SlideShare una empresa de Scribd logo
1 de 33
Descargar para leer sin conexión
INSTITUTO TECNOLGICO SUPERIOR
                               “CARLOS CISNEROS”
                              RIOBAMBA -ECUADOR

NOMBRE:DENNYS USHCA

CURSO:4 TO

PARALELO: “D”


                                  EL TORNO




Torno
Saltar a: navegación, búsqueda
        Este artículo se refiere a los tornos utilizados en la industria metalúrgica para
        el mecanizado de metales. Para otros tipos de tornos y para otras acepciones de
        esta palabra, véase Torno (desambiguación)


Torno paralelo moderno.

Se denomina torno (del latín tornus, y este del griego τόρνος, giro, vuelta)1 a un
conjunto de máquinas y herramientas que permiten mecanizar piezas de forma
geométrica de revolución. Estas máquinas-herramienta operan haciendo girar la pieza a
mecanizar (sujeta en el cabezal o fijada entre los puntos de centraje) mientras una o
varias herramientas de corte son empujadas en un movimiento regulado de avance
contra la superficie de la pieza, cortando la viruta de acuerdo con las condiciones
tecnológicas de mecanizado adecuadas. Desde el inicio de la Revolución industrial, el
torno se ha convertido en una máquina básica en el proceso industrial de mecanizado.

La herramienta de corte va montada sobre un carro que se desplaza sobre unas guías o
rieles paralelos al eje de giro de la pieza que se tornea, llamado eje Z; sobre este carro
hay otro que se mueve según el eje X, en dirección radial a la pieza que se tornea, y
puede haber un tercer carro llamado charriot que se puede inclinar, para hacer conos, y
donde se apoya la torreta portaherramientas. Cuando el carro principal desplaza la
herramienta a lo largo del eje de rotación, produce el cilindrado de la pieza, y cuando el

DENNYS USHCA                                                                      Página 1
INSTITUTO TECNOLGICO SUPERIOR
                                 “CARLOS CISNEROS”
                                RIOBAMBA -ECUADOR

carro transversal se desplaza de forma perpendicular al eje de simetría de la pieza se
realiza la operación denominada refrentado.

Los tornos copiadores, automáticos y de control numérico llevan sistemas que permiten
trabajar a los dos carros de forma simultánea, consiguiendo cilindrados cónicos y
esféricos. Los tornos paralelos llevan montado un tercer carro, de accionamiento manual
y giratorio, llamado charriot, montado sobre el carro transversal. Con el charriot
inclinado a los grados necesarios es posible mecanizar conos. Encima del charriot va
fijada la torreta portaherramientas.

Historia
Tornos antiguos

La existencia de tornos está atestiguada desde al menos el año 850 a.C. La imagen más
antigua conocida se conserva en la tumba de un sumo sacerdote egipcio llamado
Petosiris (siglo IV a.C.). 2

Durante siglos los tornos funcionaron según el sistema de "arco de violín". En el siglo
XIII se inventó el torno de pedal y pértiga flexible, que tenía la ventaja de ser accionado
con el pie en vez de con las manos, con lo cual estas quedaban libres para otras tareas.
En el siglo XV surgieron otras dos mejoras: la transmisión por correa y el mecanismo
de biela-manivela.2

Tornos mecánicos




Torno paralelo de 1911.

Al comenzar la Revolución industrial en Inglaterra, durante el siglo XVII, se
desarrollaron tornos capaces de dar forma a una pieza metálica. El desarrollo del torno
pesado industrial para metales en el siglo XVIII hizo posible la producción en serie de
piezas de precisión.



DENNYS USHCA                                                                      Página 2
INSTITUTO TECNOLGICO SUPERIOR
                               “CARLOS CISNEROS”
                              RIOBAMBA -ECUADOR

       años 1780: Jacques de Vaucanson construye un torno con portaherramientas
       deslizante.
       hacia 1797: Henry Maudslay y David Wilkinson mejoran el invento de Vaucanson
       permitiendo que la herramienta de corte pueda avanzar con velocidad constante.
       1820: Thomas Blanchard inventa el torno copiador.
       años 1840: desarrollo del torno revólver

En 1833, Joseph Whitworth se instaló por su cuenta en Mánchester. Sus diseños y
realizaciones influyeron de manera fundamental en otros fabricantes de la época. En
1839 patentó un torno paralelo para cilindrar y roscar con bancada de guías planas y
carro transversal automático, que tuvo una gran aceptación. Dos tornos que llevan
incorporados elementos de sus patentes se conservan en la actualidad. Uno de ellos,
construido en 1843, se conserva en el "Science Museum" de Londres. El otro,
construido en 1850, se conserva en el "Birmingham Museum".




Una serie de antiguos tornos propulsados un motor central a través de correas.

Fue J.G. Bodmer quien en 1839 tuvo la idea de construir tornos verticales. A finales del
siglo XIX, este tipo de tornos eran fabricados en distintos tamaños y pesos. El diseño y
patente en 1890 de la caja de Norton, incorporada a los tornos paralelos, dio solución al
cambio manual de engranajes para fijar los pasos de las piezas a roscar.3

Introducción del Control Numérico




Torno moderno de control numérico.



DENNYS USHCA                                                                     Página 3
INSTITUTO TECNOLGICO SUPERIOR
                               “CARLOS CISNEROS”
                              RIOBAMBA -ECUADOR

El torno de control numérico es un ejemplo de automatización programable. Se diseñó
para adaptar las variaciones en la configuración de los productos. Su principal
aplicación se centra en volúmenes de producción medios de piezas sencillas y en
volúmenes de producción medios y bajos de piezas complejas. Uno de los ejemplos más
importantes de automatización programable es el control numérico en la fabricación de
partes metálicas. El control numérico (CN) es una forma de automatización
programable en la cual el equipo de procesado se controla a través de números, letras y
otros símbolos. Estos números, letras y símbolos están codificados en un formato
apropiado para definir un programa de instrucciones para desarrollar una tarea concreta.
Cuando la tarea en cuestión cambia, se cambia el programa de instrucciones. La
capacidad de cambiar el programa hace que el CN sea apropiado para volúmenes de
producción bajos o medios, dado que es más fácil escribir nuevos programas que
realizar cambios en los equipos de procesado.

El primer desarrollo en el área del control numérico lo realizó el inventor
norteamericano John T. Parsons (Detroit 1913-2007), junto con su empleado Frank L.
Stulen, en la década de 1940. El concepto de control numérico implicaba el uso de datos
en un sistema de referencia para definir las superficies de contorno de las hélices de un
helicóptero.

Tipos de tornos

Actualmente se utilizan en la industria del mecanizado varios tipos de tornos, cuya
aplicación depende de la cantidad de piezas a mecanizar por serie, de la complejidad de
las piezas y de la envergadura de las piezas.

Torno paralelo




Caja de velocidades y avances de un torno paralelo.

El torno paralelo o mecánico es el tipo de torno que evolucionó partiendo de los tornos
antiguos cuando se le fueron incorporando nuevos equipamientos que lograron
convertirlo en una de las máquinas herramientas más importante que han existido. Sin
embargo, en la actualidad este tipo de torno está quedando relegado a realizar tareas



DENNYS USHCA                                                                    Página 4
INSTITUTO TECNOLGICO SUPERIOR
                               “CARLOS CISNEROS”
                              RIOBAMBA -ECUADOR

poco importantes, a utilizarse en los talleres de aprendices y en los talleres de
mantenimiento para realizar trabajos puntuales o especiales.

Para la fabricación en serie y de precisión han sido sustituidos por tornos copiadores,
revólver, automáticos y de CNC. Para manejar bien estos tornos se requiere la pericia de
profesionales muy bien calificados, ya que el manejo manual de sus carros puede
ocasionar errores a menudo en la geometría de las piezas torneadas

Torno copiador




Esquema funcional de torno copiador.

Se llama torno copiador a un tipo de torno que operando con un dispositivo hidráulico
y electrónico permite el torneado de piezas de acuerdo a las características de la misma
siguiendo el perfil de una plantilla que reproduce una replica igual a la guía.

Este tipo de tornos se utiliza para el torneado de aquellas piezas que tienen diferentes
escalones de diámetros, que han sido previamente forjadas o fundidas y que tienen poco
material excedente. También son muy utilizados estos tornos en el trabajo de la madera
y del mármol artístico para dar forma a las columnas embellecedoras. La preparación
para el mecanizado en un torno copiador es muy sencilla y rápida y por eso estas
máquinas son muy útiles para mecanizar lotes o series de piezas que no sean muy
grandes.

Las condiciones tecnológicas del mecanizado son comunes a las de los demás tornos,
solamente hay que prever una herramienta que permita bien la evacuación de la viruta y
un sistema de lubricación y refrigeración eficaz del filo de corte de las herramientas
mediante abundante aceite de corte o taladrina.




DENNYS USHCA                                                                        Página 5
INSTITUTO TECNOLGICO SUPERIOR
                               “CARLOS CISNEROS”
                              RIOBAMBA -ECUADOR

Torno revólver




Operaria manejando un torno revólver.

El torno revólver es una variedad de torno diseñado para mecanizar piezas sobre las
que sea posible el trabajo simultáneo de varias herramientas con el fin de disminuir el
tiempo total de mecanizado. Las piezas que presentan esa condición son aquellas que,
partiendo de barras, tienen una forma final de casquillo o similar. Una vez que la barra
queda bien sujeta mediante pinzas o con un plato de garras, se va taladrando,
mandrinando, roscando o escariando la parte interior mecanizada y a la vez se puede ir
cilindrando, refrentando, ranurando, roscando y cortando con herramientas de torneado
exterior.

El torno revólver lleva un carro con una torreta giratoria en la que se insertan las
diferentes herramientas que realizan el mecanizado de la pieza. También se pueden
mecanizar piezas de forma individual, fijándolas a un plato de garras de accionamiento
hidráulico.

Torno automático

Se llama torno automático a un tipo de torno cuyo proceso de trabajo está enteramente
automatizado. La alimentación de la barra necesaria para cada pieza se hace también de
forma automática, a partir de una barra larga que se inserta por un tubo que tiene el
cabezal y se sujeta mediante pinzas de apriete hidráulico.

Estos tornos pueden ser de un solo husillo o de varios husillos:

       Los de un solo husillo se emplean básicamente para el mecanizado de piezas pequeñas
       que requieran grandes series de producción.
       Cuando se trata de mecanizar piezas de dimensiones mayores se utilizan los tornos
       automáticos multihusillos donde de forma programada en cada husillo se va
       realizando una parte del mecanizado de la pieza. Como los husillos van cambiando de
       posición, el mecanizado final de la pieza resulta muy rápido porque todos los husillos
       mecanizan la misma pieza de forma simultánea.

La puesta a punto de estos tornos es muy laboriosa y por eso se utilizan principalmente
para grandes series de producción. El movimiento de todas las herramientas está

DENNYS USHCA                                                                        Página 6
INSTITUTO TECNOLGICO SUPERIOR
                                 “CARLOS CISNEROS”
                                RIOBAMBA -ECUADOR

automatizado por un sistema de excéntricas y reguladores electrónicos que regulan el
ciclo y los topes de final de carrera.

Un tipo de torno automático es el conocido como "tipo suizo", capaz de mecanizar
piezas muy pequeñas con tolerancias muy estrechas.

Torno vertical




Torno vertical.

El torno vertical es una variedad de torno, de eje vertical, diseñado para mecanizar
piezas de gran tamaño, que van sujetas al plato de garras u otros operadores y que por
sus dimensiones o peso harían difícil su fijación en un torno horizontal.

Los tornos verticales no tienen contrapunto sino que el único punto de sujeción de las
piezas es el plato horizontal sobre el cual van apoyadas. La manipulación de las piezas
para fijarlas en el plato se hace mediante grúas de puente o polipastos.

Torno CNC




Torno CNC.

Artículo principal: Torno CNC.

El torno CNC es un torno dirigido por control numérico por computadora.

Ofrece una gran capacidad de producción y precisión en el mecanizado por su estructura
funcional y porque la trayectoria de la herramienta de torneado es controlada por un
DENNYS USHCA                                                                    Página 7
INSTITUTO TECNOLGICO SUPERIOR
                               “CARLOS CISNEROS”
                              RIOBAMBA -ECUADOR

ordenador que lleva incorporado, el cual procesa las órdenes de ejecución contenidas en
un software que previamente ha confeccionado un programador conocedor de la
tecnología de mecanizado en torno. Es una máquina que resulta rentable para el
mecanizado de grandes series de piezas sencillas, sobre todo piezas de revolución, y
permite mecanizar con precisión superficies curvas coordinando los movimientos axial
y radial para el avance de la herramienta.




Piezas de ajedrez mecanizadas en un torno CNC.

La velocidad de giro de cabezal portapiezas, el avance de los carros longitudinal y
transversal y las cotas de ejecución de la pieza están programadas y, por tanto, exentas
de fallos imputables al operario de la máquina.4

Otros tipos de tornos

Además de los tornos empleados en la industria mecánica, también se utilizan tornos
para trabajar la madera, la ornamentación con mármol o granito.

El nombre de "torno" se aplica también a otras máquinas rotatorias como por ejemplo el
torno de alfarero o el torno dental. Estas máquinas tienen una aplicación y un principio
de funcionamiento totalmente diferentes de las de los tornos descritos en este artículo.




DENNYS USHCA                                                                     Página 8
INSTITUTO TECNOLGICO SUPERIOR
                               “CARLOS CISNEROS”
                              RIOBAMBA -ECUADOR

Estructura del torno




Torno paralelo en funcionamiento.

El torno tiene cinco componentes principales:

       Bancada: sirve de soporte para las otras unidades del torno. En su parte superior lleva
       unas guías por las que se desplaza el cabezal móvil o contrapunto y el carro principal.
       Cabezal fijo: contiene los engranajes o poleas que impulsan la pieza de trabajo y las
       unidades de avance. Incluye el motor, el husillo, el selector de velocidad, el selector de
       unidad de avance y el selector de sentido de avance. Además sirve para soporte y
       rotación de la pieza de trabajo que se apoya en el husillo.
       Contrapunto: el contrapunto es el elemento que se utiliza para servir de apoyo y
       poder colocar las piezas que son torneadas entre puntos, así como otros elementos
       tales como portabrocas o brocas para hacer taladros en el centro de los ejes. Este
       contrapunto puede moverse y fijarse en diversas posiciones a lo largo de la bancada.

       Carro portátil: consta del carro principal, que produce los movimientos de la
       herramienta en dirección axial; y del carro transversal, que se desliza transversalmente
       sobre el carro principal en dirección radial. En los tornos paralelos hay además un
       carro superior orientable, formado a su vez por tres piezas: la base, el charriot y la
       torreta portaherramientas. Su base está apoyada sobre una plataforma giratoria para
       orientarlo en cualquier dirección.

       Cabezal giratorio o chuck: su función consiste en sujetar la pieza a mecanizar. Hay
       varios tipos, como el chuck independiente de cuatro mordazas o el universal,
       mayoritariamente empleado en el taller mecánico, al igual que hay chucks magnéticos
       y de seis mordazas.




DENNYS USHCA                                                                            Página 9
INSTITUTO TECNOLGICO SUPERIOR
                                    “CARLOS CISNEROS”
                                   RIOBAMBA -ECUADOR

Equipo auxiliar




Plato de garras universal.

Se requieren ciertos accesorios, como sujetadores para la pieza de trabajo, soportes y
portaherramientas. Algunos accesorios comunes incluyen:

        Plato de sujeción de garras universal: sujeta la pieza de trabajo en el cabezal y
        transmite el movimiento.
        Plato de sujeción de garras blandas: sujeta la pieza de trabajo en el cabezal a través
        de una superficie ya acabada. Son mecanizadas para un diámetro especifico no siendo
        válidas para otros.
        Centros o puntos: soportan la pieza de trabajo en el cabezal y en la contrapunta.
        Perno de arrastre: Se fija en el plato de torno y en la pieza de trabajo y le transmite el
        movimiento a la pieza cuando está montada entre centros.
        Soporte fijo o luneta fija: soporta el extremo extendido de la pieza de trabajo cuando
        no puede usarse la contrapunta.
        Soporte móvil o luneta móvil: se monta en el carro y permite soportar piezas de
        trabajo largas cerca del punto de corte.
        Torreta portaherramientas con alineación múltiple.
        Plato de arrastre :para amarrar piezas de difícil sujeción.
        Plato de garras independientes : tiene 4 garras que actúan de forma independiente
        unas de otras.




Plato y perno de arrastre.




DENNYS USHCA                                                                            Página 10
INSTITUTO TECNOLGICO SUPERIOR
                               “CARLOS CISNEROS”
                              RIOBAMBA -ECUADOR

Herramientas de torneado




Brocas de centraje de acero rápido.




Herramienta de metal duro soldada.

Las herramientas de torneado se diferencian en dos factores, el material del que están
constituidas y el tipo de operación que realizan. Según el material constituyente, las
herramientas pueden ser de acero rápido, metal duro soldado o plaquitas de metal duro
(widia) intercambiables.

La tipología de las herramientas de metal duro está normalizada de acuerdo con el
material que se mecanice, puesto que cada material ofrece unas resistencias diferentes.
El código ISO para herramientas de metal duro se recoge en la tabla más abajo.

Cuando la herramienta es de acero rápido o tiene la plaquita de metal duro soldada en el
portaherramientas, cada vez que el filo se desgasta hay que desmontarla y afilarla
correctamente con los ángulos de corte específicos en una afiladora. Esto ralentiza
bastante el trabajo Porque la herramienta se tiene que enfriar constante mente y verificar
que el Angulo de incidencia del corte este correcto

. Por ello, cuando se mecanizan piezas en serie lo normal es utilizar portaherramientas
con plaquitas intercambiables, que tienen varias caras de corte de usar y tirar y se
reemplazan de forma muy rápida.



DENNYS USHCA                                                                    Página 11
INSTITUTO TECNOLGICO SUPERIOR
                               “CARLOS CISNEROS”
                              RIOBAMBA -ECUADOR

Características de las plaquitas de metal duro




Herramientas de roscar y mandrinar.




Plaquita de tornear de metal duro.




Herramienta de torneado exterior plaquita de widia cambiable.

La calidad de las plaquitas de metal duro (Widia) se selecciona teniendo en cuenta el
material de la pieza, el tipo de aplicación y las condiciones de mecanizado.

La variedad de las formas de las plaquitas es grande y está normalizada. Asimismo la
variedad de materiales de las herramientas modernas es considerable y está sujeta a un
desarrollo continuo.5

Los principales materiales de herramientas para torneado son los que se muestran en la
tabla siguiente.

       Materiales          Símbolos

Metales duros recubiertos HC

Metales duros             H

Cermets                   HT, HC


DENNYS USHCA                                                                   Página 12
INSTITUTO TECNOLGICO SUPERIOR
                                  “CARLOS CISNEROS”
                                 RIOBAMBA -ECUADOR

Cerámicas                    CA, CN, CC

Nitruro de boro cúbico       BN

Diamantes policristalinos DP, HC


La adecuación de los diferentes tipos de plaquitas según sea el material a mecanizar se
indican a continuación y se clasifican según una Norma ISO/ANSI para indicar las
aplicaciones en relación a la resistencia y la tenacidad que tienen.

                                  Código de calidades de plaquitas

 Serie               ISO                                     Características

                                        Ideales para el mecanizado de acero, acero fundido, y
Serie P ISO 01, 10, 20, 30, 40, 50
                                        acero maleable de viruta larga.

                                        Ideales para tornear acero inoxidable, ferrítico y
                                        martensítico, acero fundido, acero al manganeso,
Serie M ISO 10, 20, 30, 40
                                        fundición aleada, fundición maleable y acero de fácil
                                        mecanización.

                                        Ideal para el torneado de fundición gris, fundición en
Serie K ISO 01, 10, 20, 30
                                        coquilla, y fundición maleable de viruta corta.

Serie N ISO 01, 10. 20, 30              Ideal para el torneado de metales no-férreos

                                        Pueden ser de base de níquel o de base de titanio.
Serie S                                 Ideales para el mecanizado de aleaciones
                                        termorresistentes y súperaleaciones.

Serie H ISO 01, 10, 20, 30              Ideal para el torneado de materiales endurecidos.


Código de formatos de las plaquitas de metal duro

Como hay tanta variedad en las formas geométricas, tamaños y ángulos de corte, existe
una codificación normalizada compuesta de cuatro letras y seis números donde cada una
de estas letras y números indica una característica determinada del tipo de plaquita
correspondiente.

Ejemplo de código de plaquita: SNMG 160408 HC




DENNYS USHCA                                                                            Página 13
INSTITUTO TECNOLGICO SUPERIOR
                              “CARLOS CISNEROS”
                             RIOBAMBA -ECUADOR


Primera Forma                     Ángulo   Tercera Tolerancia Cuarta
                      Segunda                                        Tipo de sujección
 letra geométrica                   de      letra dimensional letra
                        letra
                                incidencia
          Rómbica                             J                      Agujero sin
   C                                                            A
            80º           A         3º                               avellanar
                                              K
          Rómbica         B         5º               Menor           Agujero con
   D                                          L
            55º                                                 G rompevirutas en
                          C         7º                               dos caras
   L    Rectangular                           M
                          D         15º              Mayor
                                                                     Agujero con
   R      Redonda                             N                 M rompevirutas en
                          E         20º                              una cara
   S      Cuadrada                            U
                          F         25º                              Sin agujero ni
   T     Triangular                                             N
                                                                     rompevirutas
                          G         30º
          Rómbica                                                       Agujero
   V                     N         0º
            35º                                                    W    avellanado en
                                                                        una cara
         Hexagonal        P       11º
   W
            80º                                                         Agujero
                                                                        avellanado y
                                                                    T
                                                                        rompevirutas en
                                                                        una cara

                                                                        Sin agujero y con
                                                                   N    rompevirutas en
                                                                        una cara

                                                                    X   No estándar



Las dos primeras cifras indican en milímetros la longitud de la arista de corte de la
plaquita.

Las dos cifras siguientes indican en milímetros el espesor de la plaquita.

Las dos últimas cifras indican en décimas de milímetro el radio de punta de la plaquita.

Especificaciones técnicas de los tornos

Principales especificaciones técnicas de los tornos convencionales:6


DENNYS USHCA                                                                   Página 14
INSTITUTO TECNOLGICO SUPERIOR
                                 “CARLOS CISNEROS”
                                RIOBAMBA -ECUADOR

Capacidad

         Altura entre puntos;
         distancia entre puntos;
         diámetro admitido sobre bancada;
         diámetro admitido sobre escote;
         diámetro admitido sobre carro transversal;
         ancho de la bancada;
         longitud del escote delante del plato liso.

Cabezal

         Diámetro del agujero del husillo principal;
         nariz del husillo principal;
         cono Morse del husillo principal;
         gama de velocidades del cabezal (habitualmente en rpm);
         número de velocidades.

Carros

         Recorrido del carro transversal;
         recorrido del charriot o carro superior;
         dimensiones máximas de la herramienta,
         gama de avances longitudinales;
         gama de avances transversales.
         recorrido del avance automático
         recorrido del avance automático 2

Roscado

         Gama de pasos métricos;
         gama de pasos Witworth;
         gama de pasos modulares;
         gama de pasos Diametral Pitch;
         paso del husillo patrón.

Cabezal móvil

El cabezal móvil está compuesto por dos piezas, que en general son de fundición. Una
de ellas, el soporte, se apoya sobre las guías principales del torno, sobre las que se
puede fijar o trasladar desde el extremo opuesto al cabezal. La otra pieza se ubica sobre
la anterior y tiene un husillo que se acciona con una manivela para el desplazamiento
longitudinal del contrapunto, encajándolo con la presión adecuada en un agujero cónico
ciego, denominado punto de centrado, practicado sobre el extremo de la pieza opuesto
al cabezal fijo.7




DENNYS USHCA                                                                    Página 15
INSTITUTO TECNOLGICO SUPERIOR
                                  “CARLOS CISNEROS”
                                 RIOBAMBA -ECUADOR

Motores

        Potencia del motor principal (habitualmente en kW);
        potencia de la motobomba de refrigerante (en kW).

Lunetas

No todos los tipos de tornos tienen las mismas especificaciones técnicas. Por ejemplo
los tornos verticales no tienen contrapunto y solo se mecanizan las piezas sujetas al aire.
El roscado a máquina con Caja Norton solo lo tienen los tornos paralelos.

Movimientos de trabajo en la operación de torneado

        Movimiento de corte: por lo general se imparte a la pieza que gira rotacionalmente
        sobre su eje principal. Este movimiento lo imprime un motor eléctrico que transmite
        su giro al husillo principal mediante un sistema de poleas o engranajes. El husillo
        principal tiene acoplado a su extremo distintos sistemas de sujeción (platos de garras,
        pinzas, mandrinos auxiliares u otros), los cuales sujetan la pieza a mecanizar. Los
        tornos tradicionales tienen una gama fija de velocidades de giro, sin embargo los
        tornos modernos de Control Numérico la velocidad de giro del cabezal es variable y
        programable y se adapta a las condiciones óptimas que el mecanizado permite.
        Movimiento de avance: es el movimiento de la herramienta de corte en la dirección
        del eje de la pieza que se está trabajando. En combinación con el giro impartido al
        husillo, determina el espacio recorrido por la herramienta por cada vuelta que da la
        pieza. Este movimiento también puede no ser paralelo al eje, produciéndose así conos.
        desplazamientos en vacío se realizan a gran velocidad.
        Profundidad de pasada: movimiento de la herramienta de corte que determina la
        profundidad de material arrancado en cada pasada. La cantidad de material factible de
        ser arrancada depende del perfil del útil de corte usado, el tipo de material
        mecanizado, la velocidad de corte, potencia de la máquina, avance, etc.
        Nonios de los carros: para regular el trabajo de torneado los carros del torno llevan
        incorporado unos nonios en forma de tambor graduado, donde cada división indica el
        desplazamiento que tiene el carro, ya sea el longitudinal, el transversal o el charriot. La
        en el programa y estas se consiguen automáticamente.

Operaciones de torneado
Cilindrado
Artículo principal: Cilindrado.




DENNYS USHCA                                                                            Página 16
INSTITUTO TECNOLGICO SUPERIOR
                                 “CARLOS CISNEROS”
                                RIOBAMBA -ECUADOR




Esquema de torneado cilíndrico.

Esta operación consiste en el mecanizado exterior o interior al que se someten las piezas
que tienen mecanizados cilíndricos. Para poder efectuar esta operación, con el carro
transversal se regula la profundidad de pasada y, por tanto, el diámetro del cilindro, y
con el carro paralelo se regula la longitud del cilindro. El carro paralelo avanza de forma
automática de acuerdo al avance de trabajo deseado. En este procedimiento, el acabado
superficial y la tolerancia que se obtenga puede ser un factor de gran relevancia. Para
asegurar calidad al cilindrado el torno tiene que tener bien ajustada su alineación y
concentricidad.

El cilindrado se puede hacer con la pieza al aire sujeta en el plato de garras, si es corta,
o con la pieza sujeta entre puntos y un perro de arrastre, o apoyada en luneta fija o
móvil si la pieza es de grandes dimensiones y peso. Para realizar el cilindrado de piezas
o ejes sujetos entre puntos, es necesario previamente realizar los puntos de centraje en
los ejes.

Cuando el cilindrado se realiza en el hueco de la pieza se llama mandrinado.

Refrentado
Artículo principal: Refrentado.




DENNYS USHCA                                                                      Página 17
INSTITUTO TECNOLGICO SUPERIOR
                                 “CARLOS CISNEROS”
                                RIOBAMBA -ECUADOR

Esquema funcional de refrentado.

La operación de refrentado consiste en un mecanizado frontal y perpendicular al eje de
las piezas que se realiza para producir un buen acoplamiento en el montaje posterior de
las piezas torneadas. Esta operación también es conocida como fronteado. La
problemática que tiene el refrentado es que la velocidad de corte en el filo de la
herramienta va disminuyendo a medida que avanza hacia el centro, lo que ralentiza la
operación. Para mejorar este aspecto muchos tornos modernos incorporan variadores de
velocidad en el cabezal de tal forma que se puede ir aumentando la velocidad de giro de
la pieza.

Ranurado
Artículo principal: Ranurado.




Poleas torneadas.

El ranurado consiste en mecanizar unas ranuras cilíndricas de anchura y profundidad
variable en las piezas que se tornean, las cuales tienen muchas utilidades diferentes. Por
ejemplo, para alojar una junta tórica, para salida de rosca, para arandelas de presión, etc.
En este caso la herramienta tiene ya conformado el ancho de la ranura y actuando con el
carro transversal se le da la profundidad deseada. Los canales de las poleas son un
ejemplo claro de ranuras torneadas.

Roscado en el torno

Hay dos sistemas de realizar roscados en los tornos, de un lado la tradicional que
utilizan los tornos paralelos, mediante la Caja Norton, y de otra la que se realiza con los
tornos CNC, donde los datos de la roscas van totalmente programados y ya no hace falta
la caja Norton para realizarlo.

Para efectuar un roscado con herramienta hay que tener en cuenta lo siguiente:



DENNYS USHCA                                                                      Página 18
INSTITUTO TECNOLGICO SUPERIOR
                                “CARLOS CISNEROS”
                               RIOBAMBA -ECUADOR

        Las roscas pueden ser exteriores (tornillos) o bien interiores (tuercas), debiendo ser
        sus magnitudes coherentes para que ambos elementos puedan enroscarse.
        Los elementos que figuran en la tabla son los que hay que tener en cuenta a la hora de
        realizar una rosca en un torno:




    Rosca exterior o macho Rosca interior o hembra

1 Fondo o base             Cresta o vértice

2 Cresta o vértice         Fondo o base

3 Flanco                   Flanco

4 Diámetro del núcleo      Diámetro del taladro

5 Diámetro exterior        Diámetro interior

6               Profundidad de la rosca

7                        Paso



Para efectuar el roscado hay que realizar previamente las siguientes tareas:

        Tornear previamente al diámetro que tenga la rosca
        Preparar la herramienta de acuerdo con los ángulos del filete de la rosca.
        Establecer la profundidad de pasada que tenga que tener la rosca hasta conseguir el
        perfil adecuado.

Roscado en torno paralelo




                                                                barra hexagonal




DENNYS USHCA                                                                        Página 19
INSTITUTO TECNOLGICO SUPERIOR
                                 “CARLOS CISNEROS”
                                RIOBAMBA -ECUADOR

Una de las tareas que pueden ejecutarse en un torno
paralelo es efectuar roscas de diversos pasos y tamaños
tanto exteriores sobre ejes o interiores sobre tuercas. Para
ello los tornos paralelos universales incorporan un
mecanismo llamado Caja Norton, que facilita esta tarea y
evita montar un tren de engranajes cada vez que se quisiera
efectuar una rosca.                                          Figura 1

La caja Norton es un mecanismo compuesto de varios
engranajes que fue inventado y patentado en 1890, que se
incorpora a los tornos paralelos y dio solución al cambio
manual de engranajes para fijar los pasos de las piezas a
roscar. Esta caja puede constar de varios trenes
desplazables de engranajes o bien de uno basculante y un
cono de engranajes. La caja conecta el movimiento del             Figura 2
cabezal del torno con el carro portaherramientas que lleva
incorporado un husillo de rosca cuadrada.

El sistema mejor conseguido incluye una caja de cambios
con varias reductoras. De esta manera con la manipulación
de varias palancas se pueden fijar distintas velocidades de
avance de carro portaherramientas, permitiendo realizar
una gran variedad de pasos de rosca tanto métricos como Figura 3
Withworth. Las hay en baño de aceite y en seco, de
engranajes tallados de una forma u otra, pero básicamente
es una caja de cambios.

En la figura se observa cómo partiendo de una barra
hexagonal se mecaniza un tornillo. Para ello se realizan las
siguientes operaciones:
                                                                  Figura 4
    1. Se cilindra el cuerpo del tornillo dejando la cabeza
       hexagonal en sus medidas originales.
    2. Se achaflana la entrada de la rosca y se refrenta la punta del tornillo.
    3. Se ranura la garganta donde finaliza la rosca junto a la cabeza del tornillo.
    4. Se rosca el cuerpo del tornillo, dando lugar a la pieza finalizada.

Este mismo proceso se puede hacer partiendo de una barra larga, tronzando finalmente
la parte mecanizada.


Moleteado
Artículo principal: Moleteado.




DENNYS USHCA                                                                           Página 20
INSTITUTO TECNOLGICO SUPERIOR
                              “CARLOS CISNEROS”
                             RIOBAMBA -ECUADOR




Eje moleteado.

El moleteado es un proceso de conformado en frío del material mediante unas moletas
que presionan la pieza mientras da vueltas. Dicha deformación produce un incremento
del diámetro de partida de la pieza. El moleteado se realiza en piezas que se tengan que
manipular a mano, que generalmente vayan roscadas para evitar su resbalamiento que
tendrían en caso de que tuviesen la superficie lisa.

El moleteado se realiza en los tornos con unas herramientas que se llaman moletas, de
diferente paso y dibujo.

Un ejemplo de moleteado es el que tienen las monedas de 50 céntimos de euro, aunque
en este caso el moleteado es para que los invidentes puedan identificar mejor la moneda.

El moleteado por deformación se puede ejecutar de dos maneras:

       Radialmente, cuando la longitud moleteada en la pieza coincide con el espesor de la
       moleta a utilizar.
       Longitudinalmente, cuando la longitud excede al espesor de la moleta. Para este
       segundo caso la moleta siempre ha de estar biselada en sus extremos.

Torneado de conos

Un cono o un tronco de cono de un cuerpo de generación viene definido por los
siguientes conceptos:

DENNYS USHCA                                                                      Página 21
INSTITUTO TECNOLGICO SUPERIOR
                               “CARLOS CISNEROS”
                              RIOBAMBA -ECUADOR

       Diámetro mayor
       Diámetro menor
       Longitud
       Ángulo de inclinación
       Conicidad




Pinzas cónicas portaherramientas.

Los diferentes tornos mecanizan los conos de formas diferentes.

       En los tornos CNC no hay ningún problema porque, programando adecuadamente sus
       dimensiones, los carros transversales y longitudinales se desplazan de forma
       coordinada dando lugar al cono deseado.
       En los tornos copiadores tampoco hay problema porque la plantilla de copiado
       permite que el palpador se desplace por la misma y los carros actúen de forma
       coordinada.
       Para mecanizar conos en los tornos paralelos convencionales se puede hacer de dos
       formas diferentes. Si la longitud del cono es pequeña, se mecaniza el cono con el
       charriot inclinado según el ángulo del cono. Si la longitud del cono es muy grande y el
       eje se mecaniza entre puntos, entonces se desplaza la distancia adecuada el
       contrapunto según las dimensiones del cono.

Torneado esférico




Esquema funcional torneado esférico.




DENNYS USHCA                                                                        Página 22
INSTITUTO TECNOLGICO SUPERIOR
                                 “CARLOS CISNEROS”
                                RIOBAMBA -ECUADOR

El torneado esférico, por ejemplo el de rótulas, no tiene ninguna dificultad si se realiza
en un torno de Control Numérico porque, programando sus medidas y la función de
mecanizado radial correspondiente, lo realizará de forma perfecta.

Si el torno es automático de gran producción, trabaja con barra y las rótulas no son de
gran tamaño, la rótula se consigue con un carro transversal donde las herramientas están
afiladas con el perfil de la rótula.

Hacer rótulas de forma manual en un torno paralelo presenta cierta dificultad para
conseguir exactitud en la misma. En ese caso es recomendable disponer de una plantilla
de la esfera e irla mecanizando de forma manual y acabarla con lima o rasqueta para
darle el ajuste final.

Segado o tronzado
Artículo principal: Tronzado.




Herramienta de ranurar y segar.

Se llama segado a la operación de torneado que se realiza cuando se trabaja con barra y
al finalizar el mecanizado de la pieza correspondiente es necesario cortar la barra para
separar la pieza de la misma. Para esta operación se utilizan herramientas muy estrechas
con un saliente de acuerdo al diámetro que tenga la barra y permita con el carro
transversal llegar al centro de la barra. Es una operación muy común en tornos revólver
y automáticos alimentados con barra y fabricaciones en serie.

Chaflanado

El chaflanado es una operación de torneado muy común que consiste en matar los
cantos tanto exteriores como interiores para evitar cortes con los mismos y a su vez
facilitar el trabajo y montaje posterior de las piezas. El chaflanado más común suele ser
el de 1mm por 45º. Este chaflán se hace atacando directamente los cantos con una
herramienta adecuada.




DENNYS USHCA                                                                      Página 23
INSTITUTO TECNOLGICO SUPERIOR
                                “CARLOS CISNEROS”
                               RIOBAMBA -ECUADOR

Mecanizado de excéntricas




Cigueñal de un motor de barco de 6 cilindros en línea, con 7 apoyos.

Una excéntrica es una pieza que tiene dos o más cilindros con distintos centros o ejes
de simetría, tal y como ocurre con los cigüeñales de motor, o los ejes de levas. Una
excéntrica es un cuerpo de revolución y por tanto el mecanizado se realiza en un torno.
Para mecanizar una excéntrica es necesario primero realizar los puntos de centraje de
los diferentes ejes excéntricos en los extremos de la pieza que se fijará entre puntos.

Mecanizado de espirales

Un espiral es una rosca tallada en un disco plano y mecanizada en un torno, mediante el
desplazamiento oportuno del carro transversal. Para ello se debe calcular la transmisión
que se pondrá entre el cabezal y el husillo de avance del carro transversal de acuerdo al
paso de la rosca espiral. Es una operación poco común en el torneado. Ejemplo de rosca
espiral es la que tienen en su interior los platos de garras de los tornos, la cual permite la
apertura y cierre de las garras.

Taladrado




Contrapunto para taladrados.

Muchas piezas que son torneadas requieren ser taladradas con brocas en el centro de sus
ejes de rotación. Para esta tarea se utilizan brocas normales, que se sujetan en el
contrapunto en un portabrocas o directamente en el alojamiento del contrapunto si el
diámetro es grande. Las condiciones tecnológicas del taladrado son las normales de
acuerdo a las características del material y tipo de broca que se utilice. Mención aparte
merecen los procesos de taladrado profundo donde el proceso ya es muy diferente sobre
todo la constitución de la broca que se utiliza.

DENNYS USHCA                                                                        Página 24
INSTITUTO TECNOLGICO SUPERIOR
                               “CARLOS CISNEROS”
                              RIOBAMBA -ECUADOR

No todos los tornos pueden realizar todas estas operaciones que se indican, sino que eso
depende del tipo de torno que se utilice y de los accesorios o equipamientos que tenga.

Parámetros de corte del torneado

Los parámetros de corte fundamentales que hay que considerar en el proceso de
torneado son los siguientes:

       Elección del tipo de herramienta más adecuado
       Sistema de fijación de la pieza
       Velocidad de corte (Vc) expresada en metros/minuto
       Diámetro exterior del torneado
       Revoluciones por minuto (rpm) del cabezal del torno
       Avance en mm/rev, de la herramienta
       Avance en mm/mi de la herramienta
       Profundidad de pasada
       Esfuerzos de corte
       Tipo de torno y accesorios adecuados

Velocidad de corte

Se define como velocidad de corte la velocidad lineal de la periferia de la pieza que está
en contacto con la herramienta. La velocidad de corte, que se expresa en metros por
minuto (m/min), tiene que ser elegida antes de iniciar el mecanizado y su valor
adecuado depende de muchos factores, especialmente de la calidad y tipo de
herramienta que se utilice, de la profundidad de pasada, de la dureza y la
maquinabilidad que tenga el material que se mecanice y de la velocidad de avance
empleada. Las limitaciones principales de la máquina son su gama de velocidades, la
potencia de los motores y de la rigidez de la fijación de la pieza y de la herramienta.


A partir de la determinación de la velocidad de corte se puede determinar las
revoluciones por minuto que tendrá el cabezal del torno, según la siguiente fórmula:




Donde Vc es la velocidad de corte, n es la velocidad de rotación de la herramienta y Dc
es el diámetro de la pieza.

La velocidad de corte es el factor principal que determina la duración de la herramienta.
Una alta velocidad de corte permite realizar el mecanizado en menos tiempo pero
acelera el desgaste de la herramienta. Los fabricantes de herramientas y prontuarios de
mecanizado, ofrecen datos orientativos sobre la velocidad de corte adecuada de las
herramientas para una duración determinada de la herramienta, por ejemplo, 15
minutos. En ocasiones, es deseable ajustar la velocidad de corte para una duración

DENNYS USHCA                                                                    Página 25
INSTITUTO TECNOLGICO SUPERIOR
                                 “CARLOS CISNEROS”
                                RIOBAMBA -ECUADOR

diferente de la herramienta, para lo cual, los valores de la velocidad de corte se
multiplican por un factor de corrección. La relación entre este factor de corrección y la
duración de la herramienta en operación de corte no es lineal.8

La velocidad de corte excesiva puede dar lugar a:

        Desgaste muy rápido del filo de corte de la herramienta.
        Deformación plástica del filo de corte con pérdida de tolerancia del mecanizado.
        Calidad del mecanizado deficiente; acabado superficial ineficiente.

La velocidad de corte demasiado baja puede dar lugar a:

        Formación de filo de aportación en la herramienta.
        Efecto negativo sobre la evacuación de viruta.
        Baja productividad.
        Coste elevado del mecanizado.

Velocidad de rotación de la pieza

La velocidad de rotación del cabezal del torno se expresa habitualmente en revoluciones
por minuto (rpm). En los tornos convencionales hay una gama limitada de velocidades,
que dependen de la velocidad de giro del motor principal y del número de velocidades
de la caja de cambios de la máquina. En los tornos de control numérico, esta velocidad
es controlada con un sistema de realimentación que habitualmente utiliza un variador de
frecuencia y puede seleccionarse una velocidad cualquiera dentro de un rango de
velocidades, hasta una velocidad máxima.

La velocidad de rotación de la herramienta es directamente proporcional a la velocidad
de corte e inversamente proporcional al diámetro de la pieza.




Velocidad de avance
Artículo principal: Avance.

El avance o velocidad de avance en el torneado es la velocidad relativa entre la pieza y
la herramienta, es decir, la velocidad con la que progresa el corte. El avance de la
herramienta de corte es un factor muy importante en el proceso de torneado.

Cada herramienta puede cortar adecuadamente en un rango de velocidades de avance
por cada revolución de la pieza , denominado avance por revolución (fz). Este rango
depende fundamentalmente del diámetro de la pieza , de la profundidad de pasada , y de
la calidad de la herramienta . Este rango de velocidades se determina
experimentalmente y se encuentra en los catálogos de los fabricantes de herramientas.
Además esta velocidad está limitada por las rigideces de las sujeciones de la pieza y de

DENNYS USHCA                                                                        Página 26
INSTITUTO TECNOLGICO SUPERIOR
                              “CARLOS CISNEROS”
                             RIOBAMBA -ECUADOR

la herramienta y por la potencia del motor de avance de la máquina. El grosor máximo
de viruta en mm es el indicador de limitación más importante para una herramienta. El
filo de corte de las herramientas se prueba para que tenga un valor determinado entre un
mínimo y un máximo de grosor de la viruta.

La velocidad de avance es el producto del avance por revolución por la velocidad de
rotación de la pieza.




Al igual que con la velocidad de rotación de la herramienta, en los tornos
convencionales la velocidad de avance se selecciona de una gama de velocidades
disponibles, mientras que los tornos de control numérico pueden trabajar con cualquier
velocidad de avance hasta la máxima velocidad de avance de la máquina.

Efectos de la velocidad de avance

       Decisiva para la formación de viruta
       Afecta al consumo de potencia
       Contribuye a la tensión mecánica y térmica

La elevada velocidad de avance da lugar a:

       Buen control de viruta
       Menor tiempo de corte
       Menor desgaste de la herramienta
       Riesgo más alto de rotura de la herramienta
       Elevada rugosidad superficial del mecanizado.

La velocidad de avance baja da lugar a:

       Viruta más larga
       Mejora de la calidad del mecanizado
       Desgaste acelerado de la herramienta
       Mayor duración del tiempo de mecanizado
       Mayor coste del mecanizado

Tiempo de torneado




Fuerza específica de corte

La fuerza de corte es un parámetro necesario para poder calcular la potencia necesaria
para efectuar un determinado mecanizado. Este parámetro está en función del avance de


DENNYS USHCA                                                                  Página 27
INSTITUTO TECNOLGICO SUPERIOR
                                “CARLOS CISNEROS”
                               RIOBAMBA -ECUADOR

la herramienta, de la profundidad de pasada, de la velocidad de corte, de la
maquinabilidad del material, de la dureza del material, de las características de la
herramienta y del espesor medio de la viruta. Todos estos factores se engloban en un
coeficiente denominado Kx. La fuerza específica de corte se expresa en N/mm2.9

Potencia de corte

La potencia de corte Pc necesaria para efectuar un determinado mecanizado se calcula a
partir del valor del volumen de arranque de viruta, la fuerza específica de corte y del
rendimiento que tenga la máquina . Se expresa en kilovatios (kW).


Esta fuerza específica de corte Fc, es una constante que se determina por el tipo de
material que se está mecanizando, geometría de la herramienta, espesor de viruta, etc.

Para poder obtener el valor de potencia correcto, el valor obtenido tiene que dividirse
por un determinado valor (ρ) que tiene en cuenta la eficiencia de la máquina. Este valor
es el porcentaje de la potencia del motor que está disponible en la herramienta puesta en
el husillo.




donde

        Pc es la potencia de corte (kW)
        Ac es el diámetro de la pieza (mm)
        f es la velocidad de avance (mm/min)
        Fc es la fuerza específica de corte (N/mm2)
        ρ es el rendimiento o la eficiencia de el máquina

Factores que influyen en las condiciones tecnológicas del torneado

        Diseño y limitaciones de la pieza: tamaño, tolerancias del torneado, tendencia a
        vibraciones, sistemas de sujeción, acabado superficial, etc.
        Operaciones de torneado a realizar: cilindrados exteriores o interiores, refrentados,
        ranurados, desbaste, acabados, optimización para realizar varias operaciones de forma
        simultánea, etc.
        Estabilidad y condiciones de mecanizado: cortes intermitentes, voladizo de la pieza,
        forma y estado de la pieza, estado, potencia y accionamiento de la máquina, etc.
        Disponibilidad y selección del tipo de torno: posibilidad de automatizar el
        mecanizado, poder realizar varias operaciones de forma simultánea, serie de piezas a
        mecanizar, calidad y cantidad del refrigerante, etc.
        Material de la pieza: dureza, estado, resistencia, maquinabilidad, barra, fundición,
        forja, mecanizado en seco o con refrigerante, etc.



DENNYS USHCA                                                                       Página 28
INSTITUTO TECNOLGICO SUPERIOR
                               “CARLOS CISNEROS”
                              RIOBAMBA -ECUADOR

       Disponibilidad de herramientas: calidad de las herramientas, sistema de sujeción de la
       herramienta, acceso al distribuidor de herramientas, servicio técnico de herramientas,
       asesoramiento técnico.
       Aspectos económicos del mecanizado: optimización del mecanizado, duración de la
       herramienta, precio de la herramienta, precio del tiempo de mecanizado.

Aspectos especiales de las herramientas para mandrinar: se debe seleccionar el mayor
diámetro de la barra posible y asegurarse una buena evacuación de la viruta. Seleccionar
el menor voladizo posible de la barra. Seleccionar herramientas de la mayor tenacidad
posible.10

Formación de viruta

El torneado ha evolucionado tanto que ya no se trata tan solo de arrancar material a gran
velocidad, sino que los parámetros que componen el proceso tienen que estar
estrechamente controlados para asegurar los resultados finales de economía calidad y
precisión. En particular, la forma de tratar la viruta se ha convertido en un proceso
complejo, donde intervienen todos los componentes tecnológicos del mecanizado, para
que pueda tener el tamaño y la forma que no perturbe el proceso de trabajo. Si no fuera
así se acumularían rápidamente masas de virutas largas y fibrosas en el área de
mecanizado que formarían madejas enmarañadas e incontrolables.

La forma que toma la viruta se debe principalmente al material que se está cortando y
puede ser tanto dúctil como quebradiza y frágil.

El avance con el que se trabaje y la profundidad de pasada suelen determinar en gran
medida la forma de viruta. Cuando no bastan estas variables para controlar la forma de
la viruta hay que recurrir a elegir una herramienta que lleve incorporado un
rompevirutas eficaz.

Mecanizado en seco y con refrigerante

Hoy en día el torneado en seco es completamente viable. Hay una tendencia reciente a
efectuar los mecanizados en seco siempre que la calidad de la herramienta lo permita.

La inquietud se despertó durante los años 90,cuando estudios realizados en empresas de
fabricación de componentes para automoción en Alemania pusieron de relieve el coste
elevado de la refrigeración y sobre todo de su reciclado.

Sin embargo, el mecanizado en seco no es adecuado para todas las aplicaciones,
especialmente para taladrados, roscados y mandrinados para garantizar la evacuación de
las virutas.

Tampoco es recomendable tornear en seco materiales pastosos o demasiado blandos
como el aluminio o el acero de bajo contenido en carbono ya que es muy probable que
los filos de corte se embocen con el material que cortan, produciendo mal acabado
superficial, dispersiones en las medidas de la pieza e incluso rotura de los filos de corte.

DENNYS USHCA                                                                      Página 29
INSTITUTO TECNOLGICO SUPERIOR
                                “CARLOS CISNEROS”
                               RIOBAMBA -ECUADOR

En el caso de mecanizar materiales de viruta corta como la fundición gris la taladrina es
beneficiosa como agente limpiador, evitando la formación de nubes de polvo tóxicas.

La taladrina es imprescindible torneando materiales abrasivos tales como inoxidables,
inconells, etc

En el torneado en seco la maquinaria debe estar preparada para absorber sin problemas
el calor producido en la acción de corte.

Para evitar sobrecalentamientos de husillos, etc suelen incorporarse circuitos internos de
refrigeración por aceite o aire.

Salvo excepciones y a diferencia del fresado el torneado en seco no se ha generalizado
pero ha servido para que las empresas se hayan cuestionado usar taladrina solo en las
operaciones necesarias y con el caudal necesario.

Es necesario evaluar con cuidado operaciones, materiales, piezas, exigencias de calidad
y maquinaria para identificar los beneficios de eliminar el aporte de refrigerante.

Puesta a punto de los tornos

Para que un torno funcione correctamente y garantice la calidad de sus mecanizados, es
necesario que periódicamente se someta a una revisión y puesta a punto donde se
ajustarán y verificarán todas sus funciones.

Las tareas más importantes que se realizan en la revisión de los tornos son las
siguientes:

                                    Revisión de tornos

                                        Se refiere a nivelar la bancada y para ello se
Nivelación
                                        utilizará un nivel de precisión.

                                        Se realiza con un reloj comparador y haciendo girar
                                        el plato a mano, se verifica la concentricidad del
Concentricidad del cabezal
                                        cabezal y si falla se ajusta y corrige
                                        adecuadamente.

                                       Se mecaniza un cilindro a un diámetro aproximado
Comprobación de redondez de las piezas de 100 mm y con un reloj comparador de precisión
                                       se verifica la redondez del cilindro.


Alineación del eje principal            Se fija en el plato un mandril de unos 300 mm de
                                        longitud, se monta un reloj en el carro longitudinal


DENNYS USHCA                                                                       Página 30
INSTITUTO TECNOLGICO SUPERIOR
                                  “CARLOS CISNEROS”
                                 RIOBAMBA -ECUADOR


                                             y se verifica si el eje está alineado o desviado.

                                             Se consigue mecanizando un eje de 300 mm sujeto
                                             entre puntos y verificando con un micrómetro de
Alineación del contrapunto
                                             precisión si el eje ha salido cilíndrico o tiene
                                             conicidad.



Otras funciones como la precisión de los nonios se realizan de forma más esporádica
principalmente cuando se estrena la máquina.

Normas de seguridad en el torneado

Cuando se está trabajando en un torno, hay que observar una serie de requisitos para
asegurarse de no tener ningún accidente que pudiese ocasionar cualquier pieza que fuese
despedida del plato o la viruta si no sale bien cortada. Para ello la mayoría de tornos
tienen una pantalla de protección. Pero también de suma importancia es el prevenir ser
atrapado(a) por el movimiento rotacional de la máquina, por ejemplo por la ropa o
por el cabello largo.11

                                      Normas de seguridad

1 Utilizar equipo de seguridad: gafas de seguridad, caretas, etc..

2 No utilizar ropa holgada o muy suelta. Se recomiendan las mangas cortas.

3 Utilizar ropa de algodón.

4 Utilizar calzado de seguridad.

5 Mantener el lugar siempre limpio.

     Si se mecanizan piezas pesadas utilizar polipastos adecuados para cargar y descargar las
6
     piezas de la máquina.

7 Es preferible llevar el pelo corto. Si es largo no debe estar suelto sino recogido.

8 No vestir joyería, como collares, pulseras o anillos.

     Siempre se deben conocer los controles y funcionamiento del torno. Se debe saber como
9
     detener su operación.

     Es muy recomendable trabajar en un área bien iluminada que ayude al operador, pero la
10
     iluminación no debe ser excesiva para que no cause demasiado resplandor.


DENNYS USHCA                                                                             Página 31
INSTITUTO TECNOLGICO SUPERIOR
                               “CARLOS CISNEROS”
                              RIOBAMBA -ECUADOR

Perfil de los profesionales torneros

Ante la diversidad de tornos diferentes que existe, también existen diferentes perfiles de
los profesionales dedicados a estas máquinas, entre los que se puede establecer la
siguiente clasificación:12

Programadores de tornos de control numérico

Los tornos de control numérico (CNC), exigen en primer lugar de un técnico
programador que elabore el programa de ejecución que tiene que realizar el torno para
el mecanizado de una determinada. En este caso debe tratarse de un buen conocedor de
factores que intervienen en el mecanizado en el torno como los siguientes:

       Prestaciones del torno
       Prestaciones y disponibilidad de herramientas
       Sujeción de las piezas
       Tipo de material a mecanizar y sus características de mecanización
       Uso de refrigerantes
       Cantidad de piezas a mecanizar
       Acabado superficial. Rugosidad
       Tolerancia de mecanización admisible.

Además deberá conocer bien los parámetros tecnológicos del torneado que son:

       Velocidad de corte óptima a que debe realizarse el torneado
       Avance óptimo del mecanizado
       Profundidad de pasada
       Velocidad de giro (RPM) del cabezal
       Sistema de cambio de herramientas.

A todos estos requisitos deben unirse una correcta interpretación de los planos de las
piezas y la técnica de programación que utilice de acuerdo con el equipo que tenga el
torno.13

Preparadores de tornos automáticos y CNC

En las industrias donde haya instalados varios tornos automáticos de gran producción o
tornos de Control Numérico, debe existir un profesional encargado de poner estas
máquinas a punto cada vez que se produce un cambio en las piezas que se van a
mecanizar porque es una tarea bastante compleja la puesta a punto de un torno
automático o de CNC.

Una vez que el torno ha sido preparado para un trabajo determinado, el control posterior
del trabajo de la máquina suele encargarse a una persona de menor preparación técnica
dentro de las calidades de tolerancia y rugosidad exigidas. A veces un operario es capaz
de atender a varios tornos automáticos, si éstos tienen automatizados el sistema de
alimentación de piezas mediante barras o autómatas.

DENNYS USHCA                                                                    Página 32
INSTITUTO TECNOLGICO SUPERIOR
                      “CARLOS CISNEROS”
                     RIOBAMBA -ECUADOR




DENNYS USHCA                                   Página 33

Más contenido relacionado

La actualidad más candente

engranajes Helicoidales problemas y ejercicios
engranajes Helicoidales problemas y ejerciciosengranajes Helicoidales problemas y ejercicios
engranajes Helicoidales problemas y ejerciciosjuancarlosalanoca
 
Cepilladora de codo
Cepilladora de codoCepilladora de codo
Cepilladora de codooluyar
 
Cuchillas en torno
Cuchillas en tornoCuchillas en torno
Cuchillas en tornoyoulol2
 
ELEMENTOS DE MECANISMOS
ELEMENTOS DE MECANISMOSELEMENTOS DE MECANISMOS
ELEMENTOS DE MECANISMOSmorasan46
 
Presentacion Cepillo
Presentacion CepilloPresentacion Cepillo
Presentacion CepilloJesus Triz
 
Procesos de mecanizado por arranque de virutas
Procesos de mecanizado por arranque de virutasProcesos de mecanizado por arranque de virutas
Procesos de mecanizado por arranque de virutasCrismarina Yory
 
Lubricación de máquinas
Lubricación  de máquinasLubricación  de máquinas
Lubricación de máquinasCarlos Verdú
 
Clase de elementos de maquinas. rodamientos cojinetes y engranajes. nestor ag...
Clase de elementos de maquinas. rodamientos cojinetes y engranajes. nestor ag...Clase de elementos de maquinas. rodamientos cojinetes y engranajes. nestor ag...
Clase de elementos de maquinas. rodamientos cojinetes y engranajes. nestor ag...Estudiante.uftsaia Slideshow
 
Diseño 3 diseño de chaveta
Diseño 3 diseño de chavetaDiseño 3 diseño de chaveta
Diseño 3 diseño de chavetaMarc Llanos
 

La actualidad más candente (20)

Los taladros
Los taladros Los taladros
Los taladros
 
engranajes Helicoidales problemas y ejercicios
engranajes Helicoidales problemas y ejerciciosengranajes Helicoidales problemas y ejercicios
engranajes Helicoidales problemas y ejercicios
 
Cepilladora de codo
Cepilladora de codoCepilladora de codo
Cepilladora de codo
 
TORNO
TORNOTORNO
TORNO
 
Cuchillas en torno
Cuchillas en tornoCuchillas en torno
Cuchillas en torno
 
ELEMENTOS DE MECANISMOS
ELEMENTOS DE MECANISMOSELEMENTOS DE MECANISMOS
ELEMENTOS DE MECANISMOS
 
Unidad vi volantes
Unidad vi volantesUnidad vi volantes
Unidad vi volantes
 
Códigos De Rodamientos
Códigos De RodamientosCódigos De Rodamientos
Códigos De Rodamientos
 
LA FRESADORA
LA FRESADORALA FRESADORA
LA FRESADORA
 
F R E S A D O R A ( U N I V E R S A L)
F R E S A D O R A ( U N I V E R S A L)F R E S A D O R A ( U N I V E R S A L)
F R E S A D O R A ( U N I V E R S A L)
 
Presentacion Cepillo
Presentacion CepilloPresentacion Cepillo
Presentacion Cepillo
 
Chavetas (cuñas)
Chavetas (cuñas)Chavetas (cuñas)
Chavetas (cuñas)
 
Maquinas --el-torno
Maquinas --el-tornoMaquinas --el-torno
Maquinas --el-torno
 
Procesos de mecanizado por arranque de virutas
Procesos de mecanizado por arranque de virutasProcesos de mecanizado por arranque de virutas
Procesos de mecanizado por arranque de virutas
 
Juntas universales mecatronica
Juntas universales mecatronicaJuntas universales mecatronica
Juntas universales mecatronica
 
Lubricación de máquinas
Lubricación  de máquinasLubricación  de máquinas
Lubricación de máquinas
 
Clase de elementos de maquinas. rodamientos cojinetes y engranajes. nestor ag...
Clase de elementos de maquinas. rodamientos cojinetes y engranajes. nestor ag...Clase de elementos de maquinas. rodamientos cojinetes y engranajes. nestor ag...
Clase de elementos de maquinas. rodamientos cojinetes y engranajes. nestor ag...
 
El divisor en la fresadora
El divisor en la fresadoraEl divisor en la fresadora
El divisor en la fresadora
 
Transmision por correas
Transmision por correasTransmision por correas
Transmision por correas
 
Diseño 3 diseño de chaveta
Diseño 3 diseño de chavetaDiseño 3 diseño de chaveta
Diseño 3 diseño de chaveta
 

Destacado

Destacado (6)

Fresado y Torno CNC
Fresado y Torno CNCFresado y Torno CNC
Fresado y Torno CNC
 
torno-paralelo
torno-paralelotorno-paralelo
torno-paralelo
 
Máquinas cnc
Máquinas cncMáquinas cnc
Máquinas cnc
 
Instrucciones para aprender a usar un torno
Instrucciones para aprender a usar un tornoInstrucciones para aprender a usar un torno
Instrucciones para aprender a usar un torno
 
TORNO, TORNILLO, CUÑA, POLEA .
TORNO, TORNILLO, CUÑA, POLEA .TORNO, TORNILLO, CUÑA, POLEA .
TORNO, TORNILLO, CUÑA, POLEA .
 
Tipos de tornos y sus caracteristicas
Tipos de tornos y sus caracteristicasTipos de tornos y sus caracteristicas
Tipos de tornos y sus caracteristicas
 

Similar a Aporte del torno

Las maquinas en juego luiisa
Las maquinas en juego luiisaLas maquinas en juego luiisa
Las maquinas en juego luiisaLuiZa Urrego
 
Las maquinas en juego luiisa
Las maquinas en juego luiisaLas maquinas en juego luiisa
Las maquinas en juego luiisaLuiZa Urrego
 
Las maquinas en juego
Las maquinas en juego Las maquinas en juego
Las maquinas en juego LuiZa Urrego
 
Torno (Historia, Partes, Accesorios, Herramientas, Operaciones, Seguridad Ind...
Torno (Historia, Partes, Accesorios, Herramientas, Operaciones, Seguridad Ind...Torno (Historia, Partes, Accesorios, Herramientas, Operaciones, Seguridad Ind...
Torno (Historia, Partes, Accesorios, Herramientas, Operaciones, Seguridad Ind...Nicolas Gonzalez
 
MAQUINAS Y HERRAMIENTAS
MAQUINAS Y HERRAMIENTASMAQUINAS Y HERRAMIENTAS
MAQUINAS Y HERRAMIENTASIván Diáz
 
MAQUINAS HERRAMIENTAS
MAQUINAS HERRAMIENTASMAQUINAS HERRAMIENTAS
MAQUINAS HERRAMIENTASIván Diáz
 
DISTINTOS PROCESOS DE MAQUINADO (TORNO, FRESADORA)
DISTINTOS PROCESOS DE MAQUINADO (TORNO, FRESADORA)DISTINTOS PROCESOS DE MAQUINADO (TORNO, FRESADORA)
DISTINTOS PROCESOS DE MAQUINADO (TORNO, FRESADORA)juan manuel castillo ochoa
 
procesosdemanufactura-160603192358 (1).pptx
procesosdemanufactura-160603192358 (1).pptxprocesosdemanufactura-160603192358 (1).pptx
procesosdemanufactura-160603192358 (1).pptxIngriCruz2
 
PROCESO DE TORNEADO DE METALES EN UNA INDUSTRIA.pptx
PROCESO DE TORNEADO DE METALES EN UNA INDUSTRIA.pptxPROCESO DE TORNEADO DE METALES EN UNA INDUSTRIA.pptx
PROCESO DE TORNEADO DE METALES EN UNA INDUSTRIA.pptxGabrielParamo5
 
ESTE ES UN APORTE DE MECANICA INDUSTRIAL
ESTE ES UN APORTE  DE MECANICA INDUSTRIALESTE ES UN APORTE  DE MECANICA INDUSTRIAL
ESTE ES UN APORTE DE MECANICA INDUSTRIALjuanpinta
 
LAS FRESADORAS
LAS FRESADORASLAS FRESADORAS
LAS FRESADORASjuanpinta
 

Similar a Aporte del torno (20)

Las maquinas en juego luiisa
Las maquinas en juego luiisaLas maquinas en juego luiisa
Las maquinas en juego luiisa
 
Las maquinas en juego luiisa
Las maquinas en juego luiisaLas maquinas en juego luiisa
Las maquinas en juego luiisa
 
Las maquinas en juego
Las maquinas en juego Las maquinas en juego
Las maquinas en juego
 
Torno
TornoTorno
Torno
 
Torno (Historia, Partes, Accesorios, Herramientas, Operaciones, Seguridad Ind...
Torno (Historia, Partes, Accesorios, Herramientas, Operaciones, Seguridad Ind...Torno (Historia, Partes, Accesorios, Herramientas, Operaciones, Seguridad Ind...
Torno (Historia, Partes, Accesorios, Herramientas, Operaciones, Seguridad Ind...
 
MAQUINAS Y HERRAMIENTAS
MAQUINAS Y HERRAMIENTASMAQUINAS Y HERRAMIENTAS
MAQUINAS Y HERRAMIENTAS
 
Torno o manubrio
Torno o manubrioTorno o manubrio
Torno o manubrio
 
Torno o manubrio
Torno o manubrioTorno o manubrio
Torno o manubrio
 
G 04
G 04G 04
G 04
 
MAQUINAS HERRAMIENTAS
MAQUINAS HERRAMIENTASMAQUINAS HERRAMIENTAS
MAQUINAS HERRAMIENTAS
 
DISTINTOS PROCESOS DE MAQUINADO (TORNO, FRESADORA)
DISTINTOS PROCESOS DE MAQUINADO (TORNO, FRESADORA)DISTINTOS PROCESOS DE MAQUINADO (TORNO, FRESADORA)
DISTINTOS PROCESOS DE MAQUINADO (TORNO, FRESADORA)
 
El torno
El tornoEl torno
El torno
 
procesosdemanufactura-160603192358 (1).pptx
procesosdemanufactura-160603192358 (1).pptxprocesosdemanufactura-160603192358 (1).pptx
procesosdemanufactura-160603192358 (1).pptx
 
PROCESO DE TORNEADO DE METALES EN UNA INDUSTRIA.pptx
PROCESO DE TORNEADO DE METALES EN UNA INDUSTRIA.pptxPROCESO DE TORNEADO DE METALES EN UNA INDUSTRIA.pptx
PROCESO DE TORNEADO DE METALES EN UNA INDUSTRIA.pptx
 
procesos de manufactura
procesos de manufacturaprocesos de manufactura
procesos de manufactura
 
Trabajo de procesos
Trabajo de procesos Trabajo de procesos
Trabajo de procesos
 
Tornillo
TornilloTornillo
Tornillo
 
Fresadora
Fresadora Fresadora
Fresadora
 
ESTE ES UN APORTE DE MECANICA INDUSTRIAL
ESTE ES UN APORTE  DE MECANICA INDUSTRIALESTE ES UN APORTE  DE MECANICA INDUSTRIAL
ESTE ES UN APORTE DE MECANICA INDUSTRIAL
 
LAS FRESADORAS
LAS FRESADORASLAS FRESADORAS
LAS FRESADORAS
 

Último

EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.DaluiMonasterio
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdfDemetrio Ccesa Rayme
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxEXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxPryhaSalam
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arteRaquel Martín Contreras
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdfgimenanahuel
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptELENA GALLARDO PAÚLS
 
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdfResolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptxJunkotantik
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxjosetrinidadchavez
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 

Último (20)

EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdf
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxEXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arte
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf
 
La Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdfLa Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdf
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
 
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdfResolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptx
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
 

Aporte del torno

  • 1. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR NOMBRE:DENNYS USHCA CURSO:4 TO PARALELO: “D” EL TORNO Torno Saltar a: navegación, búsqueda Este artículo se refiere a los tornos utilizados en la industria metalúrgica para el mecanizado de metales. Para otros tipos de tornos y para otras acepciones de esta palabra, véase Torno (desambiguación) Torno paralelo moderno. Se denomina torno (del latín tornus, y este del griego τόρνος, giro, vuelta)1 a un conjunto de máquinas y herramientas que permiten mecanizar piezas de forma geométrica de revolución. Estas máquinas-herramienta operan haciendo girar la pieza a mecanizar (sujeta en el cabezal o fijada entre los puntos de centraje) mientras una o varias herramientas de corte son empujadas en un movimiento regulado de avance contra la superficie de la pieza, cortando la viruta de acuerdo con las condiciones tecnológicas de mecanizado adecuadas. Desde el inicio de la Revolución industrial, el torno se ha convertido en una máquina básica en el proceso industrial de mecanizado. La herramienta de corte va montada sobre un carro que se desplaza sobre unas guías o rieles paralelos al eje de giro de la pieza que se tornea, llamado eje Z; sobre este carro hay otro que se mueve según el eje X, en dirección radial a la pieza que se tornea, y puede haber un tercer carro llamado charriot que se puede inclinar, para hacer conos, y donde se apoya la torreta portaherramientas. Cuando el carro principal desplaza la herramienta a lo largo del eje de rotación, produce el cilindrado de la pieza, y cuando el DENNYS USHCA Página 1
  • 2. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR carro transversal se desplaza de forma perpendicular al eje de simetría de la pieza se realiza la operación denominada refrentado. Los tornos copiadores, automáticos y de control numérico llevan sistemas que permiten trabajar a los dos carros de forma simultánea, consiguiendo cilindrados cónicos y esféricos. Los tornos paralelos llevan montado un tercer carro, de accionamiento manual y giratorio, llamado charriot, montado sobre el carro transversal. Con el charriot inclinado a los grados necesarios es posible mecanizar conos. Encima del charriot va fijada la torreta portaherramientas. Historia Tornos antiguos La existencia de tornos está atestiguada desde al menos el año 850 a.C. La imagen más antigua conocida se conserva en la tumba de un sumo sacerdote egipcio llamado Petosiris (siglo IV a.C.). 2 Durante siglos los tornos funcionaron según el sistema de "arco de violín". En el siglo XIII se inventó el torno de pedal y pértiga flexible, que tenía la ventaja de ser accionado con el pie en vez de con las manos, con lo cual estas quedaban libres para otras tareas. En el siglo XV surgieron otras dos mejoras: la transmisión por correa y el mecanismo de biela-manivela.2 Tornos mecánicos Torno paralelo de 1911. Al comenzar la Revolución industrial en Inglaterra, durante el siglo XVII, se desarrollaron tornos capaces de dar forma a una pieza metálica. El desarrollo del torno pesado industrial para metales en el siglo XVIII hizo posible la producción en serie de piezas de precisión. DENNYS USHCA Página 2
  • 3. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR años 1780: Jacques de Vaucanson construye un torno con portaherramientas deslizante. hacia 1797: Henry Maudslay y David Wilkinson mejoran el invento de Vaucanson permitiendo que la herramienta de corte pueda avanzar con velocidad constante. 1820: Thomas Blanchard inventa el torno copiador. años 1840: desarrollo del torno revólver En 1833, Joseph Whitworth se instaló por su cuenta en Mánchester. Sus diseños y realizaciones influyeron de manera fundamental en otros fabricantes de la época. En 1839 patentó un torno paralelo para cilindrar y roscar con bancada de guías planas y carro transversal automático, que tuvo una gran aceptación. Dos tornos que llevan incorporados elementos de sus patentes se conservan en la actualidad. Uno de ellos, construido en 1843, se conserva en el "Science Museum" de Londres. El otro, construido en 1850, se conserva en el "Birmingham Museum". Una serie de antiguos tornos propulsados un motor central a través de correas. Fue J.G. Bodmer quien en 1839 tuvo la idea de construir tornos verticales. A finales del siglo XIX, este tipo de tornos eran fabricados en distintos tamaños y pesos. El diseño y patente en 1890 de la caja de Norton, incorporada a los tornos paralelos, dio solución al cambio manual de engranajes para fijar los pasos de las piezas a roscar.3 Introducción del Control Numérico Torno moderno de control numérico. DENNYS USHCA Página 3
  • 4. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR El torno de control numérico es un ejemplo de automatización programable. Se diseñó para adaptar las variaciones en la configuración de los productos. Su principal aplicación se centra en volúmenes de producción medios de piezas sencillas y en volúmenes de producción medios y bajos de piezas complejas. Uno de los ejemplos más importantes de automatización programable es el control numérico en la fabricación de partes metálicas. El control numérico (CN) es una forma de automatización programable en la cual el equipo de procesado se controla a través de números, letras y otros símbolos. Estos números, letras y símbolos están codificados en un formato apropiado para definir un programa de instrucciones para desarrollar una tarea concreta. Cuando la tarea en cuestión cambia, se cambia el programa de instrucciones. La capacidad de cambiar el programa hace que el CN sea apropiado para volúmenes de producción bajos o medios, dado que es más fácil escribir nuevos programas que realizar cambios en los equipos de procesado. El primer desarrollo en el área del control numérico lo realizó el inventor norteamericano John T. Parsons (Detroit 1913-2007), junto con su empleado Frank L. Stulen, en la década de 1940. El concepto de control numérico implicaba el uso de datos en un sistema de referencia para definir las superficies de contorno de las hélices de un helicóptero. Tipos de tornos Actualmente se utilizan en la industria del mecanizado varios tipos de tornos, cuya aplicación depende de la cantidad de piezas a mecanizar por serie, de la complejidad de las piezas y de la envergadura de las piezas. Torno paralelo Caja de velocidades y avances de un torno paralelo. El torno paralelo o mecánico es el tipo de torno que evolucionó partiendo de los tornos antiguos cuando se le fueron incorporando nuevos equipamientos que lograron convertirlo en una de las máquinas herramientas más importante que han existido. Sin embargo, en la actualidad este tipo de torno está quedando relegado a realizar tareas DENNYS USHCA Página 4
  • 5. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR poco importantes, a utilizarse en los talleres de aprendices y en los talleres de mantenimiento para realizar trabajos puntuales o especiales. Para la fabricación en serie y de precisión han sido sustituidos por tornos copiadores, revólver, automáticos y de CNC. Para manejar bien estos tornos se requiere la pericia de profesionales muy bien calificados, ya que el manejo manual de sus carros puede ocasionar errores a menudo en la geometría de las piezas torneadas Torno copiador Esquema funcional de torno copiador. Se llama torno copiador a un tipo de torno que operando con un dispositivo hidráulico y electrónico permite el torneado de piezas de acuerdo a las características de la misma siguiendo el perfil de una plantilla que reproduce una replica igual a la guía. Este tipo de tornos se utiliza para el torneado de aquellas piezas que tienen diferentes escalones de diámetros, que han sido previamente forjadas o fundidas y que tienen poco material excedente. También son muy utilizados estos tornos en el trabajo de la madera y del mármol artístico para dar forma a las columnas embellecedoras. La preparación para el mecanizado en un torno copiador es muy sencilla y rápida y por eso estas máquinas son muy útiles para mecanizar lotes o series de piezas que no sean muy grandes. Las condiciones tecnológicas del mecanizado son comunes a las de los demás tornos, solamente hay que prever una herramienta que permita bien la evacuación de la viruta y un sistema de lubricación y refrigeración eficaz del filo de corte de las herramientas mediante abundante aceite de corte o taladrina. DENNYS USHCA Página 5
  • 6. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Torno revólver Operaria manejando un torno revólver. El torno revólver es una variedad de torno diseñado para mecanizar piezas sobre las que sea posible el trabajo simultáneo de varias herramientas con el fin de disminuir el tiempo total de mecanizado. Las piezas que presentan esa condición son aquellas que, partiendo de barras, tienen una forma final de casquillo o similar. Una vez que la barra queda bien sujeta mediante pinzas o con un plato de garras, se va taladrando, mandrinando, roscando o escariando la parte interior mecanizada y a la vez se puede ir cilindrando, refrentando, ranurando, roscando y cortando con herramientas de torneado exterior. El torno revólver lleva un carro con una torreta giratoria en la que se insertan las diferentes herramientas que realizan el mecanizado de la pieza. También se pueden mecanizar piezas de forma individual, fijándolas a un plato de garras de accionamiento hidráulico. Torno automático Se llama torno automático a un tipo de torno cuyo proceso de trabajo está enteramente automatizado. La alimentación de la barra necesaria para cada pieza se hace también de forma automática, a partir de una barra larga que se inserta por un tubo que tiene el cabezal y se sujeta mediante pinzas de apriete hidráulico. Estos tornos pueden ser de un solo husillo o de varios husillos: Los de un solo husillo se emplean básicamente para el mecanizado de piezas pequeñas que requieran grandes series de producción. Cuando se trata de mecanizar piezas de dimensiones mayores se utilizan los tornos automáticos multihusillos donde de forma programada en cada husillo se va realizando una parte del mecanizado de la pieza. Como los husillos van cambiando de posición, el mecanizado final de la pieza resulta muy rápido porque todos los husillos mecanizan la misma pieza de forma simultánea. La puesta a punto de estos tornos es muy laboriosa y por eso se utilizan principalmente para grandes series de producción. El movimiento de todas las herramientas está DENNYS USHCA Página 6
  • 7. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR automatizado por un sistema de excéntricas y reguladores electrónicos que regulan el ciclo y los topes de final de carrera. Un tipo de torno automático es el conocido como "tipo suizo", capaz de mecanizar piezas muy pequeñas con tolerancias muy estrechas. Torno vertical Torno vertical. El torno vertical es una variedad de torno, de eje vertical, diseñado para mecanizar piezas de gran tamaño, que van sujetas al plato de garras u otros operadores y que por sus dimensiones o peso harían difícil su fijación en un torno horizontal. Los tornos verticales no tienen contrapunto sino que el único punto de sujeción de las piezas es el plato horizontal sobre el cual van apoyadas. La manipulación de las piezas para fijarlas en el plato se hace mediante grúas de puente o polipastos. Torno CNC Torno CNC. Artículo principal: Torno CNC. El torno CNC es un torno dirigido por control numérico por computadora. Ofrece una gran capacidad de producción y precisión en el mecanizado por su estructura funcional y porque la trayectoria de la herramienta de torneado es controlada por un DENNYS USHCA Página 7
  • 8. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR ordenador que lleva incorporado, el cual procesa las órdenes de ejecución contenidas en un software que previamente ha confeccionado un programador conocedor de la tecnología de mecanizado en torno. Es una máquina que resulta rentable para el mecanizado de grandes series de piezas sencillas, sobre todo piezas de revolución, y permite mecanizar con precisión superficies curvas coordinando los movimientos axial y radial para el avance de la herramienta. Piezas de ajedrez mecanizadas en un torno CNC. La velocidad de giro de cabezal portapiezas, el avance de los carros longitudinal y transversal y las cotas de ejecución de la pieza están programadas y, por tanto, exentas de fallos imputables al operario de la máquina.4 Otros tipos de tornos Además de los tornos empleados en la industria mecánica, también se utilizan tornos para trabajar la madera, la ornamentación con mármol o granito. El nombre de "torno" se aplica también a otras máquinas rotatorias como por ejemplo el torno de alfarero o el torno dental. Estas máquinas tienen una aplicación y un principio de funcionamiento totalmente diferentes de las de los tornos descritos en este artículo. DENNYS USHCA Página 8
  • 9. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Estructura del torno Torno paralelo en funcionamiento. El torno tiene cinco componentes principales: Bancada: sirve de soporte para las otras unidades del torno. En su parte superior lleva unas guías por las que se desplaza el cabezal móvil o contrapunto y el carro principal. Cabezal fijo: contiene los engranajes o poleas que impulsan la pieza de trabajo y las unidades de avance. Incluye el motor, el husillo, el selector de velocidad, el selector de unidad de avance y el selector de sentido de avance. Además sirve para soporte y rotación de la pieza de trabajo que se apoya en el husillo. Contrapunto: el contrapunto es el elemento que se utiliza para servir de apoyo y poder colocar las piezas que son torneadas entre puntos, así como otros elementos tales como portabrocas o brocas para hacer taladros en el centro de los ejes. Este contrapunto puede moverse y fijarse en diversas posiciones a lo largo de la bancada. Carro portátil: consta del carro principal, que produce los movimientos de la herramienta en dirección axial; y del carro transversal, que se desliza transversalmente sobre el carro principal en dirección radial. En los tornos paralelos hay además un carro superior orientable, formado a su vez por tres piezas: la base, el charriot y la torreta portaherramientas. Su base está apoyada sobre una plataforma giratoria para orientarlo en cualquier dirección. Cabezal giratorio o chuck: su función consiste en sujetar la pieza a mecanizar. Hay varios tipos, como el chuck independiente de cuatro mordazas o el universal, mayoritariamente empleado en el taller mecánico, al igual que hay chucks magnéticos y de seis mordazas. DENNYS USHCA Página 9
  • 10. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Equipo auxiliar Plato de garras universal. Se requieren ciertos accesorios, como sujetadores para la pieza de trabajo, soportes y portaherramientas. Algunos accesorios comunes incluyen: Plato de sujeción de garras universal: sujeta la pieza de trabajo en el cabezal y transmite el movimiento. Plato de sujeción de garras blandas: sujeta la pieza de trabajo en el cabezal a través de una superficie ya acabada. Son mecanizadas para un diámetro especifico no siendo válidas para otros. Centros o puntos: soportan la pieza de trabajo en el cabezal y en la contrapunta. Perno de arrastre: Se fija en el plato de torno y en la pieza de trabajo y le transmite el movimiento a la pieza cuando está montada entre centros. Soporte fijo o luneta fija: soporta el extremo extendido de la pieza de trabajo cuando no puede usarse la contrapunta. Soporte móvil o luneta móvil: se monta en el carro y permite soportar piezas de trabajo largas cerca del punto de corte. Torreta portaherramientas con alineación múltiple. Plato de arrastre :para amarrar piezas de difícil sujeción. Plato de garras independientes : tiene 4 garras que actúan de forma independiente unas de otras. Plato y perno de arrastre. DENNYS USHCA Página 10
  • 11. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Herramientas de torneado Brocas de centraje de acero rápido. Herramienta de metal duro soldada. Las herramientas de torneado se diferencian en dos factores, el material del que están constituidas y el tipo de operación que realizan. Según el material constituyente, las herramientas pueden ser de acero rápido, metal duro soldado o plaquitas de metal duro (widia) intercambiables. La tipología de las herramientas de metal duro está normalizada de acuerdo con el material que se mecanice, puesto que cada material ofrece unas resistencias diferentes. El código ISO para herramientas de metal duro se recoge en la tabla más abajo. Cuando la herramienta es de acero rápido o tiene la plaquita de metal duro soldada en el portaherramientas, cada vez que el filo se desgasta hay que desmontarla y afilarla correctamente con los ángulos de corte específicos en una afiladora. Esto ralentiza bastante el trabajo Porque la herramienta se tiene que enfriar constante mente y verificar que el Angulo de incidencia del corte este correcto . Por ello, cuando se mecanizan piezas en serie lo normal es utilizar portaherramientas con plaquitas intercambiables, que tienen varias caras de corte de usar y tirar y se reemplazan de forma muy rápida. DENNYS USHCA Página 11
  • 12. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Características de las plaquitas de metal duro Herramientas de roscar y mandrinar. Plaquita de tornear de metal duro. Herramienta de torneado exterior plaquita de widia cambiable. La calidad de las plaquitas de metal duro (Widia) se selecciona teniendo en cuenta el material de la pieza, el tipo de aplicación y las condiciones de mecanizado. La variedad de las formas de las plaquitas es grande y está normalizada. Asimismo la variedad de materiales de las herramientas modernas es considerable y está sujeta a un desarrollo continuo.5 Los principales materiales de herramientas para torneado son los que se muestran en la tabla siguiente. Materiales Símbolos Metales duros recubiertos HC Metales duros H Cermets HT, HC DENNYS USHCA Página 12
  • 13. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Cerámicas CA, CN, CC Nitruro de boro cúbico BN Diamantes policristalinos DP, HC La adecuación de los diferentes tipos de plaquitas según sea el material a mecanizar se indican a continuación y se clasifican según una Norma ISO/ANSI para indicar las aplicaciones en relación a la resistencia y la tenacidad que tienen. Código de calidades de plaquitas Serie ISO Características Ideales para el mecanizado de acero, acero fundido, y Serie P ISO 01, 10, 20, 30, 40, 50 acero maleable de viruta larga. Ideales para tornear acero inoxidable, ferrítico y martensítico, acero fundido, acero al manganeso, Serie M ISO 10, 20, 30, 40 fundición aleada, fundición maleable y acero de fácil mecanización. Ideal para el torneado de fundición gris, fundición en Serie K ISO 01, 10, 20, 30 coquilla, y fundición maleable de viruta corta. Serie N ISO 01, 10. 20, 30 Ideal para el torneado de metales no-férreos Pueden ser de base de níquel o de base de titanio. Serie S Ideales para el mecanizado de aleaciones termorresistentes y súperaleaciones. Serie H ISO 01, 10, 20, 30 Ideal para el torneado de materiales endurecidos. Código de formatos de las plaquitas de metal duro Como hay tanta variedad en las formas geométricas, tamaños y ángulos de corte, existe una codificación normalizada compuesta de cuatro letras y seis números donde cada una de estas letras y números indica una característica determinada del tipo de plaquita correspondiente. Ejemplo de código de plaquita: SNMG 160408 HC DENNYS USHCA Página 13
  • 14. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Primera Forma Ángulo Tercera Tolerancia Cuarta Segunda Tipo de sujección letra geométrica de letra dimensional letra letra incidencia Rómbica J Agujero sin C A 80º A 3º avellanar K Rómbica B 5º Menor Agujero con D L 55º G rompevirutas en C 7º dos caras L Rectangular M D 15º Mayor Agujero con R Redonda N M rompevirutas en E 20º una cara S Cuadrada U F 25º Sin agujero ni T Triangular N rompevirutas G 30º Rómbica Agujero V N 0º 35º W avellanado en una cara Hexagonal P 11º W 80º Agujero avellanado y T rompevirutas en una cara Sin agujero y con N rompevirutas en una cara X No estándar Las dos primeras cifras indican en milímetros la longitud de la arista de corte de la plaquita. Las dos cifras siguientes indican en milímetros el espesor de la plaquita. Las dos últimas cifras indican en décimas de milímetro el radio de punta de la plaquita. Especificaciones técnicas de los tornos Principales especificaciones técnicas de los tornos convencionales:6 DENNYS USHCA Página 14
  • 15. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Capacidad Altura entre puntos; distancia entre puntos; diámetro admitido sobre bancada; diámetro admitido sobre escote; diámetro admitido sobre carro transversal; ancho de la bancada; longitud del escote delante del plato liso. Cabezal Diámetro del agujero del husillo principal; nariz del husillo principal; cono Morse del husillo principal; gama de velocidades del cabezal (habitualmente en rpm); número de velocidades. Carros Recorrido del carro transversal; recorrido del charriot o carro superior; dimensiones máximas de la herramienta, gama de avances longitudinales; gama de avances transversales. recorrido del avance automático recorrido del avance automático 2 Roscado Gama de pasos métricos; gama de pasos Witworth; gama de pasos modulares; gama de pasos Diametral Pitch; paso del husillo patrón. Cabezal móvil El cabezal móvil está compuesto por dos piezas, que en general son de fundición. Una de ellas, el soporte, se apoya sobre las guías principales del torno, sobre las que se puede fijar o trasladar desde el extremo opuesto al cabezal. La otra pieza se ubica sobre la anterior y tiene un husillo que se acciona con una manivela para el desplazamiento longitudinal del contrapunto, encajándolo con la presión adecuada en un agujero cónico ciego, denominado punto de centrado, practicado sobre el extremo de la pieza opuesto al cabezal fijo.7 DENNYS USHCA Página 15
  • 16. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Motores Potencia del motor principal (habitualmente en kW); potencia de la motobomba de refrigerante (en kW). Lunetas No todos los tipos de tornos tienen las mismas especificaciones técnicas. Por ejemplo los tornos verticales no tienen contrapunto y solo se mecanizan las piezas sujetas al aire. El roscado a máquina con Caja Norton solo lo tienen los tornos paralelos. Movimientos de trabajo en la operación de torneado Movimiento de corte: por lo general se imparte a la pieza que gira rotacionalmente sobre su eje principal. Este movimiento lo imprime un motor eléctrico que transmite su giro al husillo principal mediante un sistema de poleas o engranajes. El husillo principal tiene acoplado a su extremo distintos sistemas de sujeción (platos de garras, pinzas, mandrinos auxiliares u otros), los cuales sujetan la pieza a mecanizar. Los tornos tradicionales tienen una gama fija de velocidades de giro, sin embargo los tornos modernos de Control Numérico la velocidad de giro del cabezal es variable y programable y se adapta a las condiciones óptimas que el mecanizado permite. Movimiento de avance: es el movimiento de la herramienta de corte en la dirección del eje de la pieza que se está trabajando. En combinación con el giro impartido al husillo, determina el espacio recorrido por la herramienta por cada vuelta que da la pieza. Este movimiento también puede no ser paralelo al eje, produciéndose así conos. desplazamientos en vacío se realizan a gran velocidad. Profundidad de pasada: movimiento de la herramienta de corte que determina la profundidad de material arrancado en cada pasada. La cantidad de material factible de ser arrancada depende del perfil del útil de corte usado, el tipo de material mecanizado, la velocidad de corte, potencia de la máquina, avance, etc. Nonios de los carros: para regular el trabajo de torneado los carros del torno llevan incorporado unos nonios en forma de tambor graduado, donde cada división indica el desplazamiento que tiene el carro, ya sea el longitudinal, el transversal o el charriot. La en el programa y estas se consiguen automáticamente. Operaciones de torneado Cilindrado Artículo principal: Cilindrado. DENNYS USHCA Página 16
  • 17. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Esquema de torneado cilíndrico. Esta operación consiste en el mecanizado exterior o interior al que se someten las piezas que tienen mecanizados cilíndricos. Para poder efectuar esta operación, con el carro transversal se regula la profundidad de pasada y, por tanto, el diámetro del cilindro, y con el carro paralelo se regula la longitud del cilindro. El carro paralelo avanza de forma automática de acuerdo al avance de trabajo deseado. En este procedimiento, el acabado superficial y la tolerancia que se obtenga puede ser un factor de gran relevancia. Para asegurar calidad al cilindrado el torno tiene que tener bien ajustada su alineación y concentricidad. El cilindrado se puede hacer con la pieza al aire sujeta en el plato de garras, si es corta, o con la pieza sujeta entre puntos y un perro de arrastre, o apoyada en luneta fija o móvil si la pieza es de grandes dimensiones y peso. Para realizar el cilindrado de piezas o ejes sujetos entre puntos, es necesario previamente realizar los puntos de centraje en los ejes. Cuando el cilindrado se realiza en el hueco de la pieza se llama mandrinado. Refrentado Artículo principal: Refrentado. DENNYS USHCA Página 17
  • 18. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Esquema funcional de refrentado. La operación de refrentado consiste en un mecanizado frontal y perpendicular al eje de las piezas que se realiza para producir un buen acoplamiento en el montaje posterior de las piezas torneadas. Esta operación también es conocida como fronteado. La problemática que tiene el refrentado es que la velocidad de corte en el filo de la herramienta va disminuyendo a medida que avanza hacia el centro, lo que ralentiza la operación. Para mejorar este aspecto muchos tornos modernos incorporan variadores de velocidad en el cabezal de tal forma que se puede ir aumentando la velocidad de giro de la pieza. Ranurado Artículo principal: Ranurado. Poleas torneadas. El ranurado consiste en mecanizar unas ranuras cilíndricas de anchura y profundidad variable en las piezas que se tornean, las cuales tienen muchas utilidades diferentes. Por ejemplo, para alojar una junta tórica, para salida de rosca, para arandelas de presión, etc. En este caso la herramienta tiene ya conformado el ancho de la ranura y actuando con el carro transversal se le da la profundidad deseada. Los canales de las poleas son un ejemplo claro de ranuras torneadas. Roscado en el torno Hay dos sistemas de realizar roscados en los tornos, de un lado la tradicional que utilizan los tornos paralelos, mediante la Caja Norton, y de otra la que se realiza con los tornos CNC, donde los datos de la roscas van totalmente programados y ya no hace falta la caja Norton para realizarlo. Para efectuar un roscado con herramienta hay que tener en cuenta lo siguiente: DENNYS USHCA Página 18
  • 19. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Las roscas pueden ser exteriores (tornillos) o bien interiores (tuercas), debiendo ser sus magnitudes coherentes para que ambos elementos puedan enroscarse. Los elementos que figuran en la tabla son los que hay que tener en cuenta a la hora de realizar una rosca en un torno: Rosca exterior o macho Rosca interior o hembra 1 Fondo o base Cresta o vértice 2 Cresta o vértice Fondo o base 3 Flanco Flanco 4 Diámetro del núcleo Diámetro del taladro 5 Diámetro exterior Diámetro interior 6 Profundidad de la rosca 7 Paso Para efectuar el roscado hay que realizar previamente las siguientes tareas: Tornear previamente al diámetro que tenga la rosca Preparar la herramienta de acuerdo con los ángulos del filete de la rosca. Establecer la profundidad de pasada que tenga que tener la rosca hasta conseguir el perfil adecuado. Roscado en torno paralelo barra hexagonal DENNYS USHCA Página 19
  • 20. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Una de las tareas que pueden ejecutarse en un torno paralelo es efectuar roscas de diversos pasos y tamaños tanto exteriores sobre ejes o interiores sobre tuercas. Para ello los tornos paralelos universales incorporan un mecanismo llamado Caja Norton, que facilita esta tarea y evita montar un tren de engranajes cada vez que se quisiera efectuar una rosca. Figura 1 La caja Norton es un mecanismo compuesto de varios engranajes que fue inventado y patentado en 1890, que se incorpora a los tornos paralelos y dio solución al cambio manual de engranajes para fijar los pasos de las piezas a roscar. Esta caja puede constar de varios trenes desplazables de engranajes o bien de uno basculante y un cono de engranajes. La caja conecta el movimiento del Figura 2 cabezal del torno con el carro portaherramientas que lleva incorporado un husillo de rosca cuadrada. El sistema mejor conseguido incluye una caja de cambios con varias reductoras. De esta manera con la manipulación de varias palancas se pueden fijar distintas velocidades de avance de carro portaherramientas, permitiendo realizar una gran variedad de pasos de rosca tanto métricos como Figura 3 Withworth. Las hay en baño de aceite y en seco, de engranajes tallados de una forma u otra, pero básicamente es una caja de cambios. En la figura se observa cómo partiendo de una barra hexagonal se mecaniza un tornillo. Para ello se realizan las siguientes operaciones: Figura 4 1. Se cilindra el cuerpo del tornillo dejando la cabeza hexagonal en sus medidas originales. 2. Se achaflana la entrada de la rosca y se refrenta la punta del tornillo. 3. Se ranura la garganta donde finaliza la rosca junto a la cabeza del tornillo. 4. Se rosca el cuerpo del tornillo, dando lugar a la pieza finalizada. Este mismo proceso se puede hacer partiendo de una barra larga, tronzando finalmente la parte mecanizada. Moleteado Artículo principal: Moleteado. DENNYS USHCA Página 20
  • 21. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Eje moleteado. El moleteado es un proceso de conformado en frío del material mediante unas moletas que presionan la pieza mientras da vueltas. Dicha deformación produce un incremento del diámetro de partida de la pieza. El moleteado se realiza en piezas que se tengan que manipular a mano, que generalmente vayan roscadas para evitar su resbalamiento que tendrían en caso de que tuviesen la superficie lisa. El moleteado se realiza en los tornos con unas herramientas que se llaman moletas, de diferente paso y dibujo. Un ejemplo de moleteado es el que tienen las monedas de 50 céntimos de euro, aunque en este caso el moleteado es para que los invidentes puedan identificar mejor la moneda. El moleteado por deformación se puede ejecutar de dos maneras: Radialmente, cuando la longitud moleteada en la pieza coincide con el espesor de la moleta a utilizar. Longitudinalmente, cuando la longitud excede al espesor de la moleta. Para este segundo caso la moleta siempre ha de estar biselada en sus extremos. Torneado de conos Un cono o un tronco de cono de un cuerpo de generación viene definido por los siguientes conceptos: DENNYS USHCA Página 21
  • 22. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Diámetro mayor Diámetro menor Longitud Ángulo de inclinación Conicidad Pinzas cónicas portaherramientas. Los diferentes tornos mecanizan los conos de formas diferentes. En los tornos CNC no hay ningún problema porque, programando adecuadamente sus dimensiones, los carros transversales y longitudinales se desplazan de forma coordinada dando lugar al cono deseado. En los tornos copiadores tampoco hay problema porque la plantilla de copiado permite que el palpador se desplace por la misma y los carros actúen de forma coordinada. Para mecanizar conos en los tornos paralelos convencionales se puede hacer de dos formas diferentes. Si la longitud del cono es pequeña, se mecaniza el cono con el charriot inclinado según el ángulo del cono. Si la longitud del cono es muy grande y el eje se mecaniza entre puntos, entonces se desplaza la distancia adecuada el contrapunto según las dimensiones del cono. Torneado esférico Esquema funcional torneado esférico. DENNYS USHCA Página 22
  • 23. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR El torneado esférico, por ejemplo el de rótulas, no tiene ninguna dificultad si se realiza en un torno de Control Numérico porque, programando sus medidas y la función de mecanizado radial correspondiente, lo realizará de forma perfecta. Si el torno es automático de gran producción, trabaja con barra y las rótulas no son de gran tamaño, la rótula se consigue con un carro transversal donde las herramientas están afiladas con el perfil de la rótula. Hacer rótulas de forma manual en un torno paralelo presenta cierta dificultad para conseguir exactitud en la misma. En ese caso es recomendable disponer de una plantilla de la esfera e irla mecanizando de forma manual y acabarla con lima o rasqueta para darle el ajuste final. Segado o tronzado Artículo principal: Tronzado. Herramienta de ranurar y segar. Se llama segado a la operación de torneado que se realiza cuando se trabaja con barra y al finalizar el mecanizado de la pieza correspondiente es necesario cortar la barra para separar la pieza de la misma. Para esta operación se utilizan herramientas muy estrechas con un saliente de acuerdo al diámetro que tenga la barra y permita con el carro transversal llegar al centro de la barra. Es una operación muy común en tornos revólver y automáticos alimentados con barra y fabricaciones en serie. Chaflanado El chaflanado es una operación de torneado muy común que consiste en matar los cantos tanto exteriores como interiores para evitar cortes con los mismos y a su vez facilitar el trabajo y montaje posterior de las piezas. El chaflanado más común suele ser el de 1mm por 45º. Este chaflán se hace atacando directamente los cantos con una herramienta adecuada. DENNYS USHCA Página 23
  • 24. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Mecanizado de excéntricas Cigueñal de un motor de barco de 6 cilindros en línea, con 7 apoyos. Una excéntrica es una pieza que tiene dos o más cilindros con distintos centros o ejes de simetría, tal y como ocurre con los cigüeñales de motor, o los ejes de levas. Una excéntrica es un cuerpo de revolución y por tanto el mecanizado se realiza en un torno. Para mecanizar una excéntrica es necesario primero realizar los puntos de centraje de los diferentes ejes excéntricos en los extremos de la pieza que se fijará entre puntos. Mecanizado de espirales Un espiral es una rosca tallada en un disco plano y mecanizada en un torno, mediante el desplazamiento oportuno del carro transversal. Para ello se debe calcular la transmisión que se pondrá entre el cabezal y el husillo de avance del carro transversal de acuerdo al paso de la rosca espiral. Es una operación poco común en el torneado. Ejemplo de rosca espiral es la que tienen en su interior los platos de garras de los tornos, la cual permite la apertura y cierre de las garras. Taladrado Contrapunto para taladrados. Muchas piezas que son torneadas requieren ser taladradas con brocas en el centro de sus ejes de rotación. Para esta tarea se utilizan brocas normales, que se sujetan en el contrapunto en un portabrocas o directamente en el alojamiento del contrapunto si el diámetro es grande. Las condiciones tecnológicas del taladrado son las normales de acuerdo a las características del material y tipo de broca que se utilice. Mención aparte merecen los procesos de taladrado profundo donde el proceso ya es muy diferente sobre todo la constitución de la broca que se utiliza. DENNYS USHCA Página 24
  • 25. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR No todos los tornos pueden realizar todas estas operaciones que se indican, sino que eso depende del tipo de torno que se utilice y de los accesorios o equipamientos que tenga. Parámetros de corte del torneado Los parámetros de corte fundamentales que hay que considerar en el proceso de torneado son los siguientes: Elección del tipo de herramienta más adecuado Sistema de fijación de la pieza Velocidad de corte (Vc) expresada en metros/minuto Diámetro exterior del torneado Revoluciones por minuto (rpm) del cabezal del torno Avance en mm/rev, de la herramienta Avance en mm/mi de la herramienta Profundidad de pasada Esfuerzos de corte Tipo de torno y accesorios adecuados Velocidad de corte Se define como velocidad de corte la velocidad lineal de la periferia de la pieza que está en contacto con la herramienta. La velocidad de corte, que se expresa en metros por minuto (m/min), tiene que ser elegida antes de iniciar el mecanizado y su valor adecuado depende de muchos factores, especialmente de la calidad y tipo de herramienta que se utilice, de la profundidad de pasada, de la dureza y la maquinabilidad que tenga el material que se mecanice y de la velocidad de avance empleada. Las limitaciones principales de la máquina son su gama de velocidades, la potencia de los motores y de la rigidez de la fijación de la pieza y de la herramienta. A partir de la determinación de la velocidad de corte se puede determinar las revoluciones por minuto que tendrá el cabezal del torno, según la siguiente fórmula: Donde Vc es la velocidad de corte, n es la velocidad de rotación de la herramienta y Dc es el diámetro de la pieza. La velocidad de corte es el factor principal que determina la duración de la herramienta. Una alta velocidad de corte permite realizar el mecanizado en menos tiempo pero acelera el desgaste de la herramienta. Los fabricantes de herramientas y prontuarios de mecanizado, ofrecen datos orientativos sobre la velocidad de corte adecuada de las herramientas para una duración determinada de la herramienta, por ejemplo, 15 minutos. En ocasiones, es deseable ajustar la velocidad de corte para una duración DENNYS USHCA Página 25
  • 26. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR diferente de la herramienta, para lo cual, los valores de la velocidad de corte se multiplican por un factor de corrección. La relación entre este factor de corrección y la duración de la herramienta en operación de corte no es lineal.8 La velocidad de corte excesiva puede dar lugar a: Desgaste muy rápido del filo de corte de la herramienta. Deformación plástica del filo de corte con pérdida de tolerancia del mecanizado. Calidad del mecanizado deficiente; acabado superficial ineficiente. La velocidad de corte demasiado baja puede dar lugar a: Formación de filo de aportación en la herramienta. Efecto negativo sobre la evacuación de viruta. Baja productividad. Coste elevado del mecanizado. Velocidad de rotación de la pieza La velocidad de rotación del cabezal del torno se expresa habitualmente en revoluciones por minuto (rpm). En los tornos convencionales hay una gama limitada de velocidades, que dependen de la velocidad de giro del motor principal y del número de velocidades de la caja de cambios de la máquina. En los tornos de control numérico, esta velocidad es controlada con un sistema de realimentación que habitualmente utiliza un variador de frecuencia y puede seleccionarse una velocidad cualquiera dentro de un rango de velocidades, hasta una velocidad máxima. La velocidad de rotación de la herramienta es directamente proporcional a la velocidad de corte e inversamente proporcional al diámetro de la pieza. Velocidad de avance Artículo principal: Avance. El avance o velocidad de avance en el torneado es la velocidad relativa entre la pieza y la herramienta, es decir, la velocidad con la que progresa el corte. El avance de la herramienta de corte es un factor muy importante en el proceso de torneado. Cada herramienta puede cortar adecuadamente en un rango de velocidades de avance por cada revolución de la pieza , denominado avance por revolución (fz). Este rango depende fundamentalmente del diámetro de la pieza , de la profundidad de pasada , y de la calidad de la herramienta . Este rango de velocidades se determina experimentalmente y se encuentra en los catálogos de los fabricantes de herramientas. Además esta velocidad está limitada por las rigideces de las sujeciones de la pieza y de DENNYS USHCA Página 26
  • 27. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR la herramienta y por la potencia del motor de avance de la máquina. El grosor máximo de viruta en mm es el indicador de limitación más importante para una herramienta. El filo de corte de las herramientas se prueba para que tenga un valor determinado entre un mínimo y un máximo de grosor de la viruta. La velocidad de avance es el producto del avance por revolución por la velocidad de rotación de la pieza. Al igual que con la velocidad de rotación de la herramienta, en los tornos convencionales la velocidad de avance se selecciona de una gama de velocidades disponibles, mientras que los tornos de control numérico pueden trabajar con cualquier velocidad de avance hasta la máxima velocidad de avance de la máquina. Efectos de la velocidad de avance Decisiva para la formación de viruta Afecta al consumo de potencia Contribuye a la tensión mecánica y térmica La elevada velocidad de avance da lugar a: Buen control de viruta Menor tiempo de corte Menor desgaste de la herramienta Riesgo más alto de rotura de la herramienta Elevada rugosidad superficial del mecanizado. La velocidad de avance baja da lugar a: Viruta más larga Mejora de la calidad del mecanizado Desgaste acelerado de la herramienta Mayor duración del tiempo de mecanizado Mayor coste del mecanizado Tiempo de torneado Fuerza específica de corte La fuerza de corte es un parámetro necesario para poder calcular la potencia necesaria para efectuar un determinado mecanizado. Este parámetro está en función del avance de DENNYS USHCA Página 27
  • 28. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR la herramienta, de la profundidad de pasada, de la velocidad de corte, de la maquinabilidad del material, de la dureza del material, de las características de la herramienta y del espesor medio de la viruta. Todos estos factores se engloban en un coeficiente denominado Kx. La fuerza específica de corte se expresa en N/mm2.9 Potencia de corte La potencia de corte Pc necesaria para efectuar un determinado mecanizado se calcula a partir del valor del volumen de arranque de viruta, la fuerza específica de corte y del rendimiento que tenga la máquina . Se expresa en kilovatios (kW). Esta fuerza específica de corte Fc, es una constante que se determina por el tipo de material que se está mecanizando, geometría de la herramienta, espesor de viruta, etc. Para poder obtener el valor de potencia correcto, el valor obtenido tiene que dividirse por un determinado valor (ρ) que tiene en cuenta la eficiencia de la máquina. Este valor es el porcentaje de la potencia del motor que está disponible en la herramienta puesta en el husillo. donde Pc es la potencia de corte (kW) Ac es el diámetro de la pieza (mm) f es la velocidad de avance (mm/min) Fc es la fuerza específica de corte (N/mm2) ρ es el rendimiento o la eficiencia de el máquina Factores que influyen en las condiciones tecnológicas del torneado Diseño y limitaciones de la pieza: tamaño, tolerancias del torneado, tendencia a vibraciones, sistemas de sujeción, acabado superficial, etc. Operaciones de torneado a realizar: cilindrados exteriores o interiores, refrentados, ranurados, desbaste, acabados, optimización para realizar varias operaciones de forma simultánea, etc. Estabilidad y condiciones de mecanizado: cortes intermitentes, voladizo de la pieza, forma y estado de la pieza, estado, potencia y accionamiento de la máquina, etc. Disponibilidad y selección del tipo de torno: posibilidad de automatizar el mecanizado, poder realizar varias operaciones de forma simultánea, serie de piezas a mecanizar, calidad y cantidad del refrigerante, etc. Material de la pieza: dureza, estado, resistencia, maquinabilidad, barra, fundición, forja, mecanizado en seco o con refrigerante, etc. DENNYS USHCA Página 28
  • 29. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Disponibilidad de herramientas: calidad de las herramientas, sistema de sujeción de la herramienta, acceso al distribuidor de herramientas, servicio técnico de herramientas, asesoramiento técnico. Aspectos económicos del mecanizado: optimización del mecanizado, duración de la herramienta, precio de la herramienta, precio del tiempo de mecanizado. Aspectos especiales de las herramientas para mandrinar: se debe seleccionar el mayor diámetro de la barra posible y asegurarse una buena evacuación de la viruta. Seleccionar el menor voladizo posible de la barra. Seleccionar herramientas de la mayor tenacidad posible.10 Formación de viruta El torneado ha evolucionado tanto que ya no se trata tan solo de arrancar material a gran velocidad, sino que los parámetros que componen el proceso tienen que estar estrechamente controlados para asegurar los resultados finales de economía calidad y precisión. En particular, la forma de tratar la viruta se ha convertido en un proceso complejo, donde intervienen todos los componentes tecnológicos del mecanizado, para que pueda tener el tamaño y la forma que no perturbe el proceso de trabajo. Si no fuera así se acumularían rápidamente masas de virutas largas y fibrosas en el área de mecanizado que formarían madejas enmarañadas e incontrolables. La forma que toma la viruta se debe principalmente al material que se está cortando y puede ser tanto dúctil como quebradiza y frágil. El avance con el que se trabaje y la profundidad de pasada suelen determinar en gran medida la forma de viruta. Cuando no bastan estas variables para controlar la forma de la viruta hay que recurrir a elegir una herramienta que lleve incorporado un rompevirutas eficaz. Mecanizado en seco y con refrigerante Hoy en día el torneado en seco es completamente viable. Hay una tendencia reciente a efectuar los mecanizados en seco siempre que la calidad de la herramienta lo permita. La inquietud se despertó durante los años 90,cuando estudios realizados en empresas de fabricación de componentes para automoción en Alemania pusieron de relieve el coste elevado de la refrigeración y sobre todo de su reciclado. Sin embargo, el mecanizado en seco no es adecuado para todas las aplicaciones, especialmente para taladrados, roscados y mandrinados para garantizar la evacuación de las virutas. Tampoco es recomendable tornear en seco materiales pastosos o demasiado blandos como el aluminio o el acero de bajo contenido en carbono ya que es muy probable que los filos de corte se embocen con el material que cortan, produciendo mal acabado superficial, dispersiones en las medidas de la pieza e incluso rotura de los filos de corte. DENNYS USHCA Página 29
  • 30. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR En el caso de mecanizar materiales de viruta corta como la fundición gris la taladrina es beneficiosa como agente limpiador, evitando la formación de nubes de polvo tóxicas. La taladrina es imprescindible torneando materiales abrasivos tales como inoxidables, inconells, etc En el torneado en seco la maquinaria debe estar preparada para absorber sin problemas el calor producido en la acción de corte. Para evitar sobrecalentamientos de husillos, etc suelen incorporarse circuitos internos de refrigeración por aceite o aire. Salvo excepciones y a diferencia del fresado el torneado en seco no se ha generalizado pero ha servido para que las empresas se hayan cuestionado usar taladrina solo en las operaciones necesarias y con el caudal necesario. Es necesario evaluar con cuidado operaciones, materiales, piezas, exigencias de calidad y maquinaria para identificar los beneficios de eliminar el aporte de refrigerante. Puesta a punto de los tornos Para que un torno funcione correctamente y garantice la calidad de sus mecanizados, es necesario que periódicamente se someta a una revisión y puesta a punto donde se ajustarán y verificarán todas sus funciones. Las tareas más importantes que se realizan en la revisión de los tornos son las siguientes: Revisión de tornos Se refiere a nivelar la bancada y para ello se Nivelación utilizará un nivel de precisión. Se realiza con un reloj comparador y haciendo girar el plato a mano, se verifica la concentricidad del Concentricidad del cabezal cabezal y si falla se ajusta y corrige adecuadamente. Se mecaniza un cilindro a un diámetro aproximado Comprobación de redondez de las piezas de 100 mm y con un reloj comparador de precisión se verifica la redondez del cilindro. Alineación del eje principal Se fija en el plato un mandril de unos 300 mm de longitud, se monta un reloj en el carro longitudinal DENNYS USHCA Página 30
  • 31. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR y se verifica si el eje está alineado o desviado. Se consigue mecanizando un eje de 300 mm sujeto entre puntos y verificando con un micrómetro de Alineación del contrapunto precisión si el eje ha salido cilíndrico o tiene conicidad. Otras funciones como la precisión de los nonios se realizan de forma más esporádica principalmente cuando se estrena la máquina. Normas de seguridad en el torneado Cuando se está trabajando en un torno, hay que observar una serie de requisitos para asegurarse de no tener ningún accidente que pudiese ocasionar cualquier pieza que fuese despedida del plato o la viruta si no sale bien cortada. Para ello la mayoría de tornos tienen una pantalla de protección. Pero también de suma importancia es el prevenir ser atrapado(a) por el movimiento rotacional de la máquina, por ejemplo por la ropa o por el cabello largo.11 Normas de seguridad 1 Utilizar equipo de seguridad: gafas de seguridad, caretas, etc.. 2 No utilizar ropa holgada o muy suelta. Se recomiendan las mangas cortas. 3 Utilizar ropa de algodón. 4 Utilizar calzado de seguridad. 5 Mantener el lugar siempre limpio. Si se mecanizan piezas pesadas utilizar polipastos adecuados para cargar y descargar las 6 piezas de la máquina. 7 Es preferible llevar el pelo corto. Si es largo no debe estar suelto sino recogido. 8 No vestir joyería, como collares, pulseras o anillos. Siempre se deben conocer los controles y funcionamiento del torno. Se debe saber como 9 detener su operación. Es muy recomendable trabajar en un área bien iluminada que ayude al operador, pero la 10 iluminación no debe ser excesiva para que no cause demasiado resplandor. DENNYS USHCA Página 31
  • 32. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR Perfil de los profesionales torneros Ante la diversidad de tornos diferentes que existe, también existen diferentes perfiles de los profesionales dedicados a estas máquinas, entre los que se puede establecer la siguiente clasificación:12 Programadores de tornos de control numérico Los tornos de control numérico (CNC), exigen en primer lugar de un técnico programador que elabore el programa de ejecución que tiene que realizar el torno para el mecanizado de una determinada. En este caso debe tratarse de un buen conocedor de factores que intervienen en el mecanizado en el torno como los siguientes: Prestaciones del torno Prestaciones y disponibilidad de herramientas Sujeción de las piezas Tipo de material a mecanizar y sus características de mecanización Uso de refrigerantes Cantidad de piezas a mecanizar Acabado superficial. Rugosidad Tolerancia de mecanización admisible. Además deberá conocer bien los parámetros tecnológicos del torneado que son: Velocidad de corte óptima a que debe realizarse el torneado Avance óptimo del mecanizado Profundidad de pasada Velocidad de giro (RPM) del cabezal Sistema de cambio de herramientas. A todos estos requisitos deben unirse una correcta interpretación de los planos de las piezas y la técnica de programación que utilice de acuerdo con el equipo que tenga el torno.13 Preparadores de tornos automáticos y CNC En las industrias donde haya instalados varios tornos automáticos de gran producción o tornos de Control Numérico, debe existir un profesional encargado de poner estas máquinas a punto cada vez que se produce un cambio en las piezas que se van a mecanizar porque es una tarea bastante compleja la puesta a punto de un torno automático o de CNC. Una vez que el torno ha sido preparado para un trabajo determinado, el control posterior del trabajo de la máquina suele encargarse a una persona de menor preparación técnica dentro de las calidades de tolerancia y rugosidad exigidas. A veces un operario es capaz de atender a varios tornos automáticos, si éstos tienen automatizados el sistema de alimentación de piezas mediante barras o autómatas. DENNYS USHCA Página 32
  • 33. INSTITUTO TECNOLGICO SUPERIOR “CARLOS CISNEROS” RIOBAMBA -ECUADOR DENNYS USHCA Página 33