SlideShare una empresa de Scribd logo
1 de 59
Introducción La resistencia de materiales o mecánica de materiales permite reunir las teorías sobre los cuerpos sólidos deformables, en contraste con la teoría matemática de la elasticidad o la teoría de los sólidos perfectamente plásticos.  Desde la teoría de las placashasta los cascarones.
Ya que permite comprender los problemas prácticos a través de hipótesis simplificadoras que coadyuvan a una solución razonable de los problemas básicos. Y es así como esta disciplina comprende métodos analíticos que facilitan determinar la resistencia, la rigidez, es decir, las características de deformación y la estabilidad de los diversos miembros (por ejemplo: Vigas, columnas y zapatas) soportadores de cargas en un edificio.
Puede decirse que la mecánica de sólidos es un área disciplinaria que de alguna forma fue de gran utilidad en algunas de las civilizaciones antiguas. Aunque con una mejor precisión se inicia con los trabajos de Galileo Galilei (1580-1650) a principios del siglo XVII. Antes de las investigaciones que realizará Galileo acerca del comportamiento de los cuerpos sólidos bajo la acción de cargas, los constructores seguían reglas rudimentarias y empíricas.
Por lo tanto, es importante mencionar que Galileo (1638) fue el primero que intentó explicar, con una base racional (científica), el comportamiento de algunos miembros o elementos estructurales sometidos a cargas (viga en voladizo). Estudió miembros en tensión y en compresión, y en particular las vigas que se empleaban en la construcción de cascos para embarcaciones de la flota italiana.
Desde luego, ha habido grandes progresos desde entonces, pero no hay que olvidar lo mucho que se debe a los investigadores, en particular, a hombres tan eminentes como Robert Hooke (1635-1703), James Bernoulli (1654-1705), Johann Bernoulli (1667-1748), Daniel Bernoulli (1700-1782), Charles A. Coulomb (1736-1806), Poisson, Louis Marie Henri Navier (1785-1836) este último presentó un trabajo sobre la resistencia y deflexión de las vigas en cualquier sección transversal, así también como en arcos, columnas bajo cargas excéntricas, puentes de suspensión y otros problemas técnicos.
Barre de Saint Venant (1797-1886), Clapeyron (1799-1864) presentó su teorema de los tres momentos para el análisis de vigas continuas,  Cauchy, Leonhard Euler (1707-1783) trabajó en el problema de la determinación de las curvas elásticas de vigas y columnas, y así logro que la curva elástica que causaba el trabajo interno total fuera mínima así de esta forma Euler amplió el método de mínimo trabajo y contribuyó sobre el pandeo de las columnas, todos estos personajes llevaron a cabo su obra a principios del siglo XIX y dejaron huella indeleble en la ciencia de las estructuras.
Por lo tanto, a Naviery Coulomb se les considera como los fundadores de la ciencia de la mecánica de materiales, ya que en 1776 Coulomb publicó el primer análisis  correcto de los esfuerzos de las fibras en una viga flexionada, con sección transversal rectangular. Coulomb supuso que la ley de Hooke se aplicaba a las fibras, y lógicamente colocaba la superficie neutra en la posición correcta, desarrolló el equilibrio de fuerzas en la sección transversal con fuerzas internas, y calculó correctamente  los esfuerzos.
La mecánica de materiales interviene ampliamente en todas las ramas de la ingeniería, donde tiene un gran número de importantes aplicaciones. Sus métodos los utilizan los ingenieros civiles que diseñan y construyen puentes y edificios, o bien, estructuras costeras y submarinas, los ingenieros de minas y de obras arquitectónicas, a quienes interesan también las estructuras, los ingenieros en Energía Nuclear que proyectan los componentes de un reactor, los ingenieros mecánicos y químicos, que necesitan los procedimientos de esta ciencia para diseñar maquinaria y equipo, como recipientes de presión; los metalúrgicos o ingenieros en metalurgia, que requieren los conceptos fundamentales de la mecánica de los sólidos deformables para saber cómo mejorar los materiales existentes y, en fin, los ingenieros electricistas o de construcciones eléctricas, que requieren los métodos de esta materia por la importancia de los aspectos de resistencia mecánica en muchas partes de máquinas y equipos eléctricos.
De acuerdo con lo anterior se puede mencionar que la mecánica de sólidos deformables es una ciencia en donde  se combina la experimentación y los postulados newtonianos de la mecánica analítica (1687). De esta última se toma la rama denominada Estática, materia con la cual se supone que antes de iniciar en la mecánica de sólidos debe de comprenderse y tener las nociones fundamentales.
El principal interés en la mecánica de sólidos es la investigación de la resistencia interna y la deformación de un cuerpo sólido sometido a la acción de cargas. Esto requiere un estudio de la naturaleza de las fuerzas que se originan dentro de un cuerpo para equilibrar el efecto  de las fuerzas aplicadas exteriormente (análisis estructural).
Las ecuaciones de la estática permiten determinar la fuerza axial, la fuerza cortante y el momento flexionante en una sección transversal determinada de un elemento estructural.  Las estructuras planas son las más comunes y principalmente las vigas que pueden ser rectas o curvas, pero la mayor parte de ellas son rectas, ya que son más frecuentes en la práctica. Los miembros principales que soportan los pisos de los edificios son vigas y, asimismo, el eje de un automóvil es una viga.
El análisis de miembros o elementos cargados empezará con la determinación de las reacciones. Cuando todas las fuerzas están aplicadas en un plano se dispone de tres ecuaciones de equilibrio estático para tal fin. Al aplicar las ecuaciones de equilibrio, como la deformación de las vigas es pequeña puede ser no considerada. Tratándose de vigas estables, la pequeña deformación que tiene lugar cambia imperceptiblemente los puntos de aplicación de las fuerzas.
CHARLES WHITNEY (1937) Todas las teorías que se elaboran sobre el estado de ruptura del concreto, tienen que depender en mayor o menor grado de los resultados del laboratorio, porque las curvas de esfuerzo-deformación de ese material no son semejantes para concretos con diferentes fatigas de ruptura. Además otras causas como la velocidad de aplicación de la carga y la velocidad de la deformación, modifican también la resistencia última como la forma de las curvas esfuerzo deformación.
Objetivo general ,[object Object],Objetivo específico ,[object Object]
Evaluar los porcentajes de acero de refuerzo más recomendables.
Obtener que correlaciones existe entre el área de acero de refuerzo, el block de esfuerzos y el momento resistente último.,[object Object]
Formulas empleadas ɣ = Ƥ. Fy/F´c   Índice de resistencia en la viga rectangular reforzada (unidimensional). Ƥ = ɣF´c/Fy   Porcentaje de acero de refuerzo en la viga. ŋ = Fy/Fc                   cociente del esfuerzo de fluencia y del esfuerzo a compresión del concreto (unidimensional). Ƙ = 1.1765. Ƥ.D. ŋ     Altura del block de esfuerzos en la viga (cm) T = As.Fy  Fuerza de tensión (kg) C = 0.85.F´c. Ƙ.B        Fuerza de compresión (kg) Mr = T o C (D – 0.5 Ƙ)     Momento último resistente en la viga de sección rectangular de concreto reforzado  (kg-cm, kg-m, Ton-m) ØMr = Ø[T o C (D – 0.5 Ƙ)]      Momento último resistente factorizado en la viga de sección rectangular de concreto reforzado;  Ø = 0.90 (kg-cm, kg-m, Ton-m).
PORACE	 	Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado	 Válidos	.004630	1	5.0	5.0	5.0	 	.005025	1	5.0	5.0	10.0	 	.005420	1	5.0	5.0	15.0	 	.005815	1	5.0	5.0	20.0	 	.006210	1	5.0	5.0	25.0	 	.006605	1	5.0	5.0	30.0	 	.007000	1	5.0	5.0	35.0	 	.007395	1	5.0	5.0	40.0	 	.007790	1	5.0	5.0	45.0	 .008185	1	5.0	5.0	50.0	 	.008580	1	5.0	5.0	55.0	 	.008975	1	5.0	5.0	60.0	 	.009370	1	5.0	5.0	65.0	 	.009765	1	5.0	5.0	70.0	 	.010160	1	5.0	5.0	75.0	 	.010556	1	5.0	5.0	80.0	 	.010950	1	5.0	5.0	85.0	 	.011345	1	5.0	5.0	90.0	 	.011740	1	5.0	5.0	95.0	 	.012135	1	5.0	5.0	100.0	 	Total	20	100.0	100.0
INDRES	 Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado	 Válidos	.097230	1	5.0	5.0	5.0	 	.105525	1	5.0	5.0	10.0	 	.113820	1	5.0	5.0	15.0	 	.122115	1	5.0	5.0	20.0	 .130410	1	5.0	5.0	25.0	 	.138705	1	5.0	5.0	30.0	 	.147000	1	5.0	5.0	35.0	 	.155295	1	5.0	5.0	40.0	 	.163590	1	5.0	5.0	45.0	 	.171885	1	5.0	5.0	50.0	 	.180180	1	5.0	5.0	55.0	 	.188475	1	5.0	5.0	60.0	 	.196770	1	5.0	5.0	65.0	 	.205065	1	5.0	5.0	70.0	 	.213360	1	5.0	5.0	75.0	 	.221666	1	5.0	5.0	80.0	 	.229950	1	5.0	5.0	85.0	 	.238245	1	5.0	5.0	90.0	 	.246540	1	5.0	5.0	95.0	 	.254835	1	5.0	5.0	100.0	 	Total	20	100.0	100.0
CONCLUSIONES EN EL PRESENTE TRABAJO DE INVESTIGACIÓN, SE ENCONTRÓ QUE LA VARIABLE DE MAYOR SIGNIFICANCIA  FUE EL ESFUERZO DE FLUENCIA DEL ACERO DE REFUERZO (Fy). YA QUE EL VALOR DEL ESFUERZO DE FLUENCIA INFLUYE DE MANERA SIGNIFICATIVA EN EL MOMENTO ÚLTIMO RESISTENTE, Y ASI MISMO EN EL AREA DE ACERO.
SE LOGRÓ SIMPLIFICAR UNA ECUACION, LA CUAL PERMITE CALCULAR EL VALOR DE LA  ALTURA DEL BLOCK DE ESFUERZOS, QUEDANDO DE LA MANERA SIGUIENTE: K =0.2471.D ; EN DONDE EL VALOR DE 0.2471 ES UNA CONSTANTE, Y LA VARIABLE “D”, ES EL VALOR DEL PERANTE EFECTIVO EN CM. EL VALOR ANTERIOR, ES DECIR, LA ALTURA DEL BLOCK DE ESFUERZOS EN CM, SE REQUIERE PARA CALCULAR EL VALOR DEL MOMENTO ÚLTIMO RESISTENTE, COMO SE INDICA A CONTINUACION: ØMr = Ø[T o C (D – 0.5 Ƙ)] , EN DONDE T = As.Fy Y C = 0.85F´c.K.B
SE DEMOSTRÓ A TRAVES DE LA PRESENTE INVESTIGACION QUE, EL ACERO DENOMINADO Q42 (4200 KG/CM2), SE HA ESTADO UTILIZANDO EN MUCHAS PARTES DEL MUNDO EN LA CONSTRUCCION DESDE HACE APROXIMADAMENTE UNOS 60 AÑOS. SE COMPROBÓ A TRAVES DE LA PRESENTE INVESTIGACION QUE, EL ACERO DENOMINADO Q100 (10000 KG/CM2), PUEDE SER UTILIZADO EN LA CONSTRUCCION Y ASI MEJORAR LA RESISTENCIA ÚLTIMA EN ELEMENTOS DE CONCRETO REFORZADO.

Más contenido relacionado

La actualidad más candente

Columnas esbeltas sometidas a flexo compresión. prescripciones reglamentarias...
Columnas esbeltas sometidas a flexo compresión. prescripciones reglamentarias...Columnas esbeltas sometidas a flexo compresión. prescripciones reglamentarias...
Columnas esbeltas sometidas a flexo compresión. prescripciones reglamentarias...Christian Edinson Murga Tirado
 
Introducción a la resistencia materiales
Introducción a la  resistencia materialesIntroducción a la  resistencia materiales
Introducción a la resistencia materialesJuan Mayhua Galindo
 
cap I, II Y III
cap I, II Y IIIcap I, II Y III
cap I, II Y IIIfexmarcano
 
Resumen diseño por capacidad
Resumen diseño por capacidadResumen diseño por capacidad
Resumen diseño por capacidadnelsonrsalas
 
PROYECTO DE ESTÁTICA-REACCIONES EN UNA VIGA
PROYECTO DE ESTÁTICA-REACCIONES EN UNA VIGAPROYECTO DE ESTÁTICA-REACCIONES EN UNA VIGA
PROYECTO DE ESTÁTICA-REACCIONES EN UNA VIGARICHARD CULQUE
 
Temas de ormigon armado
Temas de ormigon armadoTemas de ormigon armado
Temas de ormigon armadogrupkarlos
 
ESFUERZOS EN VIGAS
ESFUERZOS EN VIGAS ESFUERZOS EN VIGAS
ESFUERZOS EN VIGAS alex26mq
 
estructuración y predimensionamiento
estructuración y predimensionamientoestructuración y predimensionamiento
estructuración y predimensionamientopatrick_amb
 
Mapa mental y conceptual (fundamentos de estructuras)
Mapa mental y conceptual (fundamentos de estructuras)Mapa mental y conceptual (fundamentos de estructuras)
Mapa mental y conceptual (fundamentos de estructuras)SofiaZambrano13
 

La actualidad más candente (15)

Columnas esbeltas sometidas a flexo compresión. prescripciones reglamentarias...
Columnas esbeltas sometidas a flexo compresión. prescripciones reglamentarias...Columnas esbeltas sometidas a flexo compresión. prescripciones reglamentarias...
Columnas esbeltas sometidas a flexo compresión. prescripciones reglamentarias...
 
Introducción a la resistencia materiales
Introducción a la  resistencia materialesIntroducción a la  resistencia materiales
Introducción a la resistencia materiales
 
cap I, II Y III
cap I, II Y IIIcap I, II Y III
cap I, II Y III
 
Resistencia tema13
Resistencia tema13Resistencia tema13
Resistencia tema13
 
Resumen diseño por capacidad
Resumen diseño por capacidadResumen diseño por capacidad
Resumen diseño por capacidad
 
Columna3
Columna3Columna3
Columna3
 
Diseno a torsion_segun_la_norma_nrs98
Diseno a torsion_segun_la_norma_nrs98Diseno a torsion_segun_la_norma_nrs98
Diseno a torsion_segun_la_norma_nrs98
 
PROYECTO DE ESTÁTICA-REACCIONES EN UNA VIGA
PROYECTO DE ESTÁTICA-REACCIONES EN UNA VIGAPROYECTO DE ESTÁTICA-REACCIONES EN UNA VIGA
PROYECTO DE ESTÁTICA-REACCIONES EN UNA VIGA
 
Temas de ormigon armado
Temas de ormigon armadoTemas de ormigon armado
Temas de ormigon armado
 
Acero en flexo compresion
Acero en flexo compresionAcero en flexo compresion
Acero en flexo compresion
 
ESFUERZOS EN VIGAS
ESFUERZOS EN VIGAS ESFUERZOS EN VIGAS
ESFUERZOS EN VIGAS
 
Elemento estructural
Elemento estructuralElemento estructural
Elemento estructural
 
estructuración y predimensionamiento
estructuración y predimensionamientoestructuración y predimensionamiento
estructuración y predimensionamiento
 
Rigidez tipos de estructuras
Rigidez tipos de estructurasRigidez tipos de estructuras
Rigidez tipos de estructuras
 
Mapa mental y conceptual (fundamentos de estructuras)
Mapa mental y conceptual (fundamentos de estructuras)Mapa mental y conceptual (fundamentos de estructuras)
Mapa mental y conceptual (fundamentos de estructuras)
 

Similar a Resistencia de materiales

Concreto reforzado ruiz
Concreto reforzado ruizConcreto reforzado ruiz
Concreto reforzado ruizkhiny
 
Esfuerzo y Deformacion
Esfuerzo y DeformacionEsfuerzo y Deformacion
Esfuerzo y Deformacionwilmerzabala
 
Torsion y flexion en vigas
Torsion y flexion  en vigasTorsion y flexion  en vigas
Torsion y flexion en vigasjessalver
 
Trabajo de resistencia de materiales
Trabajo de resistencia de materialesTrabajo de resistencia de materiales
Trabajo de resistencia de materialesfernando casallo
 
Diseño y construcción de un puente de tallarines
Diseño y construcción de un puente de tallarinesDiseño y construcción de un puente de tallarines
Diseño y construcción de un puente de tallarinesBRYANJAVIERMOROMENAC
 
Investigaciones avanzadas
Investigaciones avanzadasInvestigaciones avanzadas
Investigaciones avanzadasiific
 
0.historia analisis estructural
0.historia analisis estructural0.historia analisis estructural
0.historia analisis estructuralriclamadrid
 
D.E.D.A. TEMA 5 DISEÑO DE ELEMENTOS A FLEXION-VIGAS.pptx
D.E.D.A. TEMA 5 DISEÑO DE ELEMENTOS A FLEXION-VIGAS.pptxD.E.D.A. TEMA 5 DISEÑO DE ELEMENTOS A FLEXION-VIGAS.pptx
D.E.D.A. TEMA 5 DISEÑO DE ELEMENTOS A FLEXION-VIGAS.pptxeliasanchezr
 
Fractura Fragil Mecanica De Materiales
Fractura Fragil   Mecanica De MaterialesFractura Fragil   Mecanica De Materiales
Fractura Fragil Mecanica De Materialesjekada
 
ESFUERZOS EN RECIPIENTES DE PAREDES DELGADAS (TUBULARES)
ESFUERZOS EN RECIPIENTES DE PAREDES DELGADAS (TUBULARES)ESFUERZOS EN RECIPIENTES DE PAREDES DELGADAS (TUBULARES)
ESFUERZOS EN RECIPIENTES DE PAREDES DELGADAS (TUBULARES)Nestor Rafael
 
Teoria y practica_de_resistencia_de_materiales-_vigas
Teoria y practica_de_resistencia_de_materiales-_vigasTeoria y practica_de_resistencia_de_materiales-_vigas
Teoria y practica_de_resistencia_de_materiales-_vigasMely Mely
 
CONCEPTOS BASICOS DE INGENIERIA ESTRUCTURAL.pdf
CONCEPTOS BASICOS DE INGENIERIA ESTRUCTURAL.pdfCONCEPTOS BASICOS DE INGENIERIA ESTRUCTURAL.pdf
CONCEPTOS BASICOS DE INGENIERIA ESTRUCTURAL.pdfneilari
 
Analisis de esfuerzos_normales
Analisis de esfuerzos_normalesAnalisis de esfuerzos_normales
Analisis de esfuerzos_normalescarloslopez1495
 
ESFUERZO-DEFORMACION SLIDE SHARE
ESFUERZO-DEFORMACION SLIDE SHAREESFUERZO-DEFORMACION SLIDE SHARE
ESFUERZO-DEFORMACION SLIDE SHAREguillem21
 

Similar a Resistencia de materiales (20)

Concreto reforzado ruiz
Concreto reforzado ruizConcreto reforzado ruiz
Concreto reforzado ruiz
 
Esfuerzo y Deformacion
Esfuerzo y DeformacionEsfuerzo y Deformacion
Esfuerzo y Deformacion
 
06CAPITULO5.pdf
06CAPITULO5.pdf06CAPITULO5.pdf
06CAPITULO5.pdf
 
Torsion y flexion en vigas
Torsion y flexion  en vigasTorsion y flexion  en vigas
Torsion y flexion en vigas
 
Trabajo de resistencia de materiales
Trabajo de resistencia de materialesTrabajo de resistencia de materiales
Trabajo de resistencia de materiales
 
Fuerzas internas en vigas
Fuerzas internas en vigasFuerzas internas en vigas
Fuerzas internas en vigas
 
Diseño y construcción de un puente de tallarines
Diseño y construcción de un puente de tallarinesDiseño y construcción de un puente de tallarines
Diseño y construcción de un puente de tallarines
 
Investigaciones avanzadas
Investigaciones avanzadasInvestigaciones avanzadas
Investigaciones avanzadas
 
Ensayo estructuras
Ensayo estructurasEnsayo estructuras
Ensayo estructuras
 
0.historia analisis estructural
0.historia analisis estructural0.historia analisis estructural
0.historia analisis estructural
 
D.E.D.A. TEMA 5 DISEÑO DE ELEMENTOS A FLEXION-VIGAS.pptx
D.E.D.A. TEMA 5 DISEÑO DE ELEMENTOS A FLEXION-VIGAS.pptxD.E.D.A. TEMA 5 DISEÑO DE ELEMENTOS A FLEXION-VIGAS.pptx
D.E.D.A. TEMA 5 DISEÑO DE ELEMENTOS A FLEXION-VIGAS.pptx
 
Fractura Fragil Mecanica De Materiales
Fractura Fragil   Mecanica De MaterialesFractura Fragil   Mecanica De Materiales
Fractura Fragil Mecanica De Materiales
 
ESFUERZOS EN RECIPIENTES DE PAREDES DELGADAS (TUBULARES)
ESFUERZOS EN RECIPIENTES DE PAREDES DELGADAS (TUBULARES)ESFUERZOS EN RECIPIENTES DE PAREDES DELGADAS (TUBULARES)
ESFUERZOS EN RECIPIENTES DE PAREDES DELGADAS (TUBULARES)
 
Teoria y practica_de_resistencia_de_materiales-_vigas
Teoria y practica_de_resistencia_de_materiales-_vigasTeoria y practica_de_resistencia_de_materiales-_vigas
Teoria y practica_de_resistencia_de_materiales-_vigas
 
Tema 8 teoria y calculo de estructuras
Tema 8 teoria y calculo de estructurasTema 8 teoria y calculo de estructuras
Tema 8 teoria y calculo de estructuras
 
Miembros_en_Flexion.pdf
Miembros_en_Flexion.pdfMiembros_en_Flexion.pdf
Miembros_en_Flexion.pdf
 
2.4 Flexión.doc
2.4 Flexión.doc2.4 Flexión.doc
2.4 Flexión.doc
 
CONCEPTOS BASICOS DE INGENIERIA ESTRUCTURAL.pdf
CONCEPTOS BASICOS DE INGENIERIA ESTRUCTURAL.pdfCONCEPTOS BASICOS DE INGENIERIA ESTRUCTURAL.pdf
CONCEPTOS BASICOS DE INGENIERIA ESTRUCTURAL.pdf
 
Analisis de esfuerzos_normales
Analisis de esfuerzos_normalesAnalisis de esfuerzos_normales
Analisis de esfuerzos_normales
 
ESFUERZO-DEFORMACION SLIDE SHARE
ESFUERZO-DEFORMACION SLIDE SHAREESFUERZO-DEFORMACION SLIDE SHARE
ESFUERZO-DEFORMACION SLIDE SHARE
 

Más de fhynee

Cada momento es único, aprendamos a vivir en el aqui y en el ahora
Cada momento es único, aprendamos a vivir en el aqui y en el ahoraCada momento es único, aprendamos a vivir en el aqui y en el ahora
Cada momento es único, aprendamos a vivir en el aqui y en el ahorafhynee
 
Los valores y la calidad de vida
Los valores y la calidad de vidaLos valores y la calidad de vida
Los valores y la calidad de vidafhynee
 
Los valores y calidad de vida 1998
Los valores y calidad de vida 1998Los valores y calidad de vida 1998
Los valores y calidad de vida 1998fhynee
 
Comprension lectora 2000 euler r
Comprension lectora 2000 euler rComprension lectora 2000 euler r
Comprension lectora 2000 euler rfhynee
 
El viaje al poder de la conciencia
El viaje al poder de la concienciaEl viaje al poder de la conciencia
El viaje al poder de la concienciafhynee
 
Sistema educativo mexicano y la eficiencia terminal
Sistema educativo mexicano y la eficiencia terminalSistema educativo mexicano y la eficiencia terminal
Sistema educativo mexicano y la eficiencia terminalfhynee
 
La educacion en mexico y la eficiencia terminal
La educacion en mexico y la eficiencia terminalLa educacion en mexico y la eficiencia terminal
La educacion en mexico y la eficiencia terminalfhynee
 
El pensamiento y la calidad de vida
El pensamiento y la calidad de vidaEl pensamiento y la calidad de vida
El pensamiento y la calidad de vidafhynee
 
Emocion y actitud
Emocion y actitudEmocion y actitud
Emocion y actitudfhynee
 
Aprovechamiento escolar y el dialogo interior
Aprovechamiento escolar y el dialogo interiorAprovechamiento escolar y el dialogo interior
Aprovechamiento escolar y el dialogo interiorfhynee
 
Cientificos que cambiaron el rumbo de la humanidad
Cientificos que cambiaron el rumbo de la humanidadCientificos que cambiaron el rumbo de la humanidad
Cientificos que cambiaron el rumbo de la humanidadfhynee
 
Las condiciones sociales y la educacion en mexico
Las condiciones sociales y la educacion en mexicoLas condiciones sociales y la educacion en mexico
Las condiciones sociales y la educacion en mexicofhynee
 
Mente humana y mecanismos
Mente humana y mecanismosMente humana y mecanismos
Mente humana y mecanismosfhynee
 
El aprendizaje y el conocimiento
El aprendizaje y el conocimientoEl aprendizaje y el conocimiento
El aprendizaje y el conocimientofhynee
 
Pensamiento lógico
Pensamiento lógicoPensamiento lógico
Pensamiento lógicofhynee
 
Leyes del pensamiento logico
Leyes del pensamiento logicoLeyes del pensamiento logico
Leyes del pensamiento logicofhynee
 
Procesos del pensamiento y su evolución
Procesos del pensamiento y su evoluciónProcesos del pensamiento y su evolución
Procesos del pensamiento y su evoluciónfhynee
 
La mente humana y su relacion con el cuerpo y las enfermedades
La mente humana y su relacion con el cuerpo y las enfermedadesLa mente humana y su relacion con el cuerpo y las enfermedades
La mente humana y su relacion con el cuerpo y las enfermedadesfhynee
 
La psicologia y sus aplicaciones
La psicologia y sus aplicacionesLa psicologia y sus aplicaciones
La psicologia y sus aplicacionesfhynee
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadfhynee
 

Más de fhynee (20)

Cada momento es único, aprendamos a vivir en el aqui y en el ahora
Cada momento es único, aprendamos a vivir en el aqui y en el ahoraCada momento es único, aprendamos a vivir en el aqui y en el ahora
Cada momento es único, aprendamos a vivir en el aqui y en el ahora
 
Los valores y la calidad de vida
Los valores y la calidad de vidaLos valores y la calidad de vida
Los valores y la calidad de vida
 
Los valores y calidad de vida 1998
Los valores y calidad de vida 1998Los valores y calidad de vida 1998
Los valores y calidad de vida 1998
 
Comprension lectora 2000 euler r
Comprension lectora 2000 euler rComprension lectora 2000 euler r
Comprension lectora 2000 euler r
 
El viaje al poder de la conciencia
El viaje al poder de la concienciaEl viaje al poder de la conciencia
El viaje al poder de la conciencia
 
Sistema educativo mexicano y la eficiencia terminal
Sistema educativo mexicano y la eficiencia terminalSistema educativo mexicano y la eficiencia terminal
Sistema educativo mexicano y la eficiencia terminal
 
La educacion en mexico y la eficiencia terminal
La educacion en mexico y la eficiencia terminalLa educacion en mexico y la eficiencia terminal
La educacion en mexico y la eficiencia terminal
 
El pensamiento y la calidad de vida
El pensamiento y la calidad de vidaEl pensamiento y la calidad de vida
El pensamiento y la calidad de vida
 
Emocion y actitud
Emocion y actitudEmocion y actitud
Emocion y actitud
 
Aprovechamiento escolar y el dialogo interior
Aprovechamiento escolar y el dialogo interiorAprovechamiento escolar y el dialogo interior
Aprovechamiento escolar y el dialogo interior
 
Cientificos que cambiaron el rumbo de la humanidad
Cientificos que cambiaron el rumbo de la humanidadCientificos que cambiaron el rumbo de la humanidad
Cientificos que cambiaron el rumbo de la humanidad
 
Las condiciones sociales y la educacion en mexico
Las condiciones sociales y la educacion en mexicoLas condiciones sociales y la educacion en mexico
Las condiciones sociales y la educacion en mexico
 
Mente humana y mecanismos
Mente humana y mecanismosMente humana y mecanismos
Mente humana y mecanismos
 
El aprendizaje y el conocimiento
El aprendizaje y el conocimientoEl aprendizaje y el conocimiento
El aprendizaje y el conocimiento
 
Pensamiento lógico
Pensamiento lógicoPensamiento lógico
Pensamiento lógico
 
Leyes del pensamiento logico
Leyes del pensamiento logicoLeyes del pensamiento logico
Leyes del pensamiento logico
 
Procesos del pensamiento y su evolución
Procesos del pensamiento y su evoluciónProcesos del pensamiento y su evolución
Procesos del pensamiento y su evolución
 
La mente humana y su relacion con el cuerpo y las enfermedades
La mente humana y su relacion con el cuerpo y las enfermedadesLa mente humana y su relacion con el cuerpo y las enfermedades
La mente humana y su relacion con el cuerpo y las enfermedades
 
La psicologia y sus aplicaciones
La psicologia y sus aplicacionesLa psicologia y sus aplicaciones
La psicologia y sus aplicaciones
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidad
 

Último

Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dstEphaniiie
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptxFelicitasAsuncionDia
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Alejandrino Halire Ccahuana
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñotapirjackluis
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfMaritzaRetamozoVera
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxnandoapperscabanilla
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdfenelcielosiempre
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosJonathanCovena1
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfPaolaRopero2
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 

Último (20)

Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdf
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 

Resistencia de materiales

  • 1. Introducción La resistencia de materiales o mecánica de materiales permite reunir las teorías sobre los cuerpos sólidos deformables, en contraste con la teoría matemática de la elasticidad o la teoría de los sólidos perfectamente plásticos. Desde la teoría de las placashasta los cascarones.
  • 2. Ya que permite comprender los problemas prácticos a través de hipótesis simplificadoras que coadyuvan a una solución razonable de los problemas básicos. Y es así como esta disciplina comprende métodos analíticos que facilitan determinar la resistencia, la rigidez, es decir, las características de deformación y la estabilidad de los diversos miembros (por ejemplo: Vigas, columnas y zapatas) soportadores de cargas en un edificio.
  • 3. Puede decirse que la mecánica de sólidos es un área disciplinaria que de alguna forma fue de gran utilidad en algunas de las civilizaciones antiguas. Aunque con una mejor precisión se inicia con los trabajos de Galileo Galilei (1580-1650) a principios del siglo XVII. Antes de las investigaciones que realizará Galileo acerca del comportamiento de los cuerpos sólidos bajo la acción de cargas, los constructores seguían reglas rudimentarias y empíricas.
  • 4. Por lo tanto, es importante mencionar que Galileo (1638) fue el primero que intentó explicar, con una base racional (científica), el comportamiento de algunos miembros o elementos estructurales sometidos a cargas (viga en voladizo). Estudió miembros en tensión y en compresión, y en particular las vigas que se empleaban en la construcción de cascos para embarcaciones de la flota italiana.
  • 5. Desde luego, ha habido grandes progresos desde entonces, pero no hay que olvidar lo mucho que se debe a los investigadores, en particular, a hombres tan eminentes como Robert Hooke (1635-1703), James Bernoulli (1654-1705), Johann Bernoulli (1667-1748), Daniel Bernoulli (1700-1782), Charles A. Coulomb (1736-1806), Poisson, Louis Marie Henri Navier (1785-1836) este último presentó un trabajo sobre la resistencia y deflexión de las vigas en cualquier sección transversal, así también como en arcos, columnas bajo cargas excéntricas, puentes de suspensión y otros problemas técnicos.
  • 6. Barre de Saint Venant (1797-1886), Clapeyron (1799-1864) presentó su teorema de los tres momentos para el análisis de vigas continuas, Cauchy, Leonhard Euler (1707-1783) trabajó en el problema de la determinación de las curvas elásticas de vigas y columnas, y así logro que la curva elástica que causaba el trabajo interno total fuera mínima así de esta forma Euler amplió el método de mínimo trabajo y contribuyó sobre el pandeo de las columnas, todos estos personajes llevaron a cabo su obra a principios del siglo XIX y dejaron huella indeleble en la ciencia de las estructuras.
  • 7. Por lo tanto, a Naviery Coulomb se les considera como los fundadores de la ciencia de la mecánica de materiales, ya que en 1776 Coulomb publicó el primer análisis correcto de los esfuerzos de las fibras en una viga flexionada, con sección transversal rectangular. Coulomb supuso que la ley de Hooke se aplicaba a las fibras, y lógicamente colocaba la superficie neutra en la posición correcta, desarrolló el equilibrio de fuerzas en la sección transversal con fuerzas internas, y calculó correctamente los esfuerzos.
  • 8. La mecánica de materiales interviene ampliamente en todas las ramas de la ingeniería, donde tiene un gran número de importantes aplicaciones. Sus métodos los utilizan los ingenieros civiles que diseñan y construyen puentes y edificios, o bien, estructuras costeras y submarinas, los ingenieros de minas y de obras arquitectónicas, a quienes interesan también las estructuras, los ingenieros en Energía Nuclear que proyectan los componentes de un reactor, los ingenieros mecánicos y químicos, que necesitan los procedimientos de esta ciencia para diseñar maquinaria y equipo, como recipientes de presión; los metalúrgicos o ingenieros en metalurgia, que requieren los conceptos fundamentales de la mecánica de los sólidos deformables para saber cómo mejorar los materiales existentes y, en fin, los ingenieros electricistas o de construcciones eléctricas, que requieren los métodos de esta materia por la importancia de los aspectos de resistencia mecánica en muchas partes de máquinas y equipos eléctricos.
  • 9. De acuerdo con lo anterior se puede mencionar que la mecánica de sólidos deformables es una ciencia en donde se combina la experimentación y los postulados newtonianos de la mecánica analítica (1687). De esta última se toma la rama denominada Estática, materia con la cual se supone que antes de iniciar en la mecánica de sólidos debe de comprenderse y tener las nociones fundamentales.
  • 10. El principal interés en la mecánica de sólidos es la investigación de la resistencia interna y la deformación de un cuerpo sólido sometido a la acción de cargas. Esto requiere un estudio de la naturaleza de las fuerzas que se originan dentro de un cuerpo para equilibrar el efecto de las fuerzas aplicadas exteriormente (análisis estructural).
  • 11. Las ecuaciones de la estática permiten determinar la fuerza axial, la fuerza cortante y el momento flexionante en una sección transversal determinada de un elemento estructural. Las estructuras planas son las más comunes y principalmente las vigas que pueden ser rectas o curvas, pero la mayor parte de ellas son rectas, ya que son más frecuentes en la práctica. Los miembros principales que soportan los pisos de los edificios son vigas y, asimismo, el eje de un automóvil es una viga.
  • 12. El análisis de miembros o elementos cargados empezará con la determinación de las reacciones. Cuando todas las fuerzas están aplicadas en un plano se dispone de tres ecuaciones de equilibrio estático para tal fin. Al aplicar las ecuaciones de equilibrio, como la deformación de las vigas es pequeña puede ser no considerada. Tratándose de vigas estables, la pequeña deformación que tiene lugar cambia imperceptiblemente los puntos de aplicación de las fuerzas.
  • 13. CHARLES WHITNEY (1937) Todas las teorías que se elaboran sobre el estado de ruptura del concreto, tienen que depender en mayor o menor grado de los resultados del laboratorio, porque las curvas de esfuerzo-deformación de ese material no son semejantes para concretos con diferentes fatigas de ruptura. Además otras causas como la velocidad de aplicación de la carga y la velocidad de la deformación, modifican también la resistencia última como la forma de las curvas esfuerzo deformación.
  • 14.
  • 15. Evaluar los porcentajes de acero de refuerzo más recomendables.
  • 16.
  • 17. Formulas empleadas ɣ = Ƥ. Fy/F´c Índice de resistencia en la viga rectangular reforzada (unidimensional). Ƥ = ɣF´c/Fy Porcentaje de acero de refuerzo en la viga. ŋ = Fy/Fc cociente del esfuerzo de fluencia y del esfuerzo a compresión del concreto (unidimensional). Ƙ = 1.1765. Ƥ.D. ŋ Altura del block de esfuerzos en la viga (cm) T = As.Fy Fuerza de tensión (kg) C = 0.85.F´c. Ƙ.B Fuerza de compresión (kg) Mr = T o C (D – 0.5 Ƙ) Momento último resistente en la viga de sección rectangular de concreto reforzado (kg-cm, kg-m, Ton-m) ØMr = Ø[T o C (D – 0.5 Ƙ)] Momento último resistente factorizado en la viga de sección rectangular de concreto reforzado; Ø = 0.90 (kg-cm, kg-m, Ton-m).
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44. PORACE Frecuencia Porcentaje Porcentaje válido Porcentaje acumulado Válidos .004630 1 5.0 5.0 5.0 .005025 1 5.0 5.0 10.0 .005420 1 5.0 5.0 15.0 .005815 1 5.0 5.0 20.0 .006210 1 5.0 5.0 25.0 .006605 1 5.0 5.0 30.0 .007000 1 5.0 5.0 35.0 .007395 1 5.0 5.0 40.0 .007790 1 5.0 5.0 45.0 .008185 1 5.0 5.0 50.0 .008580 1 5.0 5.0 55.0 .008975 1 5.0 5.0 60.0 .009370 1 5.0 5.0 65.0 .009765 1 5.0 5.0 70.0 .010160 1 5.0 5.0 75.0 .010556 1 5.0 5.0 80.0 .010950 1 5.0 5.0 85.0 .011345 1 5.0 5.0 90.0 .011740 1 5.0 5.0 95.0 .012135 1 5.0 5.0 100.0 Total 20 100.0 100.0
  • 45.
  • 46.
  • 47. INDRES Frecuencia Porcentaje Porcentaje válido Porcentaje acumulado Válidos .097230 1 5.0 5.0 5.0 .105525 1 5.0 5.0 10.0 .113820 1 5.0 5.0 15.0 .122115 1 5.0 5.0 20.0 .130410 1 5.0 5.0 25.0 .138705 1 5.0 5.0 30.0 .147000 1 5.0 5.0 35.0 .155295 1 5.0 5.0 40.0 .163590 1 5.0 5.0 45.0 .171885 1 5.0 5.0 50.0 .180180 1 5.0 5.0 55.0 .188475 1 5.0 5.0 60.0 .196770 1 5.0 5.0 65.0 .205065 1 5.0 5.0 70.0 .213360 1 5.0 5.0 75.0 .221666 1 5.0 5.0 80.0 .229950 1 5.0 5.0 85.0 .238245 1 5.0 5.0 90.0 .246540 1 5.0 5.0 95.0 .254835 1 5.0 5.0 100.0 Total 20 100.0 100.0
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57. CONCLUSIONES EN EL PRESENTE TRABAJO DE INVESTIGACIÓN, SE ENCONTRÓ QUE LA VARIABLE DE MAYOR SIGNIFICANCIA FUE EL ESFUERZO DE FLUENCIA DEL ACERO DE REFUERZO (Fy). YA QUE EL VALOR DEL ESFUERZO DE FLUENCIA INFLUYE DE MANERA SIGNIFICATIVA EN EL MOMENTO ÚLTIMO RESISTENTE, Y ASI MISMO EN EL AREA DE ACERO.
  • 58. SE LOGRÓ SIMPLIFICAR UNA ECUACION, LA CUAL PERMITE CALCULAR EL VALOR DE LA ALTURA DEL BLOCK DE ESFUERZOS, QUEDANDO DE LA MANERA SIGUIENTE: K =0.2471.D ; EN DONDE EL VALOR DE 0.2471 ES UNA CONSTANTE, Y LA VARIABLE “D”, ES EL VALOR DEL PERANTE EFECTIVO EN CM. EL VALOR ANTERIOR, ES DECIR, LA ALTURA DEL BLOCK DE ESFUERZOS EN CM, SE REQUIERE PARA CALCULAR EL VALOR DEL MOMENTO ÚLTIMO RESISTENTE, COMO SE INDICA A CONTINUACION: ØMr = Ø[T o C (D – 0.5 Ƙ)] , EN DONDE T = As.Fy Y C = 0.85F´c.K.B
  • 59. SE DEMOSTRÓ A TRAVES DE LA PRESENTE INVESTIGACION QUE, EL ACERO DENOMINADO Q42 (4200 KG/CM2), SE HA ESTADO UTILIZANDO EN MUCHAS PARTES DEL MUNDO EN LA CONSTRUCCION DESDE HACE APROXIMADAMENTE UNOS 60 AÑOS. SE COMPROBÓ A TRAVES DE LA PRESENTE INVESTIGACION QUE, EL ACERO DENOMINADO Q100 (10000 KG/CM2), PUEDE SER UTILIZADO EN LA CONSTRUCCION Y ASI MEJORAR LA RESISTENCIA ÚLTIMA EN ELEMENTOS DE CONCRETO REFORZADO.
  • 60. RAMON RUIZ LIMON INVESTIGADOR EN CIENCIAS DE LA SALUD, CIENCIAS DE LA EDUCACION, FILOSOFIA DE LA CIENCIA E INGENIERIA ESTRUCTURAL. www.slideshare.net/khyn/slideshows www.slideshare.net/lkhume/slideshows