramienta “Control System Toolbox” disponible en Matlab. CARACTERISTICAS DEL (LGR) La característica básica de la respuesta transitoria de un sistema en lazo cerrado se relaciona estrechamente con la ubicación de los polos en lazo cerrado. Si el sistema tiene una ganancia de lazo variable, la ubicación de los polos en lazo cerrado depende del valor de la ganancia de lazo elegida. Es importante que el diseñador conozca cómo se mueven los polos en lazo cerrado en el plano s conforme varía la ganancia de lazo. Desde el punto de vista del diseño, un simple ajuste de la ganancia en algunos sistemas mueve los polos en lazo cerrado a las posiciones deseadas. Los polos en lazo cerrado son las raíces de la ecuación característica. W. R. Evans diseñó un método sencillo para encontrar las raíces de la ecuación característica, que se usa ampliamente en la ingeniería de control. Se denomina método del lugar geométrico de las raíces, y en él se grafican las raíces de la ecuación característica para todos los valores de un parámetro del sistema. La idea básica detrás del método del LGR es que los valores que hacen que la función de transferencia alrededor del lazo sea igual a - 1 deben satisfacer la ecuación característica del sistema. El método debe su nombre al lugar geométrico de las raíces de la ecuación característica del sistema en lazo cerrado conforme la ganancia varía de cero a infinito.
  • 7. El método del LGR resulta muy útil, dado que indica la forma en la que deben modificarse los polos y ceros en lazo abierto para que la respuesta cumpla las Especificaciones de desempeño del sistema. Algunos sistemas de control pueden tener más de un parámetro que deba ajustarse. El diagrama del LGR, para un sistema que tiene parámetros múltiples, se construye variando un parámetro a la vez. En la mayor parte de los casos, el parámetro del sistema es la ganancia de lazo K, aunque el parámetro puede ser cualquier otra variable del sistema Si el diseñador sigue las reglas generales para construir los lugares geométricos, le resultará sencillo trazar los LGR de un sistema específico. Debido a que generar los lugares geométricos de las raíces usando MATLAB es muy simple, se podría pensar que trazar los lugares geométricos de las raíces en forma manual es una pérdida de tiempo y esfuerzo. PASOS PARA DETERMINAR EL LGR Cuando se trata de sistemas de control es sumamente importante conocer la ubicación de las raíces de la ecuación característica del lazo cerrado, lo cual puede conocerse utilizando un método sistemático y sencillo que muestra el movimiento de dichas raíces cuando se modifica un parámetro de la ecuación. Dicho método permite elaborar lo que se cono ce como el lugar geométrico de las raíces (LGR), que nos es otra cosa que las soluciones de la ecuación característica a lazo cerrado cuando se varía un parámetro El método de construcción para el lugar geométrico de las raíces de la ecuación característica a lazo cerrado cuando se varía un parámetro se fundamenta en un esquema de control de retroalimentación simple como el que se muestra en la FIGURA. 1.1, para el cual la ecuación característica a lazo cerrado es la que indica la ECUACION 1.1, cuyas soluciones representan los polos del lazo cerrado
  • 8. ECUACION 1.1 Para un esquema de realimentación simple como el de l figura 1.1 FIGURA 1.1 El lugar geométrico de las raíces se realiza para variaciones de K desde cero hasta infinito, para las cuales dichas raíces deben satisfacer la ECUACION 1.1. Como S es una variable compleja, es posible reescribir dicha ecuación en forma polar como sigue: ECUACION 1.2
  • 9. A partir de allí se pueden identificar dos condiciones que deben cumplirse para satisfacer la ecuación anterior, las cuales son conocidas como la Condición de Módulo y la Condición de Ángulo y se muestran en las ECUACIONES. 1.3 y 1.4, respectivamente ECUACION 1.3 ECUACION 1.4 Donde k = 0, ±1, ±2,... Si la función de transferencia a lazo abierto se factoríza en polos y ceros, tal como se muestra en la ECUACIÓN 1.5, las condiciones de módulo y de ángulo pueden reescribirse como se muestra en las ECUACIONES. 1.6 y 1.7, respectivamente. ECUACIÓN 1.5 ECUACIÓN 1.6 ECUACIÓN 1.7
  • 10. Las dos condiciones anteriores deben cumplirse para cada una de las raíces que forme parte del lugar geométrico, de forma tal que se garantice que cada una de ellas sea solución de la ecuación característica a lazo cerrado. Gracias a la condición de ángulo se determina la ubicación geométrica de las raíces, es decir, la forma del lugar geométrico, en tanto que la condición de módulo permite determinar el valor de la ganancia K a lo largo de dicho lugar geométrico. Para la construcción metódica del lugar geométrico se puede seguir un procedimiento que hace posible realizar una rápida representación de la ubicación de cada una de las raíces de la ecuación característica cuando se varía K desde cero a infinito. En principio se debe reescribir la ecuación característica tal como se muestra a continuación: ECUACIÓN 1.8 Como se puede observar en la ECUACION 1.8, cuando K es igual a cero, la solución de la ecuación característica a lazo cerrado coincide con los polos de la función de transferencia a lazo abierto, en tanto que, cuando K tiende a infinito, la solución de la ecuación característica a lazo cerrado coincide con los ceros de la función de transferencia a lazo abierto. Es por ello que se concluye que el lugar geométrico de las raíces comienza en los polos del lazo abierto y termina en los ceros del lazo abierto a medida que K aumenta desde cero hasta infinito. También se puede concluir que el número de tramos o ramas del lugar geométrico será igual al número
  • 11. de polos de la función de transferencia de lazo abierto y que siempre será simétrico respecto al eje real Paso 1 Dibujar sobre el Plano s los polos y ceros del lazo abierto. Paso 2 Determinar que parte del eje real pertenece al lugar geométrico. A partir de la condición de ángulo se determina que las partes del eje real que pertenecen al lugar geométrico son aquellas que se encuentran a la izquierda de un número impar de polos y ceros. Paso 3 Determinar el número de asíntotas, NA, la ubicación de su punto de partida, σA y del ángulo de las mismas, φA, utilizando las ECUACIONES 1.14, 1.15 y 1.16, respectivamente. Paso 4 Si existe, calcular los puntos de ruptura o despegue del eje real. Paso 5 Dibujar un esbozo completo del lugar geométrico de las raíces. Paso 6 Si existe, calcular el corte con el eje imaginario. Utilizando el procedimiento anterior se puede obtener, de forma rápida y eficaz, un esbozo del lugar geométrico de la raíces de la ecuación característica a lazo cerrado cuando se varía K desde cero a infinito. ECUACION 1.14 ECUACION 1.16 ECUACION 1.15
  • 12. DEFINICIÓN DE MATLAB MATLAB (abreviatura de MATrix LABoratory, "laboratorio de matrices") es una herramienta de software matemático que ofrece un entorno de desarrollo integrado (IDE) con un lenguaje de programación propio (lenguaje M). Está disponible para las plataformas Unix, Windows y Mac OS X. Entre sus prestaciones básicas se hallan: la manipulación de matrices, la representación de datos y funciones, la implementación de algoritmos, la creación de interfaces de usuario (GUI) y la comunicación con programas en otros lenguajes y con otros dispositivos hardware. El paquete MATLAB dispone de dos herramientas adicionales que expanden sus prestaciones, a saber, Simulink (plataforma de simulación multidominio) y GUIDE (editor de interfaces de usuario - GUI). Además, se pueden ampliar las capacidades de MATLAB con las cajas de herramientas (toolboxes); y las de Simulink con los paquetes de bloques (blocksets). Es un software muy usado en universidades y centros de investigación y desarrollo. En los últimos años ha aumentado el número de prestaciones, como la de programar directamente procesadores digitales de señal o crear código VHDL.
  • 13. APLICACIONES DE MATLAB EN CONTROL El control es quizás una de las áreas con más desarrollo dentro de la industria y manufactura moderna. Especialistas del área han encontrado en MatLab una herramienta muy poderosa para simular sistemas de control de muy diversos tipos. Es por eso, que el Toolbox de control contenido en MatLab es uno de los más completos actualmente. Mediante las aplicaciones de esta área que hemos incluido se busca que todo aquel usuario que pretenda utilizar esta herramienta, sepa que tipo de funciones pueden ayudarlo para realizar la mayor cantidad de tareas que pudimos abarcar. 1. Comenzamos en el primer ejemplo, por mencionar los diversos tipos de respuestas que se pueden esperar de un sistema. En este caso comentamos tres tipos, dependiendo de la señal de entrada, la primera respuesta corresponde a un escalón, la segunda corresponde a un impulso y la última a una rampa. Las primeras dos tienen funciones propias dentro del Toolbox de control y son “step” e “impulse “respectivamente, sin embargo el tercer tipo de señal de entrada no, por lo que tendremos nuevamente que remitirnos a su definición matemática para generar una expresión que la represente. Una vez logrado esto, se analiza la respuesta de un sistema dado, determinado mediante su función de transferencia y listo. El usuario podrá observar las salidas gráficamente. Es importante para estas alturas que el usuario maneje a la perfección la representación de ecuaciones en MatLab, por lo que constantemente se le recuerda del procedimiento requerido
  • 14. Diferentes tipos de impulso generados mediante funciones de Matlab 2. El segundo ejemplo contempla el desarrollo de uno de los puntos de partida primarios para un diseñador que pretenda implementar un sistema estable. Nos referimos al concepto del Lugar Geométrico de las Raíces. Este procedimiento consiste en colocar los polos y ceros de la función de transferencia en los lugares apropiados dentro del plano imaginario, de manera que se asegure la estabilidad y la ganancia deseada del sistema. Para lograr esto se explican y se recurre a las funciones “roots” y “rlocus” que desplegarán los puntos de interés en dicho plano. Es importante mencionar también que dentro de este ejemplo se le muestra al usuario como convulsionar una función de manera que la localización de ciertos puntos (en este caso los polos) sea más sencilla. Función “conv”.
  • 15. 3. El tercer ejemplo muestra nuevamente una función muy propia del Toolbox de control, conocida como “margin”, que representa la gráfica de Bode señalando el margen de ganancia y de fase de la función de transferencia. Así mismo se presenta la función Nyquist que genera el gráfico del mismo nombre de la función de transferencia.
  • 16. FUNCIÓN PARA CALCULAR EL LGR EN MATLAB Los comandos más utilizados en matlab para el LGR y RF son: Los comandos más utilizados en matlab para el LGR son: rltool Sirve para manipular los polos y ceros en un LGR, se pueden obtener también las gráficas de la respuesta a distintas entradas y los diagramas de Bode, Nyquist y Nichols. RLTOOL rlocus Se utiliza para graficar el LGR RLOCUS(SYS) rlocfind Determina la ganancia del LGR, para un polo determinado. RLOCFIND(SYS)