Maestría en Comunicación Digital Interactiva - UNR•101 vistas
366447
1. CONGRUENCIA Y SEMEJANZA DE TRIÁNGULOS.
CONGRUENCIA DE TRIÁNGULOS.
Un triángulo es congruente con otro, o igual a otro, si tiene todos sus lados y ángulos
respectivamente iguales a los lados y ángulos del otro.
Para saber si dos triángulos son iguales no es necesario comprobar la igualdad de sus lados
y ángulos uno a uno, sino que se puede aplicar uno de los tres siguientes criterios:
1er. criterio. Si dos lados de un triángulo y al ángulo que forman son iguales
respectivamente a los de un segundo triángulo, ambos son congruentes o iguales.
Se cumple que los segmentos AC = PR y AB = PQ y los ángulos ∠ A = ∠ P, por lo tanto
( ∴) el triángulo ∆ ABC = ∆ PQR.
2º. Criterio. Si dos triángulos tienen sus tres lados respectivamente iguales, son triángulos
congruentes o iguales.
Se cumple que los segmentos AC = PR , AB = PQ y BC = QR , por lo tanto ( ∴) el triángulo
∆ ABC = ∆ PQR.
3er. Criterio. Dos triángulos que tienen un lado y dos ángulos iguales son triángulos
congruentes o iguales.
Se cumple que los segmentos AC = PR , los ángulos ∠ A = ∠ P y ∠ C = ∠ R, por lo tanto
( ∴) el triángulo ∆ ABC = ∆ PQR.
A
B
C P
Q
R
Q
P R
B
A C
A
B
C P
Q
R
2. SEMEJANZA DE TRIÁNGULOS.
Se dice que dos figuras geométricas que presentan la misma forma son semejantes. El
símbolo utilizado para indicar una semejanza es
Tratándose de triángulos, se dice que
de los siguientes criterios.
1er. Criterio. Si dos triángulos tienen dos ángulos respectivamente iguales, son triángulos
semejantes.
Los ángulos ∠ A = ∠ P y el
2º. Criterio. Si dos triángulos tienen sus tres lados correspondientes proporcionales, son
triángulos semejantes.
Los segmentos:
PR
AC
=
2
4
=2
PQ
AB
=
5.1
3
=2
4
3
6
A
B
66.4º
56.8º56.8º
A
B
C
P
SEMEJANZA DE TRIÁNGULOS.
Se dice que dos figuras geométricas que presentan la misma forma son semejantes. El
símbolo utilizado para indicar una semejanza es ≈ .
Figura de autos semejantes
Tratándose de triángulos, se dice que dos triángulos son semejantes si cumplen con alguno
. Si dos triángulos tienen dos ángulos respectivamente iguales, son triángulos
el ∠ C = ∠ R ∴ el triángulo ∆ ABC ≈ ∆
. Si dos triángulos tienen sus tres lados correspondientes proporcionales, son
=2
QR
BC
=
3
6
=2 ∴ el triángulo ∆ ABC ≈ ∆
1.5
2
3
C P
Q
R
56.8º 56.8º
66.4º
P
Q
R
Se dice que dos figuras geométricas que presentan la misma forma son semejantes. El
semejantes si cumplen con alguno
. Si dos triángulos tienen dos ángulos respectivamente iguales, son triángulos
∆ PQR.
. Si dos triángulos tienen sus tres lados correspondientes proporcionales, son
PQR.
3. 3er. Criterio. Si dos triángulos tienen un ángulo igual y los lados que lo forman son
proporcionales, son triángulos semejantes.
Los segmentos:
PR
AC
=
10
5
= 0.5
PQ
AB
=
6
3
= 0.5 y ∠ A = ∠P ∴ el triángulo ∆ ABC ≈ ∆ PQR.
Ejemplos resueltos de triángulos semejantes.
1. En la siguiente figura determinar el valor
del segmento BC .
El triángulo ∆ ABC ≈ ∆ ADE, ya que sus
∠E =∠ C y ∠D = ∠B, cumpliéndose el
primer criterio de semejanza.
∴
AE
AC
=
DE
BC
sustituyendo valores tenemos
que:
2
20
=
3
BC
BC =
( )( )
2
320
BC =
( )
2
60
BC = 30
2. En la siguiente figura determinar el
valor del segmento AB
El triángulo ∆ ABC ≈ ∆ ADE, ya que sus
∠D = ∠B y ∠ E = ∠ C, cumpliéndose el
primer criterio de semejanza.
∴
AE
AC
=
AD
AB
sustituyendo valores tenemos
que:
10
16
=
12
AB
AB =
( )( )
10
1216
AB =
10
192
AB = 19.2
3
6
105
30º
30º
A
B
C
P
Q
R
A
B
C
D
E2 18
3
A
B
C
D
E10 6
12
4. 3. En la siguiente figura determinar el valor
de x.
El triángulo ∆ ABC ≈ ∆ BDE, ya que sus
∠ D = ∠A y ∠ E = ∠ C, cumpliéndose el
primer criterio de semejanza.
∴
DE
AC
=
BE
BC
sustituyendo valores tenemos
que:
12
16
=
8
BC
BC =
( )( )
12
816
BC =
12
128
BC = 10.66
Como BC = 10.66 , entonces
x = BC - BE
x= 10.66 - 8
x= 2.66
4. En la siguiente figura determinar el valor
de x.
El triángulo ∆ ABC ≈ ∆ BDE, ya que sus
∠ D = ∠A y ∠ E = ∠ C, cumpliéndose el
primer criterio de semejanza.
∴
BD
AB
=
DE
AC
sustituyendo valores tenemos
que:
6
10
=
15
AC
AC =
( )( )
6
1510
AC = X=
6
150
X= 25
5. En la siguiente figura determinar el valor
de x.
El triángulo ∆ ABC ≈ ∆ ADE, ya que el
∠ A tiene el mismo valor para los dos
triángulos y los lados que lo forman son
proporcionales, cumpliéndose el tercer
criterio de semejanza.
∴
AD
AC
=
DE
BC
sustituyendo valores tenemos
que:
X
10
=
2
8
x=
( )( )
8
210
x=
8
20
x= 2.5
A
B
C
D E
8
X
16
12
A
B
C
D E
X
15
4
6
A
B
C
D
E
2
8
10
X