SlideShare una empresa de Scribd logo
1 de 27
Equilibrio químico
Capítulo 14
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
El equilibrio es un estado en que no hay ningún cambio
notable mientras transcurre el tiempo .
Equlibrio químico se alcanza cuando:
• las velocidades de las reacciones directa e inversa se
igualan y
• las concentraciones de los reactivos y productos
permanecen constantes
Equilibrio físico
H2O (l)
Equilibrio químico
N2O4 (g)
14.1
H2O (g)
2NO2 (g)
N2O4 (g) 2NO2 (g)
Al principio con NO2 Al principio con N2O4 Al principio con
NO2 & N2O4
equilibrio
equilibrio
equilibrio
14.1
Tiempo
Tiempo
Tiempo
14.1
constante
Tiempo Tiempo Tiempo
N2O4 (g) 2NO2 (g)
= 4.63 x 10-3
K =
[NO2]2
[N2O4]
aA + bB cC + dD
K =
[C]c[D]d
[A]a[B]b
Ley de acción de masa
K >> 1
K << 1
Desplaza a la derecha Favorece a los productos
Desplaza a la izquierda Favorece a las reactivos
El equilibrio será
14.1
El equilibrio homogéneo se aplica a las reacciones en que
todas las especies reactivas están en la misma fase.
N2O4 (g) 2NO2 (g)
Kc =
[NO2]2
[N2O4]
Kp =
NO2
P2
N2O4
P
En la mayoría de los casos
Kc  Kp
aA (g) + bB (g) cC (g) + dD (g)
14.2
Kp = Kc(RT)Dn
Dn = moles de productos gaseosos – moles de reactivos gaseosos
= (c + d) – (a + b)
Equilibrio homogéneo
CH3COOH (ac) + H2O (l) CH3COO- (ac) + H3O+ (ac)
Kc =
‘
[CH3COO-][H3O+]
[CH3COOH][H2O]
[H2O] = constante
Kc =
[CH3COO-][H3O+]
[CH3COOH]
= Kc [H2O]
‘
En la práctica general no se incluyen
unidades para la constante de equilibrio.
14.2
Las concentraciones de equilibrio para la reacción entre
monóxido de carbono y cloro molecular para formar COCl2
(g) a 740C son [CO] = 0.012 M, [Cl2] = 0.054 M, y
[COCl2] = 0.14 M. Calcule las constantes de equilibrio Kc y
Kp.
CO (g) + Cl2 (g) COCl2 (g)
Kc =
[COCl2]
[CO][Cl2]
=
0.14
0.012 x 0.054
= 220
Kp = Kc(RT)Dn
Dn = 1 – 2 = -1 R = 0.0821 T = 273 + 74 = 347 K
Kp = 220 x (0.0821 x 347)-1 = 7.7
14.2
La constante de equilibrio Kp para la reacción
es 158 a1000K. ¿Cuál es la presión en el equilibrio de O2
si las PNO = 0.400 atm y PNO = 0.270 atm?
2
2NO2 (g) 2NO (g) + O2 (g)
14.2
Kp =
2
PNO PO
2
PNO
2
2
PO2 = Kp
PNO
2
2
PNO
2
PO2 = 158 x (0.400)2/(0.270)2 = 347 atm
El equilibrio heterogéneo se aplica a las reacciones en que
los reactivos y productos están en diferentes fases .
CaCO3 (s) CaO (s) + CO2 (g)
Kc =
‘
[CaO][CO2]
[CaCO3]
[CaCO3] = constante
[CaO] = constante
Kc = [CO2] = Kc x
‘
[CaCO3]
[CaO]
Kp = PCO2
La concentración de sólidos y líquidos puros no son
incluidos en la expresión para la constante de equilibrio.
14.2
PCO2
= Kp
CaCO3 (s) CaO (s) + CO2 (g)
PCO2
No depende de la cantidad de CaCO3 o CaO
14.2
Considere el equilibrio siguiente en 295 K:
La presión parcial de cada gas es 0.265 atm. ¿Calcule Kp
y Kc para la reacción?
NH4HS (s) NH3 (g) + H2S (g)
Kp = P
NH3 H2S
P = 0.265 x 0.265 = 0.0702
Kp = Kc(RT)Dn
Kc = Kp(RT)-Dn
Dn = 2 – 0 = 2 T = 295 K
Kc = 0.0702 x (0.0821 x 295)-2 = 1.20 x 10-4
14.2
A + B C + D
C + D E + F
A + B E + F
Kc =
‘
[C][D]
[A][B]
Kc =
‘‘
[E][F]
[C][D]
[E][F]
[A][B]
Kc =
Kc
‘
Kc‘
‘
Kc
Kc = Kc‘
‘
Kc
‘ x
Si una reacción se puede expresar como la
suma de dos o más reacciones, la
constante de equilibrio para la reacción
global está dada por el producto de las
constantes de equilibrio de las reacciones
individuales.
14.2
N2O4 (g) 2NO2 (g)
= 4.63 x 10-3
K =
[NO2]2
[N2O4]
2NO2 (g) N2O4 (g)
K =
[N2O4]
[NO2]2
‘ =
1
K
= 216
Cuando la ecuación para una reacción
reversible se escribe en dirección opuesta,
la constante de equilibrio se vuelve el
inverso de la constante de equilibrio
original.
14.2
Escritura de las expresiones de las constante de equilibrio
• Las concentraciones de las especies reactivas en fase
condensada se expresan en M. En la fase gaseosa, las
concentraciones se pueden expresar en M o en atm.
• Las concentraciones de sólidos puros, líquidos puros y
solventes no aparecen en las expresiones de constantes
de equilibrio.
• La constante de equilibrio es una cantidad adimensional.
• Citando un valor por la constante de equilibrio, debe
especificar la ecuación balanceada y la temperatura.
• Si una reacción puede expresarse como una suma de dos
o más reacciones, la constante de equilibrio para la
reacción global está dada por el producto de las
constantes de equilibrio de las reacciones individuales.
14.2
14.3
Química cinética y equilibrio químico
A + 2B AB2
kf
kr
velocidadf = kf [A][B]2
velocidadr = kr [AB2]
Equilibrio
velocidadf = velocidadr
kf [A][B]2 = kr [AB2]
kf
kr
[AB2]
[A][B]2
= Kc =
El cociente de reacción (Qc) se calcula sustituyendo las
concentraciones iniciales de los reactivos y productos en la
expresión de la constante de equilibrio (Kc).
SI
• Qc > Kc el sistema procede de derecha a izquierda para
alcanzar el equilibrio
• Qc = Kc el sistema está en equilibrio
• Qc < Kc el sistema procede de izquierda a derecha para
alcanzar el equilibrio
14.4
Equilibrio: no hay cambio neto Reactivos Producos
Cálculo de las concentraciones de equilibrio
1. Exprese las concentraciones de equilibrio de todas las
especies en términos de las concentraciones iniciales y
una sola variable x que representan el cambio en la
concentración.
2. Escriba la expresión de la constante de equilibrio en
términos de las concentraciones de equilibrio. Sabiendo el
valor de la constante de equilibrio, resuelva para x.
3. Habiendo resuelto para x, calcule las concentraciones de
equilibrio de todas las especies.
14.4
A 12800C la constante de equilibrio (Kc) para la reacción
Es 1.1 x 10-3. Si las concentraciones iniciales son [Br2] =
0.063 M y [Br] = 0.012 M, calcule las concentraciones de
estas especies en equilibrio.
Br2 (g) 2Br (g)
Br2 (g) 2Br (g)
Sea x el cambio en la concentración de Br2
Inicial (M)
Cambio (M)
Equilibrio(M)
0.063 0.012
-x +2x
0.063 - x 0.012 + 2x
[Br]2
[Br2]
Kc = Kc =
(0.012 + 2x)2
0.063 - x
= 1.1 x 10-3 Resuelva
para x
14.4
Kc =
(0.012 + 2x)2
0.063 - x
= 1.1 x 10-3
4x2 + 0.048x + 0.000144 = 0.0000693 – 0.0011x
4x2 + 0.0491x + 0.0000747 = 0
ax2 + bx + c =0
-b ± b2 – 4ac

2a
x =
Br2 (g) 2Br (g)
Inicial(M)
Cambio(M)
Equilibrio(M)
0.063 0.012
-x +2x
0.063 - x 0.012 + 2x
x = -0.00178
x = -0.0105
En equilibrio, [Br] = 0.012 + 2x = -0.009 M o 0.00844 M
En equilibrio, [Br2] = 0.062 – x = 0.0648 M
14.4
Si una tensión externa se aplica a un sistema en equilibrio, el
sistema se ajusta de tal manera que la tensión se compensa
parcialmente, así el sistema alcanza una nueva posición de
equilibrio.
Principio de Le Châtelier
• Cambios en la concentración
N2 (g) + 3H2 (g) 2NH3 (g)
Add
NH3
El equilibrio
desplaza a
la izquierda
para
compensar
la tensión
14.5
Equilibrio
inicial Cambio
Equilibrio
final
Tiempo
Concentración
Principio de Le Châtelier
• Cambios en la concentración (continuación)
Cambios Desplazamiento del equilibrio
Aumenta la concentración del producto(s) izquierda
Dismunuye la concentración del producto(s) derecha
Dismunuye la concentración del reactivo(s)
Aumenta la concentración del reactivo(s) derecha
izquierda
14.5
aA + bB cC + dD
Add
Add
Remove Remove
Principio de Le Châtelier
• Cambios en el volumen y presión
A (g) + B (g) C (g)
Cambio Desplazamiento del equilibrio
Aumenta la presión Lado con menos moles de gas
Disminuye la presión Lado con más moles de gas
Disminuye el volumen
Aumenta el volumen Lado con más moles de gas
Lado con menos moles de gas
14.5
Principio de Le Châtelier
• Cambios en la temperatura
Cambio Rx exotérmica
Aumenta la temperatura K disminuye
Disminuye la temperature K aumenta
Rx endotérmica
K aumenta
K disminuye
• Adicionando un catalizador
• no cambia K
• no desplaza la posición de un sistema en equilibrio
• el sistema alcanzará el equilibrio más pronto
14.5
Sin catalizador Catalizador
14.5
El catalizador baja Ea para ambos avances y reacciones inversas .
El catalizador no cambia la constante de equilibrio o
desplazamiento en el equilibrio
Avance de la reacción
Avance de la reacción
Energía
potencial
Energía
potencial
Principio de Le Châtelier
Cambio
Desplazamiento
en el equilibrio
Cambio en la constante
de equilibrio
Concentración sí no
Presión sí no
Volumen sí no
Temperatura sí sí
Catalizador no no
14.5
MUCHAS GRACIAS

Más contenido relacionado

Similar a EQUILIBRIO QUÍMICO .ppt

Similar a EQUILIBRIO QUÍMICO .ppt (20)

Equibrio Quimico Tomas
Equibrio Quimico TomasEquibrio Quimico Tomas
Equibrio Quimico Tomas
 
Equilibrio químico
Equilibrio químicoEquilibrio químico
Equilibrio químico
 
Equilibrio Químico
Equilibrio Químico Equilibrio Químico
Equilibrio Químico
 
Equilibrioquimico
EquilibrioquimicoEquilibrioquimico
Equilibrioquimico
 
Equilibrio quimico
Equilibrio quimicoEquilibrio quimico
Equilibrio quimico
 
Tema 6 - Equilibrio químico
Tema 6 - Equilibrio químicoTema 6 - Equilibrio químico
Tema 6 - Equilibrio químico
 
Equilibrio químico 2
Equilibrio químico 2Equilibrio químico 2
Equilibrio químico 2
 
Equilibrio químico buena
Equilibrio químico buenaEquilibrio químico buena
Equilibrio químico buena
 
Potencial quimico
Potencial quimicoPotencial quimico
Potencial quimico
 
12 Equilibrio Quimico I 11 04 05
12 Equilibrio Quimico I 11 04 0512 Equilibrio Quimico I 11 04 05
12 Equilibrio Quimico I 11 04 05
 
02 equilibrioquímico
02 equilibrioquímico02 equilibrioquímico
02 equilibrioquímico
 
Equilibrio químico
Equilibrio químicoEquilibrio químico
Equilibrio químico
 
Pres-equilibrio-quimico.ppt
Pres-equilibrio-quimico.pptPres-equilibrio-quimico.ppt
Pres-equilibrio-quimico.ppt
 
Equilibrio lorena
Equilibrio lorenaEquilibrio lorena
Equilibrio lorena
 
Equilibrio quimico
Equilibrio quimicoEquilibrio quimico
Equilibrio quimico
 
F. Q 11 - A - copia.pptx
F. Q 11 - A - copia.pptxF. Q 11 - A - copia.pptx
F. Q 11 - A - copia.pptx
 
Equilibrio quimico: constante de equilibrio
Equilibrio quimico: constante de equilibrioEquilibrio quimico: constante de equilibrio
Equilibrio quimico: constante de equilibrio
 
Equilibrio 1
Equilibrio 1Equilibrio 1
Equilibrio 1
 
EQUILIBRIO QUIMICO1.pptx
EQUILIBRIO QUIMICO1.pptxEQUILIBRIO QUIMICO1.pptx
EQUILIBRIO QUIMICO1.pptx
 
Equibrio Químico
Equibrio QuímicoEquibrio Químico
Equibrio Químico
 

Último

Ingeniería clínica 1 Ingeniería biomedica
Ingeniería clínica 1 Ingeniería biomedicaIngeniería clínica 1 Ingeniería biomedica
Ingeniería clínica 1 Ingeniería biomedicaANACENIMENDEZ1
 
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAINTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAJOSLUISCALLATAENRIQU
 
LA APLICACIÓN DE LAS PROPIEDADES TEXTUALES A LOS TEXTOS.pdf
LA APLICACIÓN DE LAS PROPIEDADES TEXTUALES A LOS TEXTOS.pdfLA APLICACIÓN DE LAS PROPIEDADES TEXTUALES A LOS TEXTOS.pdf
LA APLICACIÓN DE LAS PROPIEDADES TEXTUALES A LOS TEXTOS.pdfbcondort
 
tema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdftema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdfvictoralejandroayala2
 
NTP- Determinación de Cloruros en suelos y agregados (1) (1).pptx
NTP- Determinación de Cloruros  en suelos y agregados (1) (1).pptxNTP- Determinación de Cloruros  en suelos y agregados (1) (1).pptx
NTP- Determinación de Cloruros en suelos y agregados (1) (1).pptxBRAYANJOSEPTSANJINEZ
 
UNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotencialesUNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotencialesElianaCceresTorrico
 
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptMarianoSanchez70
 
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.pptoscarvielma45
 
Obras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónObras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónXimenaFallaLecca1
 
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023RonaldoPaucarMontes
 
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdfTEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdfXimenaFallaLecca1
 
Principales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingPrincipales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingKevinCabrera96
 
Quimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfQuimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfs7yl3dr4g0n01
 
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOL
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOLTERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOL
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOLdanilojaviersantiago
 
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)ssuser563c56
 
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERASDOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERASPersonalJesusGranPod
 
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdffredyflores58
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfKEVINYOICIAQUINOSORI
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfMikkaelNicolae
 
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfAntonioGonzalezIzqui
 

Último (20)

Ingeniería clínica 1 Ingeniería biomedica
Ingeniería clínica 1 Ingeniería biomedicaIngeniería clínica 1 Ingeniería biomedica
Ingeniería clínica 1 Ingeniería biomedica
 
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAINTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
 
LA APLICACIÓN DE LAS PROPIEDADES TEXTUALES A LOS TEXTOS.pdf
LA APLICACIÓN DE LAS PROPIEDADES TEXTUALES A LOS TEXTOS.pdfLA APLICACIÓN DE LAS PROPIEDADES TEXTUALES A LOS TEXTOS.pdf
LA APLICACIÓN DE LAS PROPIEDADES TEXTUALES A LOS TEXTOS.pdf
 
tema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdftema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdf
 
NTP- Determinación de Cloruros en suelos y agregados (1) (1).pptx
NTP- Determinación de Cloruros  en suelos y agregados (1) (1).pptxNTP- Determinación de Cloruros  en suelos y agregados (1) (1).pptx
NTP- Determinación de Cloruros en suelos y agregados (1) (1).pptx
 
UNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotencialesUNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotenciales
 
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
 
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
 
Obras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónObras paralizadas en el sector construcción
Obras paralizadas en el sector construcción
 
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
 
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdfTEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
 
Principales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingPrincipales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards Deming
 
Quimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfQuimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdf
 
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOL
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOLTERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOL
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOL
 
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
 
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERASDOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
 
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdf
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
 
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
 

EQUILIBRIO QUÍMICO .ppt

  • 1. Equilibrio químico Capítulo 14 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
  • 2. El equilibrio es un estado en que no hay ningún cambio notable mientras transcurre el tiempo . Equlibrio químico se alcanza cuando: • las velocidades de las reacciones directa e inversa se igualan y • las concentraciones de los reactivos y productos permanecen constantes Equilibrio físico H2O (l) Equilibrio químico N2O4 (g) 14.1 H2O (g) 2NO2 (g)
  • 3. N2O4 (g) 2NO2 (g) Al principio con NO2 Al principio con N2O4 Al principio con NO2 & N2O4 equilibrio equilibrio equilibrio 14.1 Tiempo Tiempo Tiempo
  • 5. N2O4 (g) 2NO2 (g) = 4.63 x 10-3 K = [NO2]2 [N2O4] aA + bB cC + dD K = [C]c[D]d [A]a[B]b Ley de acción de masa K >> 1 K << 1 Desplaza a la derecha Favorece a los productos Desplaza a la izquierda Favorece a las reactivos El equilibrio será 14.1
  • 6. El equilibrio homogéneo se aplica a las reacciones en que todas las especies reactivas están en la misma fase. N2O4 (g) 2NO2 (g) Kc = [NO2]2 [N2O4] Kp = NO2 P2 N2O4 P En la mayoría de los casos Kc  Kp aA (g) + bB (g) cC (g) + dD (g) 14.2 Kp = Kc(RT)Dn Dn = moles de productos gaseosos – moles de reactivos gaseosos = (c + d) – (a + b)
  • 7. Equilibrio homogéneo CH3COOH (ac) + H2O (l) CH3COO- (ac) + H3O+ (ac) Kc = ‘ [CH3COO-][H3O+] [CH3COOH][H2O] [H2O] = constante Kc = [CH3COO-][H3O+] [CH3COOH] = Kc [H2O] ‘ En la práctica general no se incluyen unidades para la constante de equilibrio. 14.2
  • 8. Las concentraciones de equilibrio para la reacción entre monóxido de carbono y cloro molecular para formar COCl2 (g) a 740C son [CO] = 0.012 M, [Cl2] = 0.054 M, y [COCl2] = 0.14 M. Calcule las constantes de equilibrio Kc y Kp. CO (g) + Cl2 (g) COCl2 (g) Kc = [COCl2] [CO][Cl2] = 0.14 0.012 x 0.054 = 220 Kp = Kc(RT)Dn Dn = 1 – 2 = -1 R = 0.0821 T = 273 + 74 = 347 K Kp = 220 x (0.0821 x 347)-1 = 7.7 14.2
  • 9. La constante de equilibrio Kp para la reacción es 158 a1000K. ¿Cuál es la presión en el equilibrio de O2 si las PNO = 0.400 atm y PNO = 0.270 atm? 2 2NO2 (g) 2NO (g) + O2 (g) 14.2 Kp = 2 PNO PO 2 PNO 2 2 PO2 = Kp PNO 2 2 PNO 2 PO2 = 158 x (0.400)2/(0.270)2 = 347 atm
  • 10. El equilibrio heterogéneo se aplica a las reacciones en que los reactivos y productos están en diferentes fases . CaCO3 (s) CaO (s) + CO2 (g) Kc = ‘ [CaO][CO2] [CaCO3] [CaCO3] = constante [CaO] = constante Kc = [CO2] = Kc x ‘ [CaCO3] [CaO] Kp = PCO2 La concentración de sólidos y líquidos puros no son incluidos en la expresión para la constante de equilibrio. 14.2
  • 11. PCO2 = Kp CaCO3 (s) CaO (s) + CO2 (g) PCO2 No depende de la cantidad de CaCO3 o CaO 14.2
  • 12. Considere el equilibrio siguiente en 295 K: La presión parcial de cada gas es 0.265 atm. ¿Calcule Kp y Kc para la reacción? NH4HS (s) NH3 (g) + H2S (g) Kp = P NH3 H2S P = 0.265 x 0.265 = 0.0702 Kp = Kc(RT)Dn Kc = Kp(RT)-Dn Dn = 2 – 0 = 2 T = 295 K Kc = 0.0702 x (0.0821 x 295)-2 = 1.20 x 10-4 14.2
  • 13. A + B C + D C + D E + F A + B E + F Kc = ‘ [C][D] [A][B] Kc = ‘‘ [E][F] [C][D] [E][F] [A][B] Kc = Kc ‘ Kc‘ ‘ Kc Kc = Kc‘ ‘ Kc ‘ x Si una reacción se puede expresar como la suma de dos o más reacciones, la constante de equilibrio para la reacción global está dada por el producto de las constantes de equilibrio de las reacciones individuales. 14.2
  • 14. N2O4 (g) 2NO2 (g) = 4.63 x 10-3 K = [NO2]2 [N2O4] 2NO2 (g) N2O4 (g) K = [N2O4] [NO2]2 ‘ = 1 K = 216 Cuando la ecuación para una reacción reversible se escribe en dirección opuesta, la constante de equilibrio se vuelve el inverso de la constante de equilibrio original. 14.2
  • 15. Escritura de las expresiones de las constante de equilibrio • Las concentraciones de las especies reactivas en fase condensada se expresan en M. En la fase gaseosa, las concentraciones se pueden expresar en M o en atm. • Las concentraciones de sólidos puros, líquidos puros y solventes no aparecen en las expresiones de constantes de equilibrio. • La constante de equilibrio es una cantidad adimensional. • Citando un valor por la constante de equilibrio, debe especificar la ecuación balanceada y la temperatura. • Si una reacción puede expresarse como una suma de dos o más reacciones, la constante de equilibrio para la reacción global está dada por el producto de las constantes de equilibrio de las reacciones individuales. 14.2
  • 16. 14.3 Química cinética y equilibrio químico A + 2B AB2 kf kr velocidadf = kf [A][B]2 velocidadr = kr [AB2] Equilibrio velocidadf = velocidadr kf [A][B]2 = kr [AB2] kf kr [AB2] [A][B]2 = Kc =
  • 17. El cociente de reacción (Qc) se calcula sustituyendo las concentraciones iniciales de los reactivos y productos en la expresión de la constante de equilibrio (Kc). SI • Qc > Kc el sistema procede de derecha a izquierda para alcanzar el equilibrio • Qc = Kc el sistema está en equilibrio • Qc < Kc el sistema procede de izquierda a derecha para alcanzar el equilibrio 14.4 Equilibrio: no hay cambio neto Reactivos Producos
  • 18. Cálculo de las concentraciones de equilibrio 1. Exprese las concentraciones de equilibrio de todas las especies en términos de las concentraciones iniciales y una sola variable x que representan el cambio en la concentración. 2. Escriba la expresión de la constante de equilibrio en términos de las concentraciones de equilibrio. Sabiendo el valor de la constante de equilibrio, resuelva para x. 3. Habiendo resuelto para x, calcule las concentraciones de equilibrio de todas las especies. 14.4
  • 19. A 12800C la constante de equilibrio (Kc) para la reacción Es 1.1 x 10-3. Si las concentraciones iniciales son [Br2] = 0.063 M y [Br] = 0.012 M, calcule las concentraciones de estas especies en equilibrio. Br2 (g) 2Br (g) Br2 (g) 2Br (g) Sea x el cambio en la concentración de Br2 Inicial (M) Cambio (M) Equilibrio(M) 0.063 0.012 -x +2x 0.063 - x 0.012 + 2x [Br]2 [Br2] Kc = Kc = (0.012 + 2x)2 0.063 - x = 1.1 x 10-3 Resuelva para x 14.4
  • 20. Kc = (0.012 + 2x)2 0.063 - x = 1.1 x 10-3 4x2 + 0.048x + 0.000144 = 0.0000693 – 0.0011x 4x2 + 0.0491x + 0.0000747 = 0 ax2 + bx + c =0 -b ± b2 – 4ac  2a x = Br2 (g) 2Br (g) Inicial(M) Cambio(M) Equilibrio(M) 0.063 0.012 -x +2x 0.063 - x 0.012 + 2x x = -0.00178 x = -0.0105 En equilibrio, [Br] = 0.012 + 2x = -0.009 M o 0.00844 M En equilibrio, [Br2] = 0.062 – x = 0.0648 M 14.4
  • 21. Si una tensión externa se aplica a un sistema en equilibrio, el sistema se ajusta de tal manera que la tensión se compensa parcialmente, así el sistema alcanza una nueva posición de equilibrio. Principio de Le Châtelier • Cambios en la concentración N2 (g) + 3H2 (g) 2NH3 (g) Add NH3 El equilibrio desplaza a la izquierda para compensar la tensión 14.5 Equilibrio inicial Cambio Equilibrio final Tiempo Concentración
  • 22. Principio de Le Châtelier • Cambios en la concentración (continuación) Cambios Desplazamiento del equilibrio Aumenta la concentración del producto(s) izquierda Dismunuye la concentración del producto(s) derecha Dismunuye la concentración del reactivo(s) Aumenta la concentración del reactivo(s) derecha izquierda 14.5 aA + bB cC + dD Add Add Remove Remove
  • 23. Principio de Le Châtelier • Cambios en el volumen y presión A (g) + B (g) C (g) Cambio Desplazamiento del equilibrio Aumenta la presión Lado con menos moles de gas Disminuye la presión Lado con más moles de gas Disminuye el volumen Aumenta el volumen Lado con más moles de gas Lado con menos moles de gas 14.5
  • 24. Principio de Le Châtelier • Cambios en la temperatura Cambio Rx exotérmica Aumenta la temperatura K disminuye Disminuye la temperature K aumenta Rx endotérmica K aumenta K disminuye • Adicionando un catalizador • no cambia K • no desplaza la posición de un sistema en equilibrio • el sistema alcanzará el equilibrio más pronto 14.5
  • 25. Sin catalizador Catalizador 14.5 El catalizador baja Ea para ambos avances y reacciones inversas . El catalizador no cambia la constante de equilibrio o desplazamiento en el equilibrio Avance de la reacción Avance de la reacción Energía potencial Energía potencial
  • 26. Principio de Le Châtelier Cambio Desplazamiento en el equilibrio Cambio en la constante de equilibrio Concentración sí no Presión sí no Volumen sí no Temperatura sí sí Catalizador no no 14.5