SlideShare una empresa de Scribd logo
1 de 6
Principios Físicos en la Hidráulica
 Presión hidrostática
Un fluido pesa y ejerce presión sobre las paredes del fondo del recipiente que lo contiene y sobre
la superficie de cualquier objeto sumergido en él. Esta presión, llamada presión hidrostática,
provoca, en fluidos en reposo, una fuerza perpendicular a las paredes del recipiente o a la
superficie del objeto sumergido sin importar la orientación que adopten las caras. Si el líquido
fluyera, las fuerzas resultantes de las presiones ya no serían necesariamente perpendiculares a las
superficies. Esta presión depende de la densidad del líquido en cuestión y de la altura del líquido
por encima del punto en que se mida.
Se calcula mediante la siguiente expresión:
Donde, usando unidades del SI,
 es la presión hidrostática (en pascales);
 es la densidad del líquido (en kilogramos partido metro cúbico);
 es la aceleración de la gravedad (en metros partido segundo al cuadrado);
 es la altura del fluido (en metros). Un líquido en equilibrio ejerce fuerzas
perpendiculares sobre cualquier superficie sumergida en su interior
 es la Presión atmosférica (en pascales)
 Principio de Pascal
En física, el principio de Pascal o ley de Pascal, es una ley enunciada por el físico y matemático
francés Blaise Pascal (1623–1662) que se resume en la frase: la presión ejercida por un fluido
incompresible y en equilibrio dentro de un recipiente de paredes indeformables se transmite con
igual intensidad en todas las direcciones y en todos los puntos del fluido.1
El principio de Pascal puede comprobarse utilizando una esfera hueca, perforada en diferentes
lugares y provista de un émbolo. Al llenar la esfera con agua y ejercer presión sobre ella mediante
el émbolo, se observa que el agua sale por todos los agujeros con la misma velocidad y por lo
tanto con la misma presión.
También podemos ver aplicaciones del principio de Pascal en las prensas hidráulicas, en los
elevadores hidráulicos y en los frenos hidráulicos.
 Prensa hidráulica
La prensa hidráulica es una máquina compleja que permite amplificar la intensidad de las fuerzas y
constituye el fundamento de elevadores, prensas hidráulicas, frenos y muchos otros dispositivos
hidráulicos de maquinaria industrial.
La prensa hidráulica constituye la aplicación fundamental del principio de Pascal y también un
dispositivo que permite entender mejor su significado. Consiste, en esencia, en dos cilindros de
diferente sección comunicados entre sí, y cuyo interior está completamente lleno de un líquido
que puede ser agua o aceite. Dos émbolos de secciones diferentes se ajustan, respectivamente, en
cada uno de los dos cilindros, de modo que estén en contacto con el líquido. Cuando sobre el
émbolo de menor sección S1 se ejerce una fuerza F1 la presión p1 que se origina en el líquido en
contacto con él se transmite íntegramente y de forma casi instantánea a todo el resto del líquido.
Por el principio de Pascal esta presión será igual a la presión p2 que ejerce el fluido en la sección S2,
es decir:
con lo que las fuerzas serán, siendo, S1 < S2 :
y por tanto, la relación entre la fuerza resultante en el émbolo grande cuando se aplica una fuerza
menor en el émbolo pequeño será tanto mayor cuanto mayor sea la relación entre las secciones:
 Principio de Arquímedes
El principio de Arquímedes es un principio físico que afirma que: «Un cuerpo total o parcialmente
sumergido en un fluido en reposo, recibe un empuje de abajo hacia arriba igual
al peso del volumen del fluido que desaloja». Esta fuerza1
recibe el nombre de empuje
hidrostático o de Arquímedes, y se mide en newton (en el SI). El principio de Arquímedes se
formula así:
o bien
Donde E es el empuje , ρf es la densidad del fluido, V el «volumen de fluido desplazado» por algún
cuerpo sumergido parcial o totalmente en el mismo, g la aceleración de la gravedad y m la masa,
de este modo, el empuje depende de la densidad del fluido, del volumen del cuerpo y de la
gravedad existente en ese lugar. El empuje (en condiciones normalesy descrito de modo
simplificado3
) actúa verticalmente hacia arriba y está aplicado en el centro de gravedad del fluido
desalojado por el cuerpo; este punto recibe el nombre de centro de carena.
P1=F1/A
1
P2=F2/A
2
1
2
y2
v1
y1
v
2
 Ecuación de Continuidad
La parte sombreada de la
izquierda (zona 1) representa
un elemento de volumen de
líquido que fluye hacia el
interior del tubo con una
velocidad vl. El área de la
sección recta del tubo en esta
zona es Al. El volumen de
líquido que entra en el tubo en
el tiempo Dt es DV = Al
.
vl
.
Dt
Como estamos admitiendo que el fluido es incompresible, debe salir del tubo en la zona 2 un
volumen igual de fluido. Si la velocidad del fluido en este punto es v2 y el área correspondiente de
la sección recta vale A2, el volumen es DV=A2
.
v2
.
Dt. Como estos volúmenes deben ser iguales, se
tiene A1
.
v1
.
Dt. = A2
.
v2
.
Dt., y por tanto
Ecuación de continuidad.
El producto Q = Av es una magnitud denominada flujo de volumen Q, gasto o caudal. Las
dimensiones de Q son las de volumen/tiempo (p.e. litros por minuto) En el flujo estacionario de un
fluido incompresible, el caudal es el mismo en todos los puntos de fluido.
A1
.
v1 = A2
.
v2
 Principio de Bernoulli
Esquema del Principio de Bernoulli.
El principio de Bernoulli, también denominado ecuación de Bernoulli o Trinomio de Bernoulli,
describe el comportamiento de un flujo laminar moviéndose a lo largo de una corriente de agua.
Fue expuesto por Daniel Bernoulli en su obra Hidrodinámica (1738) y expresa que en un fluido
ideal (sin viscosidad ni rozamiento) en régimen de circulación por un conducto cerrado,
la energía que posee el fluido permanece constante a lo largo de su recorrido. La energía de un
fluido en cualquier momento consta de tres componentes:
1. Cinética: es la energía debida a la velocidad que posea el fluido.
2. Potencial gravitacional: es la energía debido a la altitud que un fluido posea.
3. Energía de flujo: es la energía que un fluido contiene debido a la presión que posee.
La siguiente ecuación conocida como "Ecuación de Bernoulli" (Trinomio de Bernoulli) consta de
estos mismos términos.
dónde:
 = velocidad del fluido en la sección considerada.
 = densidad del fluido.
 = presión a lo largo de la línea de corriente.
 = aceleración gravitatoria
 = altura en la dirección de la gravedad desde una cota de referencia.
Para aplicar la ecuación se deben realizar los siguientes supuestos:
 Viscosidad (fricción interna) = 0 Es decir, se considera que la línea de corriente sobre la
cual se aplica se encuentra en una zona 'no viscosa' del fluido.
 Caudal constante
 Flujo incompresible, donde ρ es constante.
 La ecuación se aplica a lo largo de una línea de corriente o en un flujo irrotacional
Aunque el nombre de la ecuación se debe a Bernoulli, la forma arriba expuesta fue presentada en
primer lugar por Leonhard Euler.
Un ejemplo de aplicación del principio lo encontramos en el flujo de agua en tubería.

Más contenido relacionado

La actualidad más candente

Análisis de mecanismos
Análisis de mecanismosAnálisis de mecanismos
Análisis de mecanismosivangarlop
 
Bombas rotatorias 28
Bombas rotatorias 28Bombas rotatorias 28
Bombas rotatorias 28Mar Badec
 
Clase 7. características y parámetros fundamentales de las bombas
Clase 7. características y parámetros fundamentales de las bombasClase 7. características y parámetros fundamentales de las bombas
Clase 7. características y parámetros fundamentales de las bombasJames Martinez
 
Turbinas De Vapor
Turbinas De VaporTurbinas De Vapor
Turbinas De Vaporgocando
 
03 leyes de hidraulica y neumatica
03 leyes de hidraulica y neumatica03 leyes de hidraulica y neumatica
03 leyes de hidraulica y neumaticaNicolás Colado
 
Bombas de desplazamiento positivo reciprocantes
Bombas de desplazamiento positivo reciprocantesBombas de desplazamiento positivo reciprocantes
Bombas de desplazamiento positivo reciprocantesEmmanuel Campos
 
Cuaderno 2 Neumática
Cuaderno 2 NeumáticaCuaderno 2 Neumática
Cuaderno 2 Neumáticaandogon
 
173486820 ejercicios-maquinas-hidraulicas-resueltos
173486820 ejercicios-maquinas-hidraulicas-resueltos173486820 ejercicios-maquinas-hidraulicas-resueltos
173486820 ejercicios-maquinas-hidraulicas-resueltosDemian Cid Preciado
 
Simbologia de hidraulica y neumatica
Simbologia de hidraulica y neumaticaSimbologia de hidraulica y neumatica
Simbologia de hidraulica y neumaticaFernando Hernandez
 
Motores DC & Variadores de Velocidad
Motores DC  & Variadores de VelocidadMotores DC  & Variadores de Velocidad
Motores DC & Variadores de VelocidadAngel Castillo
 
Problemas del capitulo 7, edison guaman, felipe quevedo, leonardo sarmiento
Problemas del capitulo 7, edison guaman, felipe quevedo, leonardo sarmientoProblemas del capitulo 7, edison guaman, felipe quevedo, leonardo sarmiento
Problemas del capitulo 7, edison guaman, felipe quevedo, leonardo sarmientoLuis Felipe Quevedo Avila
 

La actualidad más candente (20)

Análisis de mecanismos
Análisis de mecanismosAnálisis de mecanismos
Análisis de mecanismos
 
problemas capitulo 2 mataes hidraulica
problemas capitulo 2 mataes hidraulica problemas capitulo 2 mataes hidraulica
problemas capitulo 2 mataes hidraulica
 
Bombas rotatorias 28
Bombas rotatorias 28Bombas rotatorias 28
Bombas rotatorias 28
 
Clase 7. características y parámetros fundamentales de las bombas
Clase 7. características y parámetros fundamentales de las bombasClase 7. características y parámetros fundamentales de las bombas
Clase 7. características y parámetros fundamentales de las bombas
 
Turbinas De Vapor
Turbinas De VaporTurbinas De Vapor
Turbinas De Vapor
 
Circuitos electrohidraulicos basicos
Circuitos electrohidraulicos basicosCircuitos electrohidraulicos basicos
Circuitos electrohidraulicos basicos
 
03 leyes de hidraulica y neumatica
03 leyes de hidraulica y neumatica03 leyes de hidraulica y neumatica
03 leyes de hidraulica y neumatica
 
Neumatica normas iso
Neumatica normas isoNeumatica normas iso
Neumatica normas iso
 
Bombas de desplazamiento positivo reciprocantes
Bombas de desplazamiento positivo reciprocantesBombas de desplazamiento positivo reciprocantes
Bombas de desplazamiento positivo reciprocantes
 
Flujo en tuberias
Flujo en tuberiasFlujo en tuberias
Flujo en tuberias
 
Cuaderno 2 Neumática
Cuaderno 2 NeumáticaCuaderno 2 Neumática
Cuaderno 2 Neumática
 
Bombas rotatorias
Bombas rotatoriasBombas rotatorias
Bombas rotatorias
 
Circuitos electroneumaticos
Circuitos electroneumaticosCircuitos electroneumaticos
Circuitos electroneumaticos
 
173486820 ejercicios-maquinas-hidraulicas-resueltos
173486820 ejercicios-maquinas-hidraulicas-resueltos173486820 ejercicios-maquinas-hidraulicas-resueltos
173486820 ejercicios-maquinas-hidraulicas-resueltos
 
Simbologia de hidraulica y neumatica
Simbologia de hidraulica y neumaticaSimbologia de hidraulica y neumatica
Simbologia de hidraulica y neumatica
 
cilindro tándem neumatico
cilindro tándem neumaticocilindro tándem neumatico
cilindro tándem neumatico
 
Motores DC & Variadores de Velocidad
Motores DC  & Variadores de VelocidadMotores DC  & Variadores de Velocidad
Motores DC & Variadores de Velocidad
 
Problemas del capitulo 7, edison guaman, felipe quevedo, leonardo sarmiento
Problemas del capitulo 7, edison guaman, felipe quevedo, leonardo sarmientoProblemas del capitulo 7, edison guaman, felipe quevedo, leonardo sarmiento
Problemas del capitulo 7, edison guaman, felipe quevedo, leonardo sarmiento
 
valvulas
valvulas valvulas
valvulas
 
Bobinado del motor trifasico
Bobinado del motor trifasicoBobinado del motor trifasico
Bobinado del motor trifasico
 

Destacado

Componentes en un sistema hidraúlico
Componentes en un sistema hidraúlicoComponentes en un sistema hidraúlico
Componentes en un sistema hidraúlicomargayllon
 
Principios de la Hidráulica
Principios  de  la  HidráulicaPrincipios  de  la  Hidráulica
Principios de la HidráulicaALEJANDRO ROSALES
 
La neumatica
La neumaticaLa neumatica
La neumaticavollmilch
 
Concepto e importancia de la hidraulica
Concepto e importancia de la hidraulicaConcepto e importancia de la hidraulica
Concepto e importancia de la hidraulicainsucoppt
 
Transmisión de potencia
Transmisión de potenciaTransmisión de potencia
Transmisión de potenciajorge
 
La hidraulica completa!
La hidraulica completa!La hidraulica completa!
La hidraulica completa!natalia
 
Principios de la hidraulica
Principios de la hidraulicaPrincipios de la hidraulica
Principios de la hidraulicaEliezmar23
 
Aplicaciones de Bernoulli en Ingeniería
Aplicaciones de Bernoulli en IngenieríaAplicaciones de Bernoulli en Ingeniería
Aplicaciones de Bernoulli en IngenieríaKevin Rucoba Vargas
 
Importancia de la física en la medicina
Importancia de la física en la medicinaImportancia de la física en la medicina
Importancia de la física en la medicinaMi rincón de Medicina
 
Ing. Sistemas (Taller Mecanico Charly)
Ing. Sistemas (Taller Mecanico Charly)Ing. Sistemas (Taller Mecanico Charly)
Ing. Sistemas (Taller Mecanico Charly)Karateks
 
Ejercicios tema 3 PRINCIPIOS BÁSICOS DE LA HIDRAULICA
Ejercicios tema 3 PRINCIPIOS BÁSICOS DE LA HIDRAULICAEjercicios tema 3 PRINCIPIOS BÁSICOS DE LA HIDRAULICA
Ejercicios tema 3 PRINCIPIOS BÁSICOS DE LA HIDRAULICAMiguel Rosas
 

Destacado (20)

Principios de la hidráulica
Principios de la hidráulicaPrincipios de la hidráulica
Principios de la hidráulica
 
Componentes en un sistema hidraúlico
Componentes en un sistema hidraúlicoComponentes en un sistema hidraúlico
Componentes en un sistema hidraúlico
 
SISTEMA HIDRAULICO
SISTEMA HIDRAULICOSISTEMA HIDRAULICO
SISTEMA HIDRAULICO
 
Elementos hidraulicos
Elementos hidraulicosElementos hidraulicos
Elementos hidraulicos
 
Principios de la Hidráulica
Principios  de  la  HidráulicaPrincipios  de  la  Hidráulica
Principios de la Hidráulica
 
La neumatica
La neumaticaLa neumatica
La neumatica
 
Concepto e importancia de la hidraulica
Concepto e importancia de la hidraulicaConcepto e importancia de la hidraulica
Concepto e importancia de la hidraulica
 
Transmisión de potencia
Transmisión de potenciaTransmisión de potencia
Transmisión de potencia
 
Bombas y tipos
Bombas y tiposBombas y tipos
Bombas y tipos
 
La hidraulica completa!
La hidraulica completa!La hidraulica completa!
La hidraulica completa!
 
Hidráulica y aplicaciones en la cotidianidad
Hidráulica y aplicaciones en la cotidianidadHidráulica y aplicaciones en la cotidianidad
Hidráulica y aplicaciones en la cotidianidad
 
Hidráulica
Hidráulica Hidráulica
Hidráulica
 
Principios de la hidraulica
Principios de la hidraulicaPrincipios de la hidraulica
Principios de la hidraulica
 
Aplicaciones de Bernoulli en Ingeniería
Aplicaciones de Bernoulli en IngenieríaAplicaciones de Bernoulli en Ingeniería
Aplicaciones de Bernoulli en Ingeniería
 
Circuitos hidraulicos y neumaticos
Circuitos hidraulicos y neumaticosCircuitos hidraulicos y neumaticos
Circuitos hidraulicos y neumaticos
 
Presion y principio de arquimedes
Presion y principio de arquimedesPresion y principio de arquimedes
Presion y principio de arquimedes
 
hidraulica
hidraulicahidraulica
hidraulica
 
Importancia de la física en la medicina
Importancia de la física en la medicinaImportancia de la física en la medicina
Importancia de la física en la medicina
 
Ing. Sistemas (Taller Mecanico Charly)
Ing. Sistemas (Taller Mecanico Charly)Ing. Sistemas (Taller Mecanico Charly)
Ing. Sistemas (Taller Mecanico Charly)
 
Ejercicios tema 3 PRINCIPIOS BÁSICOS DE LA HIDRAULICA
Ejercicios tema 3 PRINCIPIOS BÁSICOS DE LA HIDRAULICAEjercicios tema 3 PRINCIPIOS BÁSICOS DE LA HIDRAULICA
Ejercicios tema 3 PRINCIPIOS BÁSICOS DE LA HIDRAULICA
 

Similar a Presión Hidráulica

Similar a Presión Hidráulica (20)

Unidad 3 fisica
Unidad 3 fisicaUnidad 3 fisica
Unidad 3 fisica
 
TEMA 2 FISICA AMBIENTAL UNEFM MECANICA DE LOS FLUIDOS. DAYERLING HERNANDEZ.pdf
TEMA 2 FISICA AMBIENTAL UNEFM  MECANICA DE LOS FLUIDOS. DAYERLING HERNANDEZ.pdfTEMA 2 FISICA AMBIENTAL UNEFM  MECANICA DE LOS FLUIDOS. DAYERLING HERNANDEZ.pdf
TEMA 2 FISICA AMBIENTAL UNEFM MECANICA DE LOS FLUIDOS. DAYERLING HERNANDEZ.pdf
 
Facultad de ciencias de ingenieria civil
Facultad de ciencias de ingenieria civilFacultad de ciencias de ingenieria civil
Facultad de ciencias de ingenieria civil
 
Hidrostática
HidrostáticaHidrostática
Hidrostática
 
FluidosEstatica.pptx
FluidosEstatica.pptxFluidosEstatica.pptx
FluidosEstatica.pptx
 
Principio de bernoulli aplicaciones
Principio de bernoulli aplicacionesPrincipio de bernoulli aplicaciones
Principio de bernoulli aplicaciones
 
Fluidos
FluidosFluidos
Fluidos
 
Principio de Pascal
Principio de PascalPrincipio de Pascal
Principio de Pascal
 
Semana xiii 2
Semana xiii 2Semana xiii 2
Semana xiii 2
 
Andrei esta si
Andrei esta siAndrei esta si
Andrei esta si
 
Hisdrostatica
HisdrostaticaHisdrostatica
Hisdrostatica
 
Capitulo 3 hidraulica
Capitulo 3 hidraulicaCapitulo 3 hidraulica
Capitulo 3 hidraulica
 
Hemodinamia Y Sist Nervioso
Hemodinamia Y Sist NerviosoHemodinamia Y Sist Nervioso
Hemodinamia Y Sist Nervioso
 
Hidrostática.pdf
Hidrostática.pdfHidrostática.pdf
Hidrostática.pdf
 
Hidrodinamica
HidrodinamicaHidrodinamica
Hidrodinamica
 
Andrei esta si
Andrei esta siAndrei esta si
Andrei esta si
 
Diapositivas hidrodinámica y hidrostática
Diapositivas hidrodinámica y hidrostáticaDiapositivas hidrodinámica y hidrostática
Diapositivas hidrodinámica y hidrostática
 
Diapositivas hidrodinámica y hidrostática
Diapositivas hidrodinámica y hidrostáticaDiapositivas hidrodinámica y hidrostática
Diapositivas hidrodinámica y hidrostática
 
Principio de Arquímedes.pdf
Principio de Arquímedes.pdfPrincipio de Arquímedes.pdf
Principio de Arquímedes.pdf
 
Teorias que vemos a lo largo de lagunos proyectos
Teorias que vemos a lo largo de lagunos proyectosTeorias que vemos a lo largo de lagunos proyectos
Teorias que vemos a lo largo de lagunos proyectos
 

Último

ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdffredyflores58
 
Curso intensivo de soldadura electrónica en pdf
Curso intensivo de soldadura electrónica  en pdfCurso intensivo de soldadura electrónica  en pdf
Curso intensivo de soldadura electrónica en pdfFernandaGarca788912
 
MANIOBRA Y CONTROL INNOVATIVO LOGO PLC SIEMENS
MANIOBRA Y CONTROL INNOVATIVO LOGO PLC  SIEMENSMANIOBRA Y CONTROL INNOVATIVO LOGO PLC  SIEMENS
MANIOBRA Y CONTROL INNOVATIVO LOGO PLC SIEMENSLuisLobatoingaruca
 
Linealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfLinealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfrolandolazartep
 
estadisticasII Metodo-de-la-gran-M.pdf
estadisticasII   Metodo-de-la-gran-M.pdfestadisticasII   Metodo-de-la-gran-M.pdf
estadisticasII Metodo-de-la-gran-M.pdfFlorenciopeaortiz
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacajeremiasnifla
 
CICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaCICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaSHERELYNSAMANTHAPALO1
 
Tiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IITiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IILauraFernandaValdovi
 
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kVEl proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kVSebastianPaez47
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSaulSantiago25
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALKATHIAMILAGRITOSSANC
 
Calavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfCalavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfyoseka196
 
Unidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptxUnidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptxEverardoRuiz8
 
Residente de obra y sus funciones que realiza .pdf
Residente de obra y sus funciones que realiza  .pdfResidente de obra y sus funciones que realiza  .pdf
Residente de obra y sus funciones que realiza .pdfevin1703e
 
Magnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMagnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMarceloQuisbert6
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaXjoseantonio01jossed
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfKEVINYOICIAQUINOSORI
 
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxPPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxSergioGJimenezMorean
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPJosLuisFrancoCaldern
 
SSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SSTSSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SSTGestorManpower
 

Último (20)

ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
 
Curso intensivo de soldadura electrónica en pdf
Curso intensivo de soldadura electrónica  en pdfCurso intensivo de soldadura electrónica  en pdf
Curso intensivo de soldadura electrónica en pdf
 
MANIOBRA Y CONTROL INNOVATIVO LOGO PLC SIEMENS
MANIOBRA Y CONTROL INNOVATIVO LOGO PLC  SIEMENSMANIOBRA Y CONTROL INNOVATIVO LOGO PLC  SIEMENS
MANIOBRA Y CONTROL INNOVATIVO LOGO PLC SIEMENS
 
Linealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfLinealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdf
 
estadisticasII Metodo-de-la-gran-M.pdf
estadisticasII   Metodo-de-la-gran-M.pdfestadisticasII   Metodo-de-la-gran-M.pdf
estadisticasII Metodo-de-la-gran-M.pdf
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpaca
 
CICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaCICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresa
 
Tiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IITiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo II
 
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kVEl proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusibles
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
 
Calavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfCalavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdf
 
Unidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptxUnidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptx
 
Residente de obra y sus funciones que realiza .pdf
Residente de obra y sus funciones que realiza  .pdfResidente de obra y sus funciones que realiza  .pdf
Residente de obra y sus funciones que realiza .pdf
 
Magnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMagnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principios
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdf
 
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxPPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
 
SSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SSTSSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SST
 

Presión Hidráulica

  • 1. Principios Físicos en la Hidráulica  Presión hidrostática Un fluido pesa y ejerce presión sobre las paredes del fondo del recipiente que lo contiene y sobre la superficie de cualquier objeto sumergido en él. Esta presión, llamada presión hidrostática, provoca, en fluidos en reposo, una fuerza perpendicular a las paredes del recipiente o a la superficie del objeto sumergido sin importar la orientación que adopten las caras. Si el líquido fluyera, las fuerzas resultantes de las presiones ya no serían necesariamente perpendiculares a las superficies. Esta presión depende de la densidad del líquido en cuestión y de la altura del líquido por encima del punto en que se mida. Se calcula mediante la siguiente expresión: Donde, usando unidades del SI,  es la presión hidrostática (en pascales);  es la densidad del líquido (en kilogramos partido metro cúbico);  es la aceleración de la gravedad (en metros partido segundo al cuadrado);  es la altura del fluido (en metros). Un líquido en equilibrio ejerce fuerzas perpendiculares sobre cualquier superficie sumergida en su interior  es la Presión atmosférica (en pascales)  Principio de Pascal En física, el principio de Pascal o ley de Pascal, es una ley enunciada por el físico y matemático francés Blaise Pascal (1623–1662) que se resume en la frase: la presión ejercida por un fluido incompresible y en equilibrio dentro de un recipiente de paredes indeformables se transmite con igual intensidad en todas las direcciones y en todos los puntos del fluido.1 El principio de Pascal puede comprobarse utilizando una esfera hueca, perforada en diferentes lugares y provista de un émbolo. Al llenar la esfera con agua y ejercer presión sobre ella mediante el émbolo, se observa que el agua sale por todos los agujeros con la misma velocidad y por lo tanto con la misma presión.
  • 2. También podemos ver aplicaciones del principio de Pascal en las prensas hidráulicas, en los elevadores hidráulicos y en los frenos hidráulicos.  Prensa hidráulica La prensa hidráulica es una máquina compleja que permite amplificar la intensidad de las fuerzas y constituye el fundamento de elevadores, prensas hidráulicas, frenos y muchos otros dispositivos hidráulicos de maquinaria industrial. La prensa hidráulica constituye la aplicación fundamental del principio de Pascal y también un dispositivo que permite entender mejor su significado. Consiste, en esencia, en dos cilindros de diferente sección comunicados entre sí, y cuyo interior está completamente lleno de un líquido que puede ser agua o aceite. Dos émbolos de secciones diferentes se ajustan, respectivamente, en cada uno de los dos cilindros, de modo que estén en contacto con el líquido. Cuando sobre el émbolo de menor sección S1 se ejerce una fuerza F1 la presión p1 que se origina en el líquido en contacto con él se transmite íntegramente y de forma casi instantánea a todo el resto del líquido. Por el principio de Pascal esta presión será igual a la presión p2 que ejerce el fluido en la sección S2, es decir: con lo que las fuerzas serán, siendo, S1 < S2 : y por tanto, la relación entre la fuerza resultante en el émbolo grande cuando se aplica una fuerza menor en el émbolo pequeño será tanto mayor cuanto mayor sea la relación entre las secciones:
  • 3.  Principio de Arquímedes El principio de Arquímedes es un principio físico que afirma que: «Un cuerpo total o parcialmente sumergido en un fluido en reposo, recibe un empuje de abajo hacia arriba igual al peso del volumen del fluido que desaloja». Esta fuerza1 recibe el nombre de empuje hidrostático o de Arquímedes, y se mide en newton (en el SI). El principio de Arquímedes se formula así: o bien Donde E es el empuje , ρf es la densidad del fluido, V el «volumen de fluido desplazado» por algún cuerpo sumergido parcial o totalmente en el mismo, g la aceleración de la gravedad y m la masa, de este modo, el empuje depende de la densidad del fluido, del volumen del cuerpo y de la gravedad existente en ese lugar. El empuje (en condiciones normalesy descrito de modo simplificado3 ) actúa verticalmente hacia arriba y está aplicado en el centro de gravedad del fluido desalojado por el cuerpo; este punto recibe el nombre de centro de carena.
  • 4. P1=F1/A 1 P2=F2/A 2 1 2 y2 v1 y1 v 2  Ecuación de Continuidad La parte sombreada de la izquierda (zona 1) representa un elemento de volumen de líquido que fluye hacia el interior del tubo con una velocidad vl. El área de la sección recta del tubo en esta zona es Al. El volumen de líquido que entra en el tubo en el tiempo Dt es DV = Al . vl . Dt Como estamos admitiendo que el fluido es incompresible, debe salir del tubo en la zona 2 un volumen igual de fluido. Si la velocidad del fluido en este punto es v2 y el área correspondiente de la sección recta vale A2, el volumen es DV=A2 . v2 . Dt. Como estos volúmenes deben ser iguales, se tiene A1 . v1 . Dt. = A2 . v2 . Dt., y por tanto Ecuación de continuidad. El producto Q = Av es una magnitud denominada flujo de volumen Q, gasto o caudal. Las dimensiones de Q son las de volumen/tiempo (p.e. litros por minuto) En el flujo estacionario de un fluido incompresible, el caudal es el mismo en todos los puntos de fluido. A1 . v1 = A2 . v2
  • 5.  Principio de Bernoulli Esquema del Principio de Bernoulli. El principio de Bernoulli, también denominado ecuación de Bernoulli o Trinomio de Bernoulli, describe el comportamiento de un flujo laminar moviéndose a lo largo de una corriente de agua. Fue expuesto por Daniel Bernoulli en su obra Hidrodinámica (1738) y expresa que en un fluido ideal (sin viscosidad ni rozamiento) en régimen de circulación por un conducto cerrado, la energía que posee el fluido permanece constante a lo largo de su recorrido. La energía de un fluido en cualquier momento consta de tres componentes: 1. Cinética: es la energía debida a la velocidad que posea el fluido. 2. Potencial gravitacional: es la energía debido a la altitud que un fluido posea. 3. Energía de flujo: es la energía que un fluido contiene debido a la presión que posee. La siguiente ecuación conocida como "Ecuación de Bernoulli" (Trinomio de Bernoulli) consta de estos mismos términos. dónde:  = velocidad del fluido en la sección considerada.  = densidad del fluido.  = presión a lo largo de la línea de corriente.  = aceleración gravitatoria  = altura en la dirección de la gravedad desde una cota de referencia. Para aplicar la ecuación se deben realizar los siguientes supuestos:  Viscosidad (fricción interna) = 0 Es decir, se considera que la línea de corriente sobre la cual se aplica se encuentra en una zona 'no viscosa' del fluido.
  • 6.  Caudal constante  Flujo incompresible, donde ρ es constante.  La ecuación se aplica a lo largo de una línea de corriente o en un flujo irrotacional Aunque el nombre de la ecuación se debe a Bernoulli, la forma arriba expuesta fue presentada en primer lugar por Leonhard Euler. Un ejemplo de aplicación del principio lo encontramos en el flujo de agua en tubería.