SlideShare una empresa de Scribd logo
1 de 13
Resumen del capítulo 1 de Guyton: Introducción a la Fisiología y la célula.
El objetivo de la fisiología es explicar los factores físicos y químicos responsables del origen,
desarrollo y progresión de la vida. La fisiología humana explica las características y
mecanismos específicos del cuerpo humano que hacen que este sea un ser vivo, esto lo
podemos comprobar gracias al estudio de sistemas de control complejos que nos permiten
funcionar como humanos.
Las células son la unidad viva básica del cuerpo, ya que estas forman órganos que tienen un
soporte intercelular. Cada una de las células va a estar especializada y por ende tendrá una
función distinta dependiendo en donde se va a alojar. Y estas tienen una capacidad de
reproducción que permite que haya mismas células con la función específica de su
progenitora.
El 60% del cuerpo humano del adulto es líquido, y este se encontrará en una solución acuosa
de iones y otras sustancias.
El líquido que se encuentra adentro de las células se le conocerá como líquido intracelular,
que es aproximadamente 2/3 del total del líquido del cuerpo humano. En cambio se lo conoce
como Liquido extracelular al líquido restante que se encuentra afuera de la célula, este líquido
se caracteriza por estar en movimiento constante por todo el cuerpo gracias al torrente
sanguíneo y puede mezclarse con la sangre y los líquidos tisulares por difusión a través de las
paredes de los capilares. También se le conoce al líquido extracelular como medio interno, ya
que ahí se encuentran circulando los nutrientes de las células. Las diferencias entre los
líquidos extracelular e intracelular son principalmente las cantidades de sustancias que tienen
ambos, ya que uno tendrá en mayor cantidad que la otra sustancia.
Homeostasis
La homeostasis se define como el mantenimiento de las condiciones casi constantes del
medio interno. La homeostasis se puede mantener gracias al movimiento de la sangre por
todo el cuerpo y también gracias al movimiento del medio interno entre los capilares
sanguíneos y los espacios intercelulares entre las células tisulares, lo que dará al
intercambio entre el líquido extracelular y el líquido intracelular. En este proceso las paredes
de los capilares se vuelven permeables (que permiten el paso del líquido) y se intercambian
los iones gracias a la difusión. El intercambio ocurre en los capilares, y se intercambia
material del líquido intersticial y del líquido intracelular. Los orígenes de los nutrientes que
circulan en el líquido extracelular, pueden venir del aparato respiratorio, del aparato
digestivo, del hígado, del aparato locomotor, entre otros más.
El sistema nervioso se encuentra compuesta de tres partes principales: La porción de
aferencia sensitiva (detectan el estímulo), el SNC (integra estímulos y los decodifica) y la
porción eferente motora (transmite estímulos). Además tenemos al sistema nervioso
autónomo que funciona independientemente de nuestra voluntad, y ayudará a regular
nuestro cuerpo en muchas formas, y una de ellas es a través de las glándulas endocrinas. Las
glándulas endocrinas son 8 y se encargan de secretar hormonas, estas sustancias circularan
alrededor del torrente sanguíneo más específicamente en el líquido extracelular y cumplirán
diversas funciones en el organismo. Ejemplo de ellas son las hormonas tiroideas, las
suprarrenales, la paratiroidea entre otras más.
Sistemas de control del organismo
Para poder mantener la homeostasis es necesario que tengamos sistemas de control de
nuestro organismo, ya sea para actuar dentro de los órnanos o bien controlar las
interacciones que estos tienen con el resto de los órganos., uno de los ejemplos más comunes
es la de la regulación de las concentraciones de oxígeno y dióxido de carbono que se lleva a
cabo gracias a la hemoglobina que se encuentra dentro de los eritrocitos que es la que llevará
a cabo la función amortiguadora de oxigeno de la hemoglobina, que se encarga principalmente
de llevar el oxígeno hacia los capilares para que la célula lo pueda aprovechar. En caso de que
se tenga que desechar mucha cantidad de Dióxido de Carbono se excitará el centro
respiratorio que servirá para aumentar la espiración de dicho dióxido de carbono y los
líquidos tisulares hasta que se llegue la concentración a una concentración normal. Otro
ejemplo más claro es la de la regulación de la TA que se lleva a cabo por los barorreceptores.
También para que el líquido intracelular se tenga valores constantes, se necesitan una serie de
condiciones para poder estar en equilibrio. Uno de los ejemplos es la temperatura corporal del
cuerpo humano, que puede suceder en caso de que se agreguen 7° c a dicha temperatura,
destruirán a las células, y también el estado del pH. Los sistemas de control estarán regulados
por la retroalimentación negativa, que es la que ayuda a establecer la mayoría de los sistemas
de control del organismo. En pocas palabras si algún factor dentro de nuestro cuerpo se
vuelve excesivo o deficiente se inicia una serie de cambios que hacen que devuelvan el factor a
un medio en que se pueda tener la homeostasis, esto se encuentra determinado por las
constantes de la ganancia de la retroalimentación positiva.
capítulo 1 de Guyton: La célula y sus funciones
Cuerpo humano está por 100 billones cada con estructura y funciones especiales.
Organización celular.-
se muestra sus dos partes y sustancias fundamentales Agua: principal medio liquido de 70-
80% excepto en los adipositos Iones.
Los importantes K, mg, fosfato, bicarbonato y pequeñas porciones de Na, cloruro y calcio,
actúan en las reacciones químicas y mecanismos de control.
Proteínas: 10-20% de la masa celular hay 2 proteínas estructurales y funcionales. Proteínas
estructurales: formación de micro túbulos que forman los citoesqueletos
Proteínas funcionales: catalizan reacciones químicas intracelulares específicas.
Lípidos. Solubles en disolventes grasos 2% masa células, fosfolípidos y colesterol.
Hidratos de carbono: Forma parte de las moléculas glucoproteicas y función nutrición celular,
insoluble con la glucosa.
Estructura física de la célula.-
contiene estructuras físicas muy organizadas que son orgánulos intracelulares, cada orgánulo
contiene componentes químicos. Estructuras membranosas de la célula: La mayoría de los
organismos están compuestas por membranas compuestas de lípidos y proteínas. Membrana
celular: bicapa lipídica cubre la célula es elástica fina y flexible.
*
la barrera lipídica impide la penetración del agua formada por fosfolípidos. Citoplasma y sus
orgánulos: lleno de partículas diminutas Retículo endoplásmico: son estructuras vesiculares
tubulares planas del citoplasma
Ribosomas y retículo endoplásmico rugoso: unida a la superficie se encuentran los ribosomas,
formados por mezcla de ARN y proteínas
Retículo endoplásmico granular: parte del R.E no tiene ribosomas Aparato de Golgí: esta por 4
a más capas de vesículas cerradas finas y planas
Lisosomas: son orgánulos vesiculares, se forma por la rotura del aparato de Golgí
Peroxisomas: similares a lisosomas pero contienen oxidasas en vez de hidrolasas. Vesículas
secretoras: almacenan proenzimas que segregan a través de la membrana hacían el conducto
pancreático o el duodeno. Mitocondrias: o centros neurálgicos, sin ellas no se podría extraer
energía de los nutrientes se encuentran en el citoplasma de la célula. Citoesqueleto celular:
estructura filamentosas y tubulares: se originan en filamentos o túbulos, microtúbulos actúan
como citoesqueleto proporcionando estructuras físicas rígidas para determinadas partes de la
célula. Núcleo: centro del control de la célula, grandes cantidades de ADN. Membrana nuclear:
2 membranas bicapa, permite que atraviesen elementos Nucléolo y formación de ribosomas:
la mayoría de células contienen 1 o más estructuras que se tiñen y se denominan nucléolo.
Fagocitosis: entran en la célula mediante la función de una membrana.
Pinositosis: se producen en las membranas celulares.
Capitulo 3 Fisiología de Guyton
Introducción
En general se conoce que los genes son el medio principal para la herencia de genes de padres
a hijos, que se encuentra en el núcleo de las células de todo el organismo. Sin embargo este
desarrolla funcionas más específicas y necesarias del organismo, controlando así la función
cotidiana de todas la células del organismo, los genes controlan las funciones de las células al
determinar que sustancias se van a sintetizar dentro de ella misma.
Desarrollo Genes en el núcleo celular:
Los genes se unen por sus extremos, formando la doble hélice llamada ADN. Esta molécula
está formada por varios compuestos químicos sencillos unidos con un patrón regular. Bloques
básicos del ADN: sus principales componentes son el ácido fosfórico, una azúcar, ya sea ribosa
o desoxirribosa y cuatro bases nitrogenadas. Estos nucleótidos se unen laxamente entre sí,
para formar la doble cadena de ADN, esto por enlaces débiles llamados puentes de
hidrógenos, pero que en gran cantidad logran ser muy estables. Cada base purinica de adenina
se una con una pirimidinica de timina, cada base purinica guanina siempre se une con una
pirimidinica citosina, debido a la laxitud de los puentes de hidrogeno, estas hebras se separan
con facilidad. En cada vuelta completa de la hélice, hay diez pares de nucleótidos. La
importancia del ADN es sucapacidad de sintetizar proteínas mediante su código genético, el
cual consta de tripletes sucesivos de bases nitrogenadas. El código del ADN del núcleo celular
se transfiere al código de ARN en el citoplasma celular: transcripción. El primer paso para
sintetizar ARN es separar temporalmente las dos hebras del ADN y usar una como molde, las
diferencias entre una hebra de ADN y ARN es la ribosa en vez de desoxirribosa y uracilo en
lugar de timina en el ARN. Después a estos nucleótidos se les añade a cada uno dos radicales
fosfato más, para formar trifosfatos, y así “activar” a los nucleótidos. Con el fin de que cada
nucleótido cuente con una gran cantidad de energía. La ARN polimeraza es una gran enzima
proteica que tiene muchas propiedades funcionales para la formación de ARN. Esta reconoce y
se une al promotor por medio de una estructura complementaria, después provoca el
desenrrollamiento de dos vueltas de hélice y separa momentáneamente las de hebras,
después esta se desplaza por la hebra de ADN y conforme esta avance van añadiéndose
nucleótidos de ARN y se forma la cadena de ARN, primero se forman los puentes de
hidrogeno entre las bases nitrogenadas del ADN y ARN, después la ARN polimeraza rompe 2
radicales fosfato de los nucleótidos de ARN liberando energía para producir enlaces
covalentes muy fuertes entre el fosfato ylas ribosas adyacentes y así formar la cadena de ARN,
al final la ARN polimeraza se encuentra con un secuencia terminadora de cadena que provoca
que esta enzima y la cadena de ARN se separe de la cadena de ADN, después esta enzima se
puede usar de nuevo. Hay 4 tipos diferentes de ARN que tiene un papel independiente y
totalmente diferente en la síntesis de proteínas. ARN mensajero: Transporta el código
genético al citoplasma para controlar el tipo de proteína que se forma. Estas cadenas son
largas, compuestas por varios cientos de miles de nucleótidos, es una cadena no pareada, con
codones complementarios a los tripletes de código de genes del ADN. ARN de transferencia:
Transfiere las moléculas de aminoácidos a medida que se sintetiza proteínas cada tipo de
ARDt b se combina específicamente con 1 de los 20 aminoácidos, este reconoce el codón del
ARNm y libera el aminoácido, contiene solo 80 nucleótidos, tiene una cadena plegada. ARN
ribosomal: Constituye el 60% del ribosoma, el resto lo conforma proteínas, este se sintetiza en
el nucléolo, por lo tanto en células que producn grandes cantidades de proteínas el nucléolo
esta agrandado, el ARNr se une a las proteínas ribosómicas en el nucléolo, estos salen por los
poros de la membrana nuclear al citoplasma y se convierten en ribosomas. MicroARN: Son
cortos fragmentos de ARNmonocatenario, de 21 a 23 nucleótidos que regulan la expresión
génica. Formación de proteínas en los ribosomas: El proceso de traducción. Es la unión de una
molécula de ARNm a un ribosoma, este le su codón de inicio, las moléculas de ARNt
transportan los aminoácidos y los libera para formar la proteína. Al llegar al codón de
terminación se separan y la proteína queda completa. En algunos casos un solo ARNm puede
sintetizar varias cadenas de aminoácidos con ayuda de un complejo llamado polirribosomas,
el ARNm se une a varios ribosomas. Síntesis de otras sustancias en la célula. Las enzimas se
producen a partir del proceso que acabamos de ver, estas favorecen la síntesis de lípido,
glucógeno, purinas, pirimidinas y cientos de otras sustancias Control de la función genética y
actividad bioquímica de las células. Hay dos métodos de control de las actividades químicas de
la célula, 1) la regulación genética, que cubre todo el proceso, desde la transcripción del
código genético en el núcleo hasta la formación de proteínas en el citoplasma, esta controla el
grado de activación de los genes y la formación de productos génicos, y 2) regulación
enzimática, que regula los niveles de actividad de las enzimas ya formadas en la célula.
La celula tiene un ciclo vital que transcurre desde el inicio de la reproducción celular , hastael
inicio de la siguiente reproducción celular, las células animales no inhibidas se reproducen tan
rápido como puedes y su ciclo puede durar de 10 a 30 horas, y termina por una serie de
sucesos físicos diferenciados llamados mitosis, esta dura solo 30 minutos. La reproducción de
la célula comienza en el núcleo, con la replicación del ADN, esta comienza de 5 a 10 horas
antes de la mitosis y se completa en 4 a 8 horas, Para la replicación del ADN se replican ambas
cadenas, y de forma completa, en esto participan las ADN polimeraza y la ADN ligasa que
provoca la unión de nucleótidos, la formación de una nueva cadena de ADN se produce en
cientos de lugares simultáneamente, cada molécula nueva de ADN se mantiene unida a la
original por puentes de hidrogeno. Las hélices de ADN del núcleo se desenrolla en
cromosomas. La célula humana tiene 46 cromosomas en 23 pares. Proface: los cromosomas
del núcleo se condensan en cromosomas bien definidos. Prometafase: las puntas de los
microtúbulos en crecimiento se fragmentan en la cubierta nuclear. Metafase: las dos ásteres
del aparato mitótico se separan. Anafase: las dos cromatidas de cada cromosoma son
separadas en el centromero. Telofase: los dos juegos de cromosomas hijos se separan. En
algunos tejidos la falta de células provocan que estas se reproduzcan mas rápida y
continuamente,el crecimiento celular se controla por medio de factores de crecimiento, las
células dejan de crecer si salen de su medio y cuando se puede recoger cantidades diminutas
de sus propias secreciones. El tamaño de la célula está regulado principalmente por la
cantidad de ADN funcionante en el núcleo. La diferenciación celular son los cambios de las
propiedades físicas y funcionales de las células a medida que proliferan en el embrión para
formar las distintas estructuras y órganos corporales. El número de células en el organismo
no está solo controlado por la división celular, también por el control de la velocidad de
muerte, cuando las células ya no se necesitan, o cuando se convierten en una amenaza para el
organismos, sufre la muerte celular programada llamada apoptosis , esto implica una cascada
proteolítica especifica que hace que la célula se encoja y condense para desmontar su
citoesqueleto y alterar su superficie de tal manera que una célula fagocitica cercana , se pueda
unir a la membrana celular y digerir la célula. El cáncer se debe en todo o en casi todos los
casos a la mutación o alguna otra actividad anormal de los genes celulares que controlan el
crecimiento y la mitosis celular, los genes anormales se denominan oncogenes y se han
descubierto hasta 100 tipos diferentes. Las células cancerígenas norespetan los niveles
normales de crecimiento, no se adhieren fácilmente entre si y producen factores angiogenicos.
El tejido canceroso compite con el tejido normal, como las células cancerígenas continúan
proliferándose continuamente, su número aumenta día con día y pronto demandan
prácticamente toda la nutrición disponible. Análisis El conocer la función específica del
núcleo, nos ayuda a salir de las generalidades, como médicos debemos conocer cuáles son las
verdaderas funciones de la célula, sin embargo, es importante saber que cada proceso que se
realiza en la célula es mediado por otro proceso, esto nos lleva hasta el núcleo, siendo este la
base para la producción de proteínas, las cuales regulan todos los procesos de la célula y el
organismo en general, por lo tanto es importante que se conozca cual es el proceso por el cual
se producen las proteínas, se duplica el ADN y se produce el ARN, puesto que a final de
cuentas todo depende de estas moléculas. Al igual es importante conocer que las células
tienen mecanismos de regulación que determinan su crecimiento y tamaño de cada célula, así
como hay un mecanismo que regula la muerte celular, todo esto con el in de que exista un
equilibrio, en el que todas las células sean funcionales y que el organismo cuente con el
número necesario de células.
capítulo 4 de Guyton: Transporte de Sustancias a través de la Membrana Celular
Las diferencias entre la composición del líquido Intracelular y el líquido Extracelular se deben
a los mecanismos de transporte que se dan en la membrana celular. Las concentraciones de
fosfatos y de proteínas en el líquido intracelular son mayores que las del líquido extracelular.
La Barrera Lipídica y las Proteínas de Transporte de la Membrana Celular La membrana
celular están constituidas por una bicapa lipídica con moléculas proteicas insertadas en los
lípidos.
Difusión
Movimiento pasivo, de sustancias (solutos), de una zona de mayor concentración a una de
menor concentración, en un disolvente o a través de membranas La difusión a través de la
membrana celular se divide en dos subtipos, difusión simple y difusión facilitada. * La difusión
simple: Las moléculas atraviesan una membrana sin unirse a proteínas transportadoras, se
puede dar de 2 maneras: 1. A través de los intersticios de la bicapa lipídica 2. A través de los
canales acuosos de las proteínas transportadoras. * La difusión facilitada: Requiere una
proteína transportadora. A mayor liposolubilidad más rápido difunde.
Difusión a través de Canales Proteicos y Activación de estos Canales
La apertura o el cierre de las compuertas de los canales proteicos proporcionan un sistema de
control de su permeabilidad. Se controla de 2 maneras: * Activación por Voltaje: la
conformación molecular de la compuerta responde al potencial eléctrico. * Activación
Química: las compuertas se abren al unirse otra molécula a la proteína que produce un cambio
conformacional o un cambio de los enlaces químicos de la molécula de la proteína que abre o
cierra la compuerta.
Osmosis a través de Membranas con Permeabilidad Selectiva: Difusión Neta de Agua
Es el proceso de movimiento neto de agua debido a una diferencia de concentración del agua.
La diferencia de presión necesaria para que cese la ósmosis se denomina presión osmótica.
* Osmolalidad: Un osmol es el peso molecular-gramo de un soluto osmóticamente activo. *
Osmolaridad: Es la concentración osmolar expresada en osmoles por litro de solución en lugar
de osmoles por kilogramo de agua.
Transporte Activo de Sustancias a través de las Membranas
Es el movimiento de sustancias a través de la membrana en combinación con una proteína de
transporte, en contra de un gradiente electroquímico. Necesita una fuente de energía
adicional, además de la energía cinética. Hay dos tipos de transporte activo * Transporte
activo primario. La energía deriva de la ruptura del ATP. * Transporte activo secundario. La
energía deriva secundariamente de la que se ha almacenado en forma de diferencia de
concentraciones iónicas a ambos lados de la membrana.
Transporte Activo Primario
* La bomba de sodio-potasio transporta iones de sodio hacia fuera de la célula e iones potasio
hacia el interior de ésta. Esta bomba está presente en todas las células del cuerpo y es la
responsable de mantener las diferencias de concentración de sodio y de potasio a ambos lados
de la membrana celular, así como de establecer un potencial eléctrico negativo en el interior
de las células. La bomba de sodio-potasio controla el volumen de la célula. La bomba
transporta 3 moléculas de sodio al exterior de la célula por cada 2 moléculas de potasio
bombeadas hacia el interior.
Transporte Activo Secundario
*Cotransporte: Es el movimiento de 2 sustancias hacia adentro de la célula, mediante una
proteína transportadora.. La proteína transportadora posee dos puntos de unión en su lado
externo: uno para el sodio y otro para la glucosa o los aminoácidos. * Contratransporte: Es el
movimiento de 2 sustancias, a diferencia del cotransporte, una sustancia se mueve desde el
exterior de la célula hacia el interior, mientras la otra desde el interior de la célula hacia el
exterior Transporte Activo a través de Capas Celulares En muchas localizaciones del cuerpo se
deben transportar sustancias a través de todo el espesor de una capa celular en lugar de
simplemente a través de la membrana celular.
capítulo 5 de Guyton: Potenciales de membrana y potenciales de acción
El potencial de acción viaja en todas las direcciones acercándose del estimulo hasta que se ha
despolarizado toda la membrana.
Principio del todo o nada
El proceso de despolarización viaja por toda la membrana si las condiciones son adecuadas, o
no viaja en absoluto si no lo son.
Restablecimiento de los gradientes iónicos de sodio y potasio tras completarse los potenciales
de acción: la importancia del metabolismo de la energía.
La propagación de cada potencial de acción reduce muy ligeramente las concentraciones de
sodio y de potasio en el interior y en el exterior de la membrana, porque los iones de sodio
difunden hacia el exterior durante la re polarización.
Meseta en algunos potenciales de acción.
La causa de la meseta es una combinación de varios factores, en primer lugar en el proceso de
despolarización del musculo cardiaco participan dos tipos decanales: 1. Canales rápidos 2.
Canales lentos. En segundo factor que puede ser responsable en parte de la meseta es que los
canales de potasio activados por el voltaje tienen una apertura más lenta de lo habitual y con
frecuencia no se abren mucho hasta el final de la meseta.
Proceso de reexcitacion necesario para la ritmicidad espontanea.
Para que ocurra una ritmicidad espontanea en la membrana, debe ser lo suficientemente
permeable a los iones de sodio como para permitir la despolarización automática de la
membrana, el voltaje que se produce no es lo suficientemente negativo como para mantener
totalmente cerrados los canales de sodio y de calcio. Después, al final del potencial de acción
se repolariza la membrana.
Características especiales de la transmisión de señales en los troncos nerviosos, fibras
nerviosas mielinizadas y no mielinizadas.
Las fibras grandes son mielinizadas y las fibras pequeñas son no mielinizadas. Un tronco
nervioso medio contiene aproximadamente el doble de fibras no mielinizadas que
mielinizadas.
Conducción saltatoria en las fibras mielinizadas de un nódulo a otro.
La corriente eléctrica fluye por el líquido extracelular circundante que está afuera de la vaina
de mielina, así como por el axoplasma del interior del axón, de un nódulo a otro, excitando
nódulos sucesivos uno después del otro, así el impulso nervioso recorre a saltos la fibra, y por
eso recibe el nombre de saltatoria.
Velocidad de conducción en las fibras nerviosas
Varía de tan solo 0.25 m/s en las fibras no mielinizadas muy pequeñas hasta 100m/s en las
fibras mielinizadas muy grandes. Excitación: el proceso de generación del potencial de acción
Se debe a un trastorno mecánico de la membrana, a los efectos químicos sobre la membrana al
paso de la electricidad a través de la membrana.
Umbral de excitación y potenciales locales agudos.
Cuando aumenta el voltaje del estimulo se llega a un punto en el que se produce la
excitabilidad. No se puede producir un nuevo potencial de acción en una fibra excitable
mientras la membrana siga despolarizada por el potencial de acción procedente. La única
situación que permitirá que se vuelva a abrir es que el potencial de acción de membrana
vuelva al nivel del potencial de membrana en reposo origina lo cercano. El periodo durante el
cual no se puede generar un segundo potencial de acción, incluso con un estimulo intenso, a
esto se le denomina periodo refractario absoluto.
Anestésicos
Entre los estabilizadores más importantes de uso clínico están la procaina y tetracraina, estos
compuestos actúan directamente sobre las compuertas desactivación de los canales de sodio,
haciendo que sea mucho más difícil abrir estas compuertas reduciendo la excitabilidad de la
membrana. Registró de potenciales de membrana y potenciales de acción osciloscopio de
rayos catódicos
Sistema que se encarga de registrar los cambios de potencial de acción de la membrana, los
componentes son los siguientes: Cañón de electrodos y una pantalla fluorescente, contra la
que se disparan los electrones.
capítulo 6 de Guyton: Contracción del musculo esquelético
El cuerpo humano está formado por un 40% de musculo esquelético y un 10% de musculo liso
y cardiaco.
Anatomía fisiológica del musculo esquelético Fibras del musculo esquelético
Todos los músculos esqueléticos están formados por numerosas fibras que se extienden a lo
largo de toda la longitud del musculo. Las fibras musculares están formadas principalmente
por: Sarcolema, miofibrillas, sarcoplasma, retículo sarcoplasmático
Mecanismo general de la contracción muscular
1) Un potencial de acción viaja a lo largo de la fibra motora hasta sus terminales sobre las
fibras musculares
2) En cada terminal, el nervio secreta una pequeña cantidad de la sustancia transmisora:
acetilcolina
3) La acetilcolina actúa en una zona local de la membrana de la fibra muscular para
abrirmúltiples canales a través de moléculas proteicas que flotan en la membrana
4) La apertura de los canales activados por acetilcolina permite que grandes cantidades de
iones de sodio difundan hacia el interior de la membrana de la fibra muscular. Esto inicia el
potencial de acción en la membrana
5) El potencial de acción viaja a lo largo de la membrana de la fibra muscular
6) El potencial de acción despolariza la membrana muscular y buena parte de la electricidad
del potencial de acción fluye a través del centro de la fibra muscular, donde hace que el
retículo sarcoplasmatico libere grandes cantidades de iones de calcio
7) Los iones de calcio inician fuerzas de atracción entre los filamentos de actina y miosina
haciendo que se deslicen uno sobre otros en sentido longitudinal, lo que constituye el proceso
contráctil
8) Después de una fracción de segundo los iones de calcio son bombeados de nuevo al retículo
sarcoplasmatico por una bomba de calcio de la membrana
Energía de la contracción muscular Generación de trabajo durante la contracción muscular
Cuando un musculo se contrae contra una carga realiza un trabajo (transfiere energía del
musculo hasta la carga externa) El trabajo se define mediante la siguiente ecuación:
T = C x D
T: Trabajo generado /C: Carga/D: Distancia del movimiento que se opone a la carga
Fuentes de energía para la contracción muscular
El ATP es una fuente muy importante para la contracción muscular y al mismo tiempo es la
fuente de energía necesaria para que se provoque la contracción muscular
Características de la contracción de todo el musculo
Muchas características de la contracción muscular se pueden demostrar desencadenando
espasmos musculares únicos. Esto se puede conseguir con la excitación eléctrica instantánea
del nervio que inerva un musculo o haciendo pasar un estímulo eléctrico breve a través del
propio musculo dando lugar a una única contracción súbita que dura una fracción de segundo
Contracción isométrica frente a la isotónica
La contracción muscular es isométrica cuando el musculo no se acorta durante la contracción
e isotónica cuando se acorta, pero la tensión permanece constante durante toda la
contracción. En la isotónica el musculo se carota contra una carga fija
Fibras musculares rápidas frente a lentas Fibras rápidas:
fibras grandes para obtener una gran fuerza de contracción; retículo sarcoplasmatico extenso;
grandes cantidades de enzimas glucoliticas; vascularización menos extensa; menos
mitocondrias
Fibras lentas:
fibras más pequeñas; inervadas por fibras nerviosas más pequeñas; vascularización i capilares
más extensos; número elevado de mitocondrias; grandes cantidades de mioglobina
capítulo 7de Guyton:Excitacióndel musculo esquelético:transmisiónneuromusculary
acoplamiento excitación-contracción
Transmisión de impulsos desde las terminaciones nerviosas a las fibras del musculo
esquelético: la unión neuromuscular
Las fibras del musculo esquelético están inervadas por fibras nerviosas mielinizadas grandes
que se originan en las motoneuronas grandes de las astas anteriores de la medula espinal.
Cada terminación nerviosa forma una unión neuromuscular.
Anatomía fisiológica de la unión neuromuscular: la placa motora terminal
La fibra nerviosa forma un complejo de terminaciones nerviosas ramificadas que se invaginan
en la superficie de la fibra muscular, la estructura se denomina placa motora terminal. En la
terminación axonica hay muchas mitocondrias que proporcionan ATP que se utiliza para la
síntesis de acetilcolina. La acetilcolina, excita a la membrana de la fibra muscular. En el
espacio sináptico hay grandes cantidades de la enzima acetilcolinesterasa, que destruye la
acetilcolina.
Secreción de acetilcolina por las terminaciones nerviosas
Cuando un impulso nervioso llega a la unión neuromuscular, se liberan aproximadamente 125
vesículas de ACh. En la superficie interna de la membrana neural hay barras densas lineales. A
ambos lados de cada una hay partículas proteínicas que penetran en la membrana neural; son
canales de calcio activados por el voltaje. Cuando un potencial de acción se propaga por la
terminación, estos canales se abren y permiten que iones calcio difundan desde el espacio
sináptico hacia el interior. Las vesículas se fusionan con la membrana neural y vacían su
actilcolina hacia el espacio sináptico mediante exocitosis.
Efecto de la Acetilcolina sobre la membrana de la fibra muscular postsinaptica para abrir
canales iónicos
El principal efecto de la apertura de los canales activados por la ACh es permitir que grandes
cantidades de iones sodio entren al interior de la fibra, desplazando con ellos grandes
números de cargas positivas. Esto genera un cambio de potencial, potencial de la placa
terminal. Este potencial de la placa terminal inicia un potencial de acción que se propaga a lo
largo de la membrana muscular y produce la contracción muscular
Destrucción por la acetilcolinesterasa de la acetilcolina liberada
Una vez liberado hacia el espacio sináptico, la acetilcolina sigue activando los receptores de
ACh mientras persista en el espacio. Sin embrago, se elimina rápidamente por dos medios: 1.
La mayor parte es destruida por la enzima acetilcolinesterasa 2. Una pequeña cantidad de
acetilcolina difunde hacia el exterior del espacio sináptico
Factor de seguridad para la transmisión en la unión neuromuscular; fatiga de la unión
Habitualmente cada impulso que llega a la unión neuromuscular produce un potencial de la
placa terminal aproximadamente tres veces mayor que el necesario para estimular la fibra
nerviosa. Por tanto, se dice que la unión neuromuscular normal tiene un elevado factor de
seguridad.
Biología molecular de la formación y liberación de acetilcolina
La formación y liberación de acetilcolina se produce en las siguientes etapas: 1. Se forman
vesículas pequeñas en el aparato de Golgí del cuerpo celular de la motoneurona. Estas son
transportadas por el axoplasma hasta la unión neuromuscular en las terminaciones de las
fibras nerviosas periféricas. 2. La acetilcolina se sintetiza en el citosol de la terminación de la
fibra nerviosa, se transporta inmediatamente a través de la membrana de las vesículas hasta
su interior. 3. Cuando un potencial de acción llega a la terminación nerviosa, abre los canales
de Ca. La concentración de iones de Ca en el interior de la membrana, lo que a su vez aumenta
la velocidad de fusión de las vesículas de acetilcolina con la membrana terminal-
Mistenia grave
Esta produce paralisis muscular debido a que las uniones neuromusculares no pueden
transmitir suficientes señales desde las fibras nerviosas a las fibras musculares. La mistenia
grave es una enfermedad autoinmunitaria.
CAPÍTULO 8 EXCITACIÓN Y CONTRACCIÓN DEL MÚSCULO LISO
Es distinto del de la mayor parte de los demás en varios sentidos: 1) dimensiones físicas; 2)
organización en fascículos o láminas; 3) respuesta a diferentes tipos de estímulos; 4)
características de la inervación, y 5) función.
-Músculo liso multiunitario.
Está formado por fibras musculares lisas separadas y discretas.Cada una de las fibras actúa
independientemente de las demás y con frecuencia está inervada por una única terminación
nerviosa. Además estas fibras, está cubierta por una capa delgada de sustancia similar a una
membrana basal, una mezcla de colágeno fino y glucoproteínasque aísla las fibras separadas
entre sí.
-Músculo liso unitario.
Se denomina músculo liso sincitial o visceral. El término «unitario» es confuso porque no se
refiere a fibras musculares únicas.Se refiere a una masa de cientos a miles de fibras que se
contraen juntas como una única unidad.Están unidas por muchas uniones en hendidura a
través de las cuales los iones pueden fluir libremente desde una célula muscular a otra, de
modo que los potenciales de acción puede viajar desde una fibra a otra y hacer que las fibras
musculares se contraigan simultáneamente.
-Mecanismo contráctil en el músculo liso
Contiene filamentos tanto de actina como de miosina. No contiene el complejo de
troponinanormal que es necesario para el control de la contracción del músculo esquelético.
Los filamentos de actina y miosina del músculo liso interactúan entre sí de manera muy
similar a como lo hacen en el músculo esquelético. Además, el proceso contráctil es activado
por los iones calcio, y el trifosfato de adenosina se degrada a difosfato de adenosina para
proporcionar la energía para la contracción.
-Regulación de la contracción por los iones calcio
Al igual que en el caso del músculo esquelético, el estímuloque inicia la mayor parte de las
contracciones del músculo liso es un aumento de los iones calcio en el medio intracelular.
Sin embargo, el músculo liso no contiene troponina, la proteína reguladora que es activada
por los iones calcio para producir la contracción del músculo esquelético.
-Los iones calcio se combinan con la calmodulina para provocar la activación de la
miosinacinasa y fosforilación de la cabeza de miosina.
La calmodulina lo hace activando los puentes cruzados de miosina. Esta activación y la
posterior contracción se producen según la siguiente secuencia: 1. Los iones calcio se unen a
la calmodulina. 2. El complejo calmodulina-calcio se une después a la miosinacinasa de cadena
ligera, que es una enzima fosforiladora, y la activa. 3. Una de las cadenas ligeras de cada una
de las cabezas de miosina, denominada cabeza reguladora, se fosforila en respuesta a esta
miosinacinasa.

Más contenido relacionado

La actualidad más candente

HISTOLOGÍA DE URÉTERES, VEJIGA Y URETRA
HISTOLOGÍA DE URÉTERES, VEJIGA Y URETRAHISTOLOGÍA DE URÉTERES, VEJIGA Y URETRA
HISTOLOGÍA DE URÉTERES, VEJIGA Y URETRAJedo0
 
Sistema linfatico tejidos y organos
Sistema linfatico   tejidos y organosSistema linfatico   tejidos y organos
Sistema linfatico tejidos y organosCasiMedi.com
 
2 matriz extracelular, pared celular, citoesqueleto, centrosoma, cilios, ribo...
2 matriz extracelular, pared celular, citoesqueleto, centrosoma, cilios, ribo...2 matriz extracelular, pared celular, citoesqueleto, centrosoma, cilios, ribo...
2 matriz extracelular, pared celular, citoesqueleto, centrosoma, cilios, ribo...LauraLaurita11
 
SANGRE- GUYTON Y HALL
SANGRE- GUYTON Y HALL SANGRE- GUYTON Y HALL
SANGRE- GUYTON Y HALL rome utrila
 
Histologia del Sistema linfático
Histologia del Sistema linfáticoHistologia del Sistema linfático
Histologia del Sistema linfáticoEduard Martinez
 
Histologia del oido
Histologia del oido Histologia del oido
Histologia del oido Ro Silverio
 
Musculo cardiaco
Musculo cardiacoMusculo cardiaco
Musculo cardiacoyue 17
 
Excitabilidad. potenciales de membrana
Excitabilidad. potenciales de membranaExcitabilidad. potenciales de membrana
Excitabilidad. potenciales de membranaMatías Cofré Torres
 
Histología del sistema circulatorio
Histología del sistema circulatorioHistología del sistema circulatorio
Histología del sistema circulatoriojulianazapatacardona
 
Histología de aparato reproductor femenino
Histología de aparato reproductor femeninoHistología de aparato reproductor femenino
Histología de aparato reproductor femeninoAnahi Chavarria
 
Histología del aparato respiratorio
Histología del aparato respiratorio Histología del aparato respiratorio
Histología del aparato respiratorio Sandra Gallardo
 
Potencial de membrana_celular
Potencial de membrana_celularPotencial de membrana_celular
Potencial de membrana_celularJuan Diego
 
Histologia de la Glándula pineal
Histologia de la Glándula pinealHistologia de la Glándula pineal
Histologia de la Glándula pinealKrizty Cadena
 
Fisiologia potencial de accion guyton 13ava edicion
Fisiologia potencial de accion guyton 13ava edicion Fisiologia potencial de accion guyton 13ava edicion
Fisiologia potencial de accion guyton 13ava edicion Nathaliekq18
 
Histologia del sistema respiratorio
Histologia del sistema respiratorio Histologia del sistema respiratorio
Histologia del sistema respiratorio Erick Mejia Pereira
 
Sistema reproductor masculino
Sistema reproductor masculinoSistema reproductor masculino
Sistema reproductor masculinoTomás Calderón
 

La actualidad más candente (20)

HISTOLOGÍA DE URÉTERES, VEJIGA Y URETRA
HISTOLOGÍA DE URÉTERES, VEJIGA Y URETRAHISTOLOGÍA DE URÉTERES, VEJIGA Y URETRA
HISTOLOGÍA DE URÉTERES, VEJIGA Y URETRA
 
Histología de músculo
Histología de músculoHistología de músculo
Histología de músculo
 
Sistema linfatico tejidos y organos
Sistema linfatico   tejidos y organosSistema linfatico   tejidos y organos
Sistema linfatico tejidos y organos
 
2 matriz extracelular, pared celular, citoesqueleto, centrosoma, cilios, ribo...
2 matriz extracelular, pared celular, citoesqueleto, centrosoma, cilios, ribo...2 matriz extracelular, pared celular, citoesqueleto, centrosoma, cilios, ribo...
2 matriz extracelular, pared celular, citoesqueleto, centrosoma, cilios, ribo...
 
SANGRE- GUYTON Y HALL
SANGRE- GUYTON Y HALL SANGRE- GUYTON Y HALL
SANGRE- GUYTON Y HALL
 
Histologia del Sistema linfático
Histologia del Sistema linfáticoHistologia del Sistema linfático
Histologia del Sistema linfático
 
Histologia del oido
Histologia del oido Histologia del oido
Histologia del oido
 
Comunicacion celular
Comunicacion celularComunicacion celular
Comunicacion celular
 
Musculo cardiaco
Musculo cardiacoMusculo cardiaco
Musculo cardiaco
 
Excitabilidad. potenciales de membrana
Excitabilidad. potenciales de membranaExcitabilidad. potenciales de membrana
Excitabilidad. potenciales de membrana
 
Histología del sistema circulatorio
Histología del sistema circulatorioHistología del sistema circulatorio
Histología del sistema circulatorio
 
Histologia del riñon
Histologia del riñonHistologia del riñon
Histologia del riñon
 
Histología de aparato reproductor femenino
Histología de aparato reproductor femeninoHistología de aparato reproductor femenino
Histología de aparato reproductor femenino
 
Histología del aparato respiratorio
Histología del aparato respiratorio Histología del aparato respiratorio
Histología del aparato respiratorio
 
Potencial de membrana_celular
Potencial de membrana_celularPotencial de membrana_celular
Potencial de membrana_celular
 
Histologia de la Glándula pineal
Histologia de la Glándula pinealHistologia de la Glándula pineal
Histologia de la Glándula pineal
 
Histología del sistema urinario
Histología del sistema urinarioHistología del sistema urinario
Histología del sistema urinario
 
Fisiologia potencial de accion guyton 13ava edicion
Fisiologia potencial de accion guyton 13ava edicion Fisiologia potencial de accion guyton 13ava edicion
Fisiologia potencial de accion guyton 13ava edicion
 
Histologia del sistema respiratorio
Histologia del sistema respiratorio Histologia del sistema respiratorio
Histologia del sistema respiratorio
 
Sistema reproductor masculino
Sistema reproductor masculinoSistema reproductor masculino
Sistema reproductor masculino
 

Similar a Resumen capítulos de guyton

Unidad 1 (medio interno y homeostasis)
Unidad 1 (medio interno y homeostasis)Unidad 1 (medio interno y homeostasis)
Unidad 1 (medio interno y homeostasis)Maria Cantellano
 
FISIOLOGIA HUMANA
FISIOLOGIA HUMANAFISIOLOGIA HUMANA
FISIOLOGIA HUMANAMAVILA
 
FISIOLOGIA HUMANA
FISIOLOGIA HUMANAFISIOLOGIA HUMANA
FISIOLOGIA HUMANAMAVILA
 
24245745 edianavargas.dox
24245745 edianavargas.dox24245745 edianavargas.dox
24245745 edianavargas.doxediana1306
 
Edianavargas24245745.doc.xls
Edianavargas24245745.doc.xlsEdianavargas24245745.doc.xls
Edianavargas24245745.doc.xlsediana1306
 
Organización funcional del cuerpo humano y control celular interno, líquido ...
Organización funcional del cuerpo humano y control celular interno, líquido ...Organización funcional del cuerpo humano y control celular interno, líquido ...
Organización funcional del cuerpo humano y control celular interno, líquido ...Jedo0
 
FISIOLOGIA LA CÉLULA UNIDAD FUNCIONAL.pptx
FISIOLOGIA LA CÉLULA UNIDAD FUNCIONAL.pptxFISIOLOGIA LA CÉLULA UNIDAD FUNCIONAL.pptx
FISIOLOGIA LA CÉLULA UNIDAD FUNCIONAL.pptxrafavr1
 
Fisiologia - Diap 1.pdf
Fisiologia - Diap 1.pdfFisiologia - Diap 1.pdf
Fisiologia - Diap 1.pdfJudithMoreno57
 
Fisiología general
Fisiología generalFisiología general
Fisiología generalIsa Isabel
 
fisiologia generalidades
fisiologia generalidadesfisiologia generalidades
fisiologia generalidadesAlice Rodriguez
 
fisiologia generalidades
fisiologia generalidadesfisiologia generalidades
fisiologia generalidadesAlice Rodriguez
 
Liquidos y electrolitos corporales
Liquidos y electrolitos corporalesLiquidos y electrolitos corporales
Liquidos y electrolitos corporalesDaniel Coronado
 

Similar a Resumen capítulos de guyton (20)

Unidad 1 (medio interno y homeostasis)
Unidad 1 (medio interno y homeostasis)Unidad 1 (medio interno y homeostasis)
Unidad 1 (medio interno y homeostasis)
 
FISIOLOGIA HUMANA
FISIOLOGIA HUMANAFISIOLOGIA HUMANA
FISIOLOGIA HUMANA
 
FISIOLOGIA HUMANA
FISIOLOGIA HUMANAFISIOLOGIA HUMANA
FISIOLOGIA HUMANA
 
organizacion funcional
organizacion funcionalorganizacion funcional
organizacion funcional
 
24245745 edianavargas.dox
24245745 edianavargas.dox24245745 edianavargas.dox
24245745 edianavargas.dox
 
Edianavargas24245745.doc.xls
Edianavargas24245745.doc.xlsEdianavargas24245745.doc.xls
Edianavargas24245745.doc.xls
 
Organización funcional del cuerpo humano y control celular interno, líquido ...
Organización funcional del cuerpo humano y control celular interno, líquido ...Organización funcional del cuerpo humano y control celular interno, líquido ...
Organización funcional del cuerpo humano y control celular interno, líquido ...
 
FISIOLOGIA LA CÉLULA UNIDAD FUNCIONAL.pptx
FISIOLOGIA LA CÉLULA UNIDAD FUNCIONAL.pptxFISIOLOGIA LA CÉLULA UNIDAD FUNCIONAL.pptx
FISIOLOGIA LA CÉLULA UNIDAD FUNCIONAL.pptx
 
Fisiologia - Diap 1.pdf
Fisiologia - Diap 1.pdfFisiologia - Diap 1.pdf
Fisiologia - Diap 1.pdf
 
Clase 2.pptx
Clase 2.pptxClase 2.pptx
Clase 2.pptx
 
Unidad n°1 homeostasis
Unidad n°1 homeostasisUnidad n°1 homeostasis
Unidad n°1 homeostasis
 
La Celula
La Celula La Celula
La Celula
 
Fisiología general
Fisiología generalFisiología general
Fisiología general
 
La celula.UNY
La celula.UNYLa celula.UNY
La celula.UNY
 
fisiologia de guiton haal .pdf
fisiologia de guiton haal .pdffisiologia de guiton haal .pdf
fisiologia de guiton haal .pdf
 
CARDIOPULMONAR.docx
CARDIOPULMONAR.docxCARDIOPULMONAR.docx
CARDIOPULMONAR.docx
 
Biologia
BiologiaBiologia
Biologia
 
fisiologia generalidades
fisiologia generalidadesfisiologia generalidades
fisiologia generalidades
 
fisiologia generalidades
fisiologia generalidadesfisiologia generalidades
fisiologia generalidades
 
Liquidos y electrolitos corporales
Liquidos y electrolitos corporalesLiquidos y electrolitos corporales
Liquidos y electrolitos corporales
 

Último

Revista de psicología sobre el sistema nervioso.pdf
Revista de psicología sobre el sistema nervioso.pdfRevista de psicología sobre el sistema nervioso.pdf
Revista de psicología sobre el sistema nervioso.pdfleechiorosalia
 
Enferemedades reproductivas de Yeguas.pdf
Enferemedades reproductivas  de Yeguas.pdfEnferemedades reproductivas  de Yeguas.pdf
Enferemedades reproductivas de Yeguas.pdftaniacgcclassroom
 
SEMIOLOGIA CARDIOVASCULAR examen fisico y exploracion
SEMIOLOGIA CARDIOVASCULAR examen fisico y exploracionSEMIOLOGIA CARDIOVASCULAR examen fisico y exploracion
SEMIOLOGIA CARDIOVASCULAR examen fisico y exploracionDrRenEduardoSnchezHe
 
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (ppt).pdf
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (ppt).pdf(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (ppt).pdf
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (ppt).pdfUDMAFyC SECTOR ZARAGOZA II
 
Clase 14 Articulacion del Codo y Muñeca 2024.pdf
Clase 14 Articulacion del Codo y Muñeca 2024.pdfClase 14 Articulacion del Codo y Muñeca 2024.pdf
Clase 14 Articulacion del Codo y Muñeca 2024.pdfgarrotamara01
 
Clase 12 Artrología de Columna y Torax 2024.pdf
Clase 12 Artrología de Columna y Torax 2024.pdfClase 12 Artrología de Columna y Torax 2024.pdf
Clase 12 Artrología de Columna y Torax 2024.pdfgarrotamara01
 
docsity.vpdfs.com_urticaria-y-angioedema-en-pediatria-causas-mecanismos-y-dia...
docsity.vpdfs.com_urticaria-y-angioedema-en-pediatria-causas-mecanismos-y-dia...docsity.vpdfs.com_urticaria-y-angioedema-en-pediatria-causas-mecanismos-y-dia...
docsity.vpdfs.com_urticaria-y-angioedema-en-pediatria-causas-mecanismos-y-dia...MariaEspinoza601814
 
PPT HIS PROMSA - PANAS-MINSA DEL 2024.pptx
PPT HIS PROMSA - PANAS-MINSA DEL 2024.pptxPPT HIS PROMSA - PANAS-MINSA DEL 2024.pptx
PPT HIS PROMSA - PANAS-MINSA DEL 2024.pptxOrlandoApazagomez1
 
Nutrición y Valoración Nutricional en Pediatria.pptx
Nutrición y Valoración Nutricional en Pediatria.pptxNutrición y Valoración Nutricional en Pediatria.pptx
Nutrición y Valoración Nutricional en Pediatria.pptx Estefa RM9
 
(2024-04-17) DIABETESMELLITUSYENFERMEDADPERIODONTAL (ppt).pdf
(2024-04-17) DIABETESMELLITUSYENFERMEDADPERIODONTAL (ppt).pdf(2024-04-17) DIABETESMELLITUSYENFERMEDADPERIODONTAL (ppt).pdf
(2024-04-17) DIABETESMELLITUSYENFERMEDADPERIODONTAL (ppt).pdfUDMAFyC SECTOR ZARAGOZA II
 
Torax normal-Oscar 2024- principios físicos del rx de torax
Torax normal-Oscar 2024- principios físicos del rx de toraxTorax normal-Oscar 2024- principios físicos del rx de torax
Torax normal-Oscar 2024- principios físicos del rx de toraxWillianEduardoMascar
 
PUNTOS CRANEOMÉTRICOS PARA PLANEACIÓN QUIRÚRGICA
PUNTOS CRANEOMÉTRICOS  PARA PLANEACIÓN QUIRÚRGICAPUNTOS CRANEOMÉTRICOS  PARA PLANEACIÓN QUIRÚRGICA
PUNTOS CRANEOMÉTRICOS PARA PLANEACIÓN QUIRÚRGICAVeronica Martínez Zerón
 
Psicología: Revista sobre las bases de la conducta humana.pdf
Psicología: Revista sobre las bases de la conducta humana.pdfPsicología: Revista sobre las bases de la conducta humana.pdf
Psicología: Revista sobre las bases de la conducta humana.pdfdelvallepadrob
 
LA HISTORIA CLÍNICA EN PEDIATRÍA.ppt
LA HISTORIA CLÍNICA EN PEDIATRÍA.pptLA HISTORIA CLÍNICA EN PEDIATRÍA.ppt
LA HISTORIA CLÍNICA EN PEDIATRÍA.pptSyayna
 
atencion del recien nacido CUIDADOS INMEDIATOS.ppt
atencion del recien nacido CUIDADOS INMEDIATOS.pptatencion del recien nacido CUIDADOS INMEDIATOS.ppt
atencion del recien nacido CUIDADOS INMEDIATOS.pptrosi339302
 
HERENCIA LIGADA A LOS CROMOSOMAS SEXUALES....pptx
HERENCIA LIGADA A LOS CROMOSOMAS SEXUALES....pptxHERENCIA LIGADA A LOS CROMOSOMAS SEXUALES....pptx
HERENCIA LIGADA A LOS CROMOSOMAS SEXUALES....pptxAndreaSoto281274
 
(2024-25-04) Epilepsia, manejo el urgencias (doc).docx
(2024-25-04) Epilepsia, manejo el urgencias (doc).docx(2024-25-04) Epilepsia, manejo el urgencias (doc).docx
(2024-25-04) Epilepsia, manejo el urgencias (doc).docxUDMAFyC SECTOR ZARAGOZA II
 
urgencia y emergencia. Diferencias y ejemplos
urgencia y emergencia. Diferencias y ejemplosurgencia y emergencia. Diferencias y ejemplos
urgencia y emergencia. Diferencias y ejemploscosentinojorgea
 

Último (20)

Revista de psicología sobre el sistema nervioso.pdf
Revista de psicología sobre el sistema nervioso.pdfRevista de psicología sobre el sistema nervioso.pdf
Revista de psicología sobre el sistema nervioso.pdf
 
Enferemedades reproductivas de Yeguas.pdf
Enferemedades reproductivas  de Yeguas.pdfEnferemedades reproductivas  de Yeguas.pdf
Enferemedades reproductivas de Yeguas.pdf
 
SEMIOLOGIA CARDIOVASCULAR examen fisico y exploracion
SEMIOLOGIA CARDIOVASCULAR examen fisico y exploracionSEMIOLOGIA CARDIOVASCULAR examen fisico y exploracion
SEMIOLOGIA CARDIOVASCULAR examen fisico y exploracion
 
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (ppt).pdf
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (ppt).pdf(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (ppt).pdf
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (ppt).pdf
 
Clase 14 Articulacion del Codo y Muñeca 2024.pdf
Clase 14 Articulacion del Codo y Muñeca 2024.pdfClase 14 Articulacion del Codo y Muñeca 2024.pdf
Clase 14 Articulacion del Codo y Muñeca 2024.pdf
 
Clase 12 Artrología de Columna y Torax 2024.pdf
Clase 12 Artrología de Columna y Torax 2024.pdfClase 12 Artrología de Columna y Torax 2024.pdf
Clase 12 Artrología de Columna y Torax 2024.pdf
 
docsity.vpdfs.com_urticaria-y-angioedema-en-pediatria-causas-mecanismos-y-dia...
docsity.vpdfs.com_urticaria-y-angioedema-en-pediatria-causas-mecanismos-y-dia...docsity.vpdfs.com_urticaria-y-angioedema-en-pediatria-causas-mecanismos-y-dia...
docsity.vpdfs.com_urticaria-y-angioedema-en-pediatria-causas-mecanismos-y-dia...
 
PPT HIS PROMSA - PANAS-MINSA DEL 2024.pptx
PPT HIS PROMSA - PANAS-MINSA DEL 2024.pptxPPT HIS PROMSA - PANAS-MINSA DEL 2024.pptx
PPT HIS PROMSA - PANAS-MINSA DEL 2024.pptx
 
Nutrición y Valoración Nutricional en Pediatria.pptx
Nutrición y Valoración Nutricional en Pediatria.pptxNutrición y Valoración Nutricional en Pediatria.pptx
Nutrición y Valoración Nutricional en Pediatria.pptx
 
(2024-04-17) DIABETESMELLITUSYENFERMEDADPERIODONTAL (ppt).pdf
(2024-04-17) DIABETESMELLITUSYENFERMEDADPERIODONTAL (ppt).pdf(2024-04-17) DIABETESMELLITUSYENFERMEDADPERIODONTAL (ppt).pdf
(2024-04-17) DIABETESMELLITUSYENFERMEDADPERIODONTAL (ppt).pdf
 
Torax normal-Oscar 2024- principios físicos del rx de torax
Torax normal-Oscar 2024- principios físicos del rx de toraxTorax normal-Oscar 2024- principios físicos del rx de torax
Torax normal-Oscar 2024- principios físicos del rx de torax
 
PUNTOS CRANEOMÉTRICOS PARA PLANEACIÓN QUIRÚRGICA
PUNTOS CRANEOMÉTRICOS  PARA PLANEACIÓN QUIRÚRGICAPUNTOS CRANEOMÉTRICOS  PARA PLANEACIÓN QUIRÚRGICA
PUNTOS CRANEOMÉTRICOS PARA PLANEACIÓN QUIRÚRGICA
 
Psicología: Revista sobre las bases de la conducta humana.pdf
Psicología: Revista sobre las bases de la conducta humana.pdfPsicología: Revista sobre las bases de la conducta humana.pdf
Psicología: Revista sobre las bases de la conducta humana.pdf
 
LA HISTORIA CLÍNICA EN PEDIATRÍA.ppt
LA HISTORIA CLÍNICA EN PEDIATRÍA.pptLA HISTORIA CLÍNICA EN PEDIATRÍA.ppt
LA HISTORIA CLÍNICA EN PEDIATRÍA.ppt
 
atencion del recien nacido CUIDADOS INMEDIATOS.ppt
atencion del recien nacido CUIDADOS INMEDIATOS.pptatencion del recien nacido CUIDADOS INMEDIATOS.ppt
atencion del recien nacido CUIDADOS INMEDIATOS.ppt
 
HERENCIA LIGADA A LOS CROMOSOMAS SEXUALES....pptx
HERENCIA LIGADA A LOS CROMOSOMAS SEXUALES....pptxHERENCIA LIGADA A LOS CROMOSOMAS SEXUALES....pptx
HERENCIA LIGADA A LOS CROMOSOMAS SEXUALES....pptx
 
(2024-04-17) SISTEMASDERETENCIONINFANTIL.pdf
(2024-04-17) SISTEMASDERETENCIONINFANTIL.pdf(2024-04-17) SISTEMASDERETENCIONINFANTIL.pdf
(2024-04-17) SISTEMASDERETENCIONINFANTIL.pdf
 
Situaciones difíciles. La familia reconstituida
Situaciones difíciles. La familia reconstituidaSituaciones difíciles. La familia reconstituida
Situaciones difíciles. La familia reconstituida
 
(2024-25-04) Epilepsia, manejo el urgencias (doc).docx
(2024-25-04) Epilepsia, manejo el urgencias (doc).docx(2024-25-04) Epilepsia, manejo el urgencias (doc).docx
(2024-25-04) Epilepsia, manejo el urgencias (doc).docx
 
urgencia y emergencia. Diferencias y ejemplos
urgencia y emergencia. Diferencias y ejemplosurgencia y emergencia. Diferencias y ejemplos
urgencia y emergencia. Diferencias y ejemplos
 

Resumen capítulos de guyton

  • 1. Resumen del capítulo 1 de Guyton: Introducción a la Fisiología y la célula. El objetivo de la fisiología es explicar los factores físicos y químicos responsables del origen, desarrollo y progresión de la vida. La fisiología humana explica las características y mecanismos específicos del cuerpo humano que hacen que este sea un ser vivo, esto lo podemos comprobar gracias al estudio de sistemas de control complejos que nos permiten funcionar como humanos. Las células son la unidad viva básica del cuerpo, ya que estas forman órganos que tienen un soporte intercelular. Cada una de las células va a estar especializada y por ende tendrá una función distinta dependiendo en donde se va a alojar. Y estas tienen una capacidad de reproducción que permite que haya mismas células con la función específica de su progenitora. El 60% del cuerpo humano del adulto es líquido, y este se encontrará en una solución acuosa de iones y otras sustancias. El líquido que se encuentra adentro de las células se le conocerá como líquido intracelular, que es aproximadamente 2/3 del total del líquido del cuerpo humano. En cambio se lo conoce como Liquido extracelular al líquido restante que se encuentra afuera de la célula, este líquido se caracteriza por estar en movimiento constante por todo el cuerpo gracias al torrente sanguíneo y puede mezclarse con la sangre y los líquidos tisulares por difusión a través de las paredes de los capilares. También se le conoce al líquido extracelular como medio interno, ya que ahí se encuentran circulando los nutrientes de las células. Las diferencias entre los líquidos extracelular e intracelular son principalmente las cantidades de sustancias que tienen ambos, ya que uno tendrá en mayor cantidad que la otra sustancia. Homeostasis La homeostasis se define como el mantenimiento de las condiciones casi constantes del medio interno. La homeostasis se puede mantener gracias al movimiento de la sangre por todo el cuerpo y también gracias al movimiento del medio interno entre los capilares sanguíneos y los espacios intercelulares entre las células tisulares, lo que dará al intercambio entre el líquido extracelular y el líquido intracelular. En este proceso las paredes de los capilares se vuelven permeables (que permiten el paso del líquido) y se intercambian los iones gracias a la difusión. El intercambio ocurre en los capilares, y se intercambia material del líquido intersticial y del líquido intracelular. Los orígenes de los nutrientes que circulan en el líquido extracelular, pueden venir del aparato respiratorio, del aparato digestivo, del hígado, del aparato locomotor, entre otros más. El sistema nervioso se encuentra compuesta de tres partes principales: La porción de aferencia sensitiva (detectan el estímulo), el SNC (integra estímulos y los decodifica) y la porción eferente motora (transmite estímulos). Además tenemos al sistema nervioso autónomo que funciona independientemente de nuestra voluntad, y ayudará a regular nuestro cuerpo en muchas formas, y una de ellas es a través de las glándulas endocrinas. Las glándulas endocrinas son 8 y se encargan de secretar hormonas, estas sustancias circularan
  • 2. alrededor del torrente sanguíneo más específicamente en el líquido extracelular y cumplirán diversas funciones en el organismo. Ejemplo de ellas son las hormonas tiroideas, las suprarrenales, la paratiroidea entre otras más. Sistemas de control del organismo Para poder mantener la homeostasis es necesario que tengamos sistemas de control de nuestro organismo, ya sea para actuar dentro de los órnanos o bien controlar las interacciones que estos tienen con el resto de los órganos., uno de los ejemplos más comunes es la de la regulación de las concentraciones de oxígeno y dióxido de carbono que se lleva a cabo gracias a la hemoglobina que se encuentra dentro de los eritrocitos que es la que llevará a cabo la función amortiguadora de oxigeno de la hemoglobina, que se encarga principalmente de llevar el oxígeno hacia los capilares para que la célula lo pueda aprovechar. En caso de que se tenga que desechar mucha cantidad de Dióxido de Carbono se excitará el centro respiratorio que servirá para aumentar la espiración de dicho dióxido de carbono y los líquidos tisulares hasta que se llegue la concentración a una concentración normal. Otro ejemplo más claro es la de la regulación de la TA que se lleva a cabo por los barorreceptores. También para que el líquido intracelular se tenga valores constantes, se necesitan una serie de condiciones para poder estar en equilibrio. Uno de los ejemplos es la temperatura corporal del cuerpo humano, que puede suceder en caso de que se agreguen 7° c a dicha temperatura, destruirán a las células, y también el estado del pH. Los sistemas de control estarán regulados por la retroalimentación negativa, que es la que ayuda a establecer la mayoría de los sistemas de control del organismo. En pocas palabras si algún factor dentro de nuestro cuerpo se vuelve excesivo o deficiente se inicia una serie de cambios que hacen que devuelvan el factor a un medio en que se pueda tener la homeostasis, esto se encuentra determinado por las constantes de la ganancia de la retroalimentación positiva. capítulo 1 de Guyton: La célula y sus funciones Cuerpo humano está por 100 billones cada con estructura y funciones especiales. Organización celular.- se muestra sus dos partes y sustancias fundamentales Agua: principal medio liquido de 70- 80% excepto en los adipositos Iones. Los importantes K, mg, fosfato, bicarbonato y pequeñas porciones de Na, cloruro y calcio, actúan en las reacciones químicas y mecanismos de control. Proteínas: 10-20% de la masa celular hay 2 proteínas estructurales y funcionales. Proteínas estructurales: formación de micro túbulos que forman los citoesqueletos Proteínas funcionales: catalizan reacciones químicas intracelulares específicas. Lípidos. Solubles en disolventes grasos 2% masa células, fosfolípidos y colesterol.
  • 3. Hidratos de carbono: Forma parte de las moléculas glucoproteicas y función nutrición celular, insoluble con la glucosa. Estructura física de la célula.- contiene estructuras físicas muy organizadas que son orgánulos intracelulares, cada orgánulo contiene componentes químicos. Estructuras membranosas de la célula: La mayoría de los organismos están compuestas por membranas compuestas de lípidos y proteínas. Membrana celular: bicapa lipídica cubre la célula es elástica fina y flexible. * la barrera lipídica impide la penetración del agua formada por fosfolípidos. Citoplasma y sus orgánulos: lleno de partículas diminutas Retículo endoplásmico: son estructuras vesiculares tubulares planas del citoplasma Ribosomas y retículo endoplásmico rugoso: unida a la superficie se encuentran los ribosomas, formados por mezcla de ARN y proteínas Retículo endoplásmico granular: parte del R.E no tiene ribosomas Aparato de Golgí: esta por 4 a más capas de vesículas cerradas finas y planas Lisosomas: son orgánulos vesiculares, se forma por la rotura del aparato de Golgí Peroxisomas: similares a lisosomas pero contienen oxidasas en vez de hidrolasas. Vesículas secretoras: almacenan proenzimas que segregan a través de la membrana hacían el conducto pancreático o el duodeno. Mitocondrias: o centros neurálgicos, sin ellas no se podría extraer energía de los nutrientes se encuentran en el citoplasma de la célula. Citoesqueleto celular: estructura filamentosas y tubulares: se originan en filamentos o túbulos, microtúbulos actúan como citoesqueleto proporcionando estructuras físicas rígidas para determinadas partes de la célula. Núcleo: centro del control de la célula, grandes cantidades de ADN. Membrana nuclear: 2 membranas bicapa, permite que atraviesen elementos Nucléolo y formación de ribosomas: la mayoría de células contienen 1 o más estructuras que se tiñen y se denominan nucléolo. Fagocitosis: entran en la célula mediante la función de una membrana. Pinositosis: se producen en las membranas celulares. Capitulo 3 Fisiología de Guyton Introducción En general se conoce que los genes son el medio principal para la herencia de genes de padres a hijos, que se encuentra en el núcleo de las células de todo el organismo. Sin embargo este desarrolla funcionas más específicas y necesarias del organismo, controlando así la función cotidiana de todas la células del organismo, los genes controlan las funciones de las células al determinar que sustancias se van a sintetizar dentro de ella misma.
  • 4. Desarrollo Genes en el núcleo celular: Los genes se unen por sus extremos, formando la doble hélice llamada ADN. Esta molécula está formada por varios compuestos químicos sencillos unidos con un patrón regular. Bloques básicos del ADN: sus principales componentes son el ácido fosfórico, una azúcar, ya sea ribosa o desoxirribosa y cuatro bases nitrogenadas. Estos nucleótidos se unen laxamente entre sí, para formar la doble cadena de ADN, esto por enlaces débiles llamados puentes de hidrógenos, pero que en gran cantidad logran ser muy estables. Cada base purinica de adenina se una con una pirimidinica de timina, cada base purinica guanina siempre se une con una pirimidinica citosina, debido a la laxitud de los puentes de hidrogeno, estas hebras se separan con facilidad. En cada vuelta completa de la hélice, hay diez pares de nucleótidos. La importancia del ADN es sucapacidad de sintetizar proteínas mediante su código genético, el cual consta de tripletes sucesivos de bases nitrogenadas. El código del ADN del núcleo celular se transfiere al código de ARN en el citoplasma celular: transcripción. El primer paso para sintetizar ARN es separar temporalmente las dos hebras del ADN y usar una como molde, las diferencias entre una hebra de ADN y ARN es la ribosa en vez de desoxirribosa y uracilo en lugar de timina en el ARN. Después a estos nucleótidos se les añade a cada uno dos radicales fosfato más, para formar trifosfatos, y así “activar” a los nucleótidos. Con el fin de que cada nucleótido cuente con una gran cantidad de energía. La ARN polimeraza es una gran enzima proteica que tiene muchas propiedades funcionales para la formación de ARN. Esta reconoce y se une al promotor por medio de una estructura complementaria, después provoca el desenrrollamiento de dos vueltas de hélice y separa momentáneamente las de hebras, después esta se desplaza por la hebra de ADN y conforme esta avance van añadiéndose nucleótidos de ARN y se forma la cadena de ARN, primero se forman los puentes de hidrogeno entre las bases nitrogenadas del ADN y ARN, después la ARN polimeraza rompe 2 radicales fosfato de los nucleótidos de ARN liberando energía para producir enlaces covalentes muy fuertes entre el fosfato ylas ribosas adyacentes y así formar la cadena de ARN, al final la ARN polimeraza se encuentra con un secuencia terminadora de cadena que provoca que esta enzima y la cadena de ARN se separe de la cadena de ADN, después esta enzima se puede usar de nuevo. Hay 4 tipos diferentes de ARN que tiene un papel independiente y totalmente diferente en la síntesis de proteínas. ARN mensajero: Transporta el código genético al citoplasma para controlar el tipo de proteína que se forma. Estas cadenas son largas, compuestas por varios cientos de miles de nucleótidos, es una cadena no pareada, con codones complementarios a los tripletes de código de genes del ADN. ARN de transferencia: Transfiere las moléculas de aminoácidos a medida que se sintetiza proteínas cada tipo de ARDt b se combina específicamente con 1 de los 20 aminoácidos, este reconoce el codón del ARNm y libera el aminoácido, contiene solo 80 nucleótidos, tiene una cadena plegada. ARN ribosomal: Constituye el 60% del ribosoma, el resto lo conforma proteínas, este se sintetiza en el nucléolo, por lo tanto en células que producn grandes cantidades de proteínas el nucléolo esta agrandado, el ARNr se une a las proteínas ribosómicas en el nucléolo, estos salen por los poros de la membrana nuclear al citoplasma y se convierten en ribosomas. MicroARN: Son cortos fragmentos de ARNmonocatenario, de 21 a 23 nucleótidos que regulan la expresión génica. Formación de proteínas en los ribosomas: El proceso de traducción. Es la unión de una molécula de ARNm a un ribosoma, este le su codón de inicio, las moléculas de ARNt
  • 5. transportan los aminoácidos y los libera para formar la proteína. Al llegar al codón de terminación se separan y la proteína queda completa. En algunos casos un solo ARNm puede sintetizar varias cadenas de aminoácidos con ayuda de un complejo llamado polirribosomas, el ARNm se une a varios ribosomas. Síntesis de otras sustancias en la célula. Las enzimas se producen a partir del proceso que acabamos de ver, estas favorecen la síntesis de lípido, glucógeno, purinas, pirimidinas y cientos de otras sustancias Control de la función genética y actividad bioquímica de las células. Hay dos métodos de control de las actividades químicas de la célula, 1) la regulación genética, que cubre todo el proceso, desde la transcripción del código genético en el núcleo hasta la formación de proteínas en el citoplasma, esta controla el grado de activación de los genes y la formación de productos génicos, y 2) regulación enzimática, que regula los niveles de actividad de las enzimas ya formadas en la célula. La celula tiene un ciclo vital que transcurre desde el inicio de la reproducción celular , hastael inicio de la siguiente reproducción celular, las células animales no inhibidas se reproducen tan rápido como puedes y su ciclo puede durar de 10 a 30 horas, y termina por una serie de sucesos físicos diferenciados llamados mitosis, esta dura solo 30 minutos. La reproducción de la célula comienza en el núcleo, con la replicación del ADN, esta comienza de 5 a 10 horas antes de la mitosis y se completa en 4 a 8 horas, Para la replicación del ADN se replican ambas cadenas, y de forma completa, en esto participan las ADN polimeraza y la ADN ligasa que provoca la unión de nucleótidos, la formación de una nueva cadena de ADN se produce en cientos de lugares simultáneamente, cada molécula nueva de ADN se mantiene unida a la original por puentes de hidrogeno. Las hélices de ADN del núcleo se desenrolla en cromosomas. La célula humana tiene 46 cromosomas en 23 pares. Proface: los cromosomas del núcleo se condensan en cromosomas bien definidos. Prometafase: las puntas de los microtúbulos en crecimiento se fragmentan en la cubierta nuclear. Metafase: las dos ásteres del aparato mitótico se separan. Anafase: las dos cromatidas de cada cromosoma son separadas en el centromero. Telofase: los dos juegos de cromosomas hijos se separan. En algunos tejidos la falta de células provocan que estas se reproduzcan mas rápida y continuamente,el crecimiento celular se controla por medio de factores de crecimiento, las células dejan de crecer si salen de su medio y cuando se puede recoger cantidades diminutas de sus propias secreciones. El tamaño de la célula está regulado principalmente por la cantidad de ADN funcionante en el núcleo. La diferenciación celular son los cambios de las propiedades físicas y funcionales de las células a medida que proliferan en el embrión para formar las distintas estructuras y órganos corporales. El número de células en el organismo no está solo controlado por la división celular, también por el control de la velocidad de muerte, cuando las células ya no se necesitan, o cuando se convierten en una amenaza para el organismos, sufre la muerte celular programada llamada apoptosis , esto implica una cascada proteolítica especifica que hace que la célula se encoja y condense para desmontar su citoesqueleto y alterar su superficie de tal manera que una célula fagocitica cercana , se pueda unir a la membrana celular y digerir la célula. El cáncer se debe en todo o en casi todos los casos a la mutación o alguna otra actividad anormal de los genes celulares que controlan el crecimiento y la mitosis celular, los genes anormales se denominan oncogenes y se han descubierto hasta 100 tipos diferentes. Las células cancerígenas norespetan los niveles normales de crecimiento, no se adhieren fácilmente entre si y producen factores angiogenicos.
  • 6. El tejido canceroso compite con el tejido normal, como las células cancerígenas continúan proliferándose continuamente, su número aumenta día con día y pronto demandan prácticamente toda la nutrición disponible. Análisis El conocer la función específica del núcleo, nos ayuda a salir de las generalidades, como médicos debemos conocer cuáles son las verdaderas funciones de la célula, sin embargo, es importante saber que cada proceso que se realiza en la célula es mediado por otro proceso, esto nos lleva hasta el núcleo, siendo este la base para la producción de proteínas, las cuales regulan todos los procesos de la célula y el organismo en general, por lo tanto es importante que se conozca cual es el proceso por el cual se producen las proteínas, se duplica el ADN y se produce el ARN, puesto que a final de cuentas todo depende de estas moléculas. Al igual es importante conocer que las células tienen mecanismos de regulación que determinan su crecimiento y tamaño de cada célula, así como hay un mecanismo que regula la muerte celular, todo esto con el in de que exista un equilibrio, en el que todas las células sean funcionales y que el organismo cuente con el número necesario de células. capítulo 4 de Guyton: Transporte de Sustancias a través de la Membrana Celular Las diferencias entre la composición del líquido Intracelular y el líquido Extracelular se deben a los mecanismos de transporte que se dan en la membrana celular. Las concentraciones de fosfatos y de proteínas en el líquido intracelular son mayores que las del líquido extracelular. La Barrera Lipídica y las Proteínas de Transporte de la Membrana Celular La membrana celular están constituidas por una bicapa lipídica con moléculas proteicas insertadas en los lípidos. Difusión Movimiento pasivo, de sustancias (solutos), de una zona de mayor concentración a una de menor concentración, en un disolvente o a través de membranas La difusión a través de la membrana celular se divide en dos subtipos, difusión simple y difusión facilitada. * La difusión simple: Las moléculas atraviesan una membrana sin unirse a proteínas transportadoras, se puede dar de 2 maneras: 1. A través de los intersticios de la bicapa lipídica 2. A través de los canales acuosos de las proteínas transportadoras. * La difusión facilitada: Requiere una proteína transportadora. A mayor liposolubilidad más rápido difunde. Difusión a través de Canales Proteicos y Activación de estos Canales La apertura o el cierre de las compuertas de los canales proteicos proporcionan un sistema de control de su permeabilidad. Se controla de 2 maneras: * Activación por Voltaje: la conformación molecular de la compuerta responde al potencial eléctrico. * Activación Química: las compuertas se abren al unirse otra molécula a la proteína que produce un cambio conformacional o un cambio de los enlaces químicos de la molécula de la proteína que abre o cierra la compuerta. Osmosis a través de Membranas con Permeabilidad Selectiva: Difusión Neta de Agua
  • 7. Es el proceso de movimiento neto de agua debido a una diferencia de concentración del agua. La diferencia de presión necesaria para que cese la ósmosis se denomina presión osmótica. * Osmolalidad: Un osmol es el peso molecular-gramo de un soluto osmóticamente activo. * Osmolaridad: Es la concentración osmolar expresada en osmoles por litro de solución en lugar de osmoles por kilogramo de agua. Transporte Activo de Sustancias a través de las Membranas Es el movimiento de sustancias a través de la membrana en combinación con una proteína de transporte, en contra de un gradiente electroquímico. Necesita una fuente de energía adicional, además de la energía cinética. Hay dos tipos de transporte activo * Transporte activo primario. La energía deriva de la ruptura del ATP. * Transporte activo secundario. La energía deriva secundariamente de la que se ha almacenado en forma de diferencia de concentraciones iónicas a ambos lados de la membrana. Transporte Activo Primario * La bomba de sodio-potasio transporta iones de sodio hacia fuera de la célula e iones potasio hacia el interior de ésta. Esta bomba está presente en todas las células del cuerpo y es la responsable de mantener las diferencias de concentración de sodio y de potasio a ambos lados de la membrana celular, así como de establecer un potencial eléctrico negativo en el interior de las células. La bomba de sodio-potasio controla el volumen de la célula. La bomba transporta 3 moléculas de sodio al exterior de la célula por cada 2 moléculas de potasio bombeadas hacia el interior. Transporte Activo Secundario *Cotransporte: Es el movimiento de 2 sustancias hacia adentro de la célula, mediante una proteína transportadora.. La proteína transportadora posee dos puntos de unión en su lado externo: uno para el sodio y otro para la glucosa o los aminoácidos. * Contratransporte: Es el movimiento de 2 sustancias, a diferencia del cotransporte, una sustancia se mueve desde el exterior de la célula hacia el interior, mientras la otra desde el interior de la célula hacia el exterior Transporte Activo a través de Capas Celulares En muchas localizaciones del cuerpo se deben transportar sustancias a través de todo el espesor de una capa celular en lugar de simplemente a través de la membrana celular. capítulo 5 de Guyton: Potenciales de membrana y potenciales de acción El potencial de acción viaja en todas las direcciones acercándose del estimulo hasta que se ha despolarizado toda la membrana. Principio del todo o nada
  • 8. El proceso de despolarización viaja por toda la membrana si las condiciones son adecuadas, o no viaja en absoluto si no lo son. Restablecimiento de los gradientes iónicos de sodio y potasio tras completarse los potenciales de acción: la importancia del metabolismo de la energía. La propagación de cada potencial de acción reduce muy ligeramente las concentraciones de sodio y de potasio en el interior y en el exterior de la membrana, porque los iones de sodio difunden hacia el exterior durante la re polarización. Meseta en algunos potenciales de acción. La causa de la meseta es una combinación de varios factores, en primer lugar en el proceso de despolarización del musculo cardiaco participan dos tipos decanales: 1. Canales rápidos 2. Canales lentos. En segundo factor que puede ser responsable en parte de la meseta es que los canales de potasio activados por el voltaje tienen una apertura más lenta de lo habitual y con frecuencia no se abren mucho hasta el final de la meseta. Proceso de reexcitacion necesario para la ritmicidad espontanea. Para que ocurra una ritmicidad espontanea en la membrana, debe ser lo suficientemente permeable a los iones de sodio como para permitir la despolarización automática de la membrana, el voltaje que se produce no es lo suficientemente negativo como para mantener totalmente cerrados los canales de sodio y de calcio. Después, al final del potencial de acción se repolariza la membrana. Características especiales de la transmisión de señales en los troncos nerviosos, fibras nerviosas mielinizadas y no mielinizadas. Las fibras grandes son mielinizadas y las fibras pequeñas son no mielinizadas. Un tronco nervioso medio contiene aproximadamente el doble de fibras no mielinizadas que mielinizadas. Conducción saltatoria en las fibras mielinizadas de un nódulo a otro. La corriente eléctrica fluye por el líquido extracelular circundante que está afuera de la vaina de mielina, así como por el axoplasma del interior del axón, de un nódulo a otro, excitando nódulos sucesivos uno después del otro, así el impulso nervioso recorre a saltos la fibra, y por eso recibe el nombre de saltatoria. Velocidad de conducción en las fibras nerviosas Varía de tan solo 0.25 m/s en las fibras no mielinizadas muy pequeñas hasta 100m/s en las fibras mielinizadas muy grandes. Excitación: el proceso de generación del potencial de acción Se debe a un trastorno mecánico de la membrana, a los efectos químicos sobre la membrana al paso de la electricidad a través de la membrana.
  • 9. Umbral de excitación y potenciales locales agudos. Cuando aumenta el voltaje del estimulo se llega a un punto en el que se produce la excitabilidad. No se puede producir un nuevo potencial de acción en una fibra excitable mientras la membrana siga despolarizada por el potencial de acción procedente. La única situación que permitirá que se vuelva a abrir es que el potencial de acción de membrana vuelva al nivel del potencial de membrana en reposo origina lo cercano. El periodo durante el cual no se puede generar un segundo potencial de acción, incluso con un estimulo intenso, a esto se le denomina periodo refractario absoluto. Anestésicos Entre los estabilizadores más importantes de uso clínico están la procaina y tetracraina, estos compuestos actúan directamente sobre las compuertas desactivación de los canales de sodio, haciendo que sea mucho más difícil abrir estas compuertas reduciendo la excitabilidad de la membrana. Registró de potenciales de membrana y potenciales de acción osciloscopio de rayos catódicos Sistema que se encarga de registrar los cambios de potencial de acción de la membrana, los componentes son los siguientes: Cañón de electrodos y una pantalla fluorescente, contra la que se disparan los electrones. capítulo 6 de Guyton: Contracción del musculo esquelético El cuerpo humano está formado por un 40% de musculo esquelético y un 10% de musculo liso y cardiaco. Anatomía fisiológica del musculo esquelético Fibras del musculo esquelético Todos los músculos esqueléticos están formados por numerosas fibras que se extienden a lo largo de toda la longitud del musculo. Las fibras musculares están formadas principalmente por: Sarcolema, miofibrillas, sarcoplasma, retículo sarcoplasmático Mecanismo general de la contracción muscular 1) Un potencial de acción viaja a lo largo de la fibra motora hasta sus terminales sobre las fibras musculares 2) En cada terminal, el nervio secreta una pequeña cantidad de la sustancia transmisora: acetilcolina 3) La acetilcolina actúa en una zona local de la membrana de la fibra muscular para abrirmúltiples canales a través de moléculas proteicas que flotan en la membrana 4) La apertura de los canales activados por acetilcolina permite que grandes cantidades de iones de sodio difundan hacia el interior de la membrana de la fibra muscular. Esto inicia el potencial de acción en la membrana 5) El potencial de acción viaja a lo largo de la membrana de la fibra muscular
  • 10. 6) El potencial de acción despolariza la membrana muscular y buena parte de la electricidad del potencial de acción fluye a través del centro de la fibra muscular, donde hace que el retículo sarcoplasmatico libere grandes cantidades de iones de calcio 7) Los iones de calcio inician fuerzas de atracción entre los filamentos de actina y miosina haciendo que se deslicen uno sobre otros en sentido longitudinal, lo que constituye el proceso contráctil 8) Después de una fracción de segundo los iones de calcio son bombeados de nuevo al retículo sarcoplasmatico por una bomba de calcio de la membrana Energía de la contracción muscular Generación de trabajo durante la contracción muscular Cuando un musculo se contrae contra una carga realiza un trabajo (transfiere energía del musculo hasta la carga externa) El trabajo se define mediante la siguiente ecuación: T = C x D T: Trabajo generado /C: Carga/D: Distancia del movimiento que se opone a la carga Fuentes de energía para la contracción muscular El ATP es una fuente muy importante para la contracción muscular y al mismo tiempo es la fuente de energía necesaria para que se provoque la contracción muscular Características de la contracción de todo el musculo Muchas características de la contracción muscular se pueden demostrar desencadenando espasmos musculares únicos. Esto se puede conseguir con la excitación eléctrica instantánea del nervio que inerva un musculo o haciendo pasar un estímulo eléctrico breve a través del propio musculo dando lugar a una única contracción súbita que dura una fracción de segundo Contracción isométrica frente a la isotónica La contracción muscular es isométrica cuando el musculo no se acorta durante la contracción e isotónica cuando se acorta, pero la tensión permanece constante durante toda la contracción. En la isotónica el musculo se carota contra una carga fija Fibras musculares rápidas frente a lentas Fibras rápidas: fibras grandes para obtener una gran fuerza de contracción; retículo sarcoplasmatico extenso; grandes cantidades de enzimas glucoliticas; vascularización menos extensa; menos mitocondrias Fibras lentas: fibras más pequeñas; inervadas por fibras nerviosas más pequeñas; vascularización i capilares más extensos; número elevado de mitocondrias; grandes cantidades de mioglobina capítulo 7de Guyton:Excitacióndel musculo esquelético:transmisiónneuromusculary acoplamiento excitación-contracción
  • 11. Transmisión de impulsos desde las terminaciones nerviosas a las fibras del musculo esquelético: la unión neuromuscular Las fibras del musculo esquelético están inervadas por fibras nerviosas mielinizadas grandes que se originan en las motoneuronas grandes de las astas anteriores de la medula espinal. Cada terminación nerviosa forma una unión neuromuscular. Anatomía fisiológica de la unión neuromuscular: la placa motora terminal La fibra nerviosa forma un complejo de terminaciones nerviosas ramificadas que se invaginan en la superficie de la fibra muscular, la estructura se denomina placa motora terminal. En la terminación axonica hay muchas mitocondrias que proporcionan ATP que se utiliza para la síntesis de acetilcolina. La acetilcolina, excita a la membrana de la fibra muscular. En el espacio sináptico hay grandes cantidades de la enzima acetilcolinesterasa, que destruye la acetilcolina. Secreción de acetilcolina por las terminaciones nerviosas Cuando un impulso nervioso llega a la unión neuromuscular, se liberan aproximadamente 125 vesículas de ACh. En la superficie interna de la membrana neural hay barras densas lineales. A ambos lados de cada una hay partículas proteínicas que penetran en la membrana neural; son canales de calcio activados por el voltaje. Cuando un potencial de acción se propaga por la terminación, estos canales se abren y permiten que iones calcio difundan desde el espacio sináptico hacia el interior. Las vesículas se fusionan con la membrana neural y vacían su actilcolina hacia el espacio sináptico mediante exocitosis. Efecto de la Acetilcolina sobre la membrana de la fibra muscular postsinaptica para abrir canales iónicos El principal efecto de la apertura de los canales activados por la ACh es permitir que grandes cantidades de iones sodio entren al interior de la fibra, desplazando con ellos grandes números de cargas positivas. Esto genera un cambio de potencial, potencial de la placa terminal. Este potencial de la placa terminal inicia un potencial de acción que se propaga a lo largo de la membrana muscular y produce la contracción muscular Destrucción por la acetilcolinesterasa de la acetilcolina liberada Una vez liberado hacia el espacio sináptico, la acetilcolina sigue activando los receptores de ACh mientras persista en el espacio. Sin embrago, se elimina rápidamente por dos medios: 1. La mayor parte es destruida por la enzima acetilcolinesterasa 2. Una pequeña cantidad de acetilcolina difunde hacia el exterior del espacio sináptico Factor de seguridad para la transmisión en la unión neuromuscular; fatiga de la unión Habitualmente cada impulso que llega a la unión neuromuscular produce un potencial de la placa terminal aproximadamente tres veces mayor que el necesario para estimular la fibra
  • 12. nerviosa. Por tanto, se dice que la unión neuromuscular normal tiene un elevado factor de seguridad. Biología molecular de la formación y liberación de acetilcolina La formación y liberación de acetilcolina se produce en las siguientes etapas: 1. Se forman vesículas pequeñas en el aparato de Golgí del cuerpo celular de la motoneurona. Estas son transportadas por el axoplasma hasta la unión neuromuscular en las terminaciones de las fibras nerviosas periféricas. 2. La acetilcolina se sintetiza en el citosol de la terminación de la fibra nerviosa, se transporta inmediatamente a través de la membrana de las vesículas hasta su interior. 3. Cuando un potencial de acción llega a la terminación nerviosa, abre los canales de Ca. La concentración de iones de Ca en el interior de la membrana, lo que a su vez aumenta la velocidad de fusión de las vesículas de acetilcolina con la membrana terminal- Mistenia grave Esta produce paralisis muscular debido a que las uniones neuromusculares no pueden transmitir suficientes señales desde las fibras nerviosas a las fibras musculares. La mistenia grave es una enfermedad autoinmunitaria. CAPÍTULO 8 EXCITACIÓN Y CONTRACCIÓN DEL MÚSCULO LISO Es distinto del de la mayor parte de los demás en varios sentidos: 1) dimensiones físicas; 2) organización en fascículos o láminas; 3) respuesta a diferentes tipos de estímulos; 4) características de la inervación, y 5) función. -Músculo liso multiunitario. Está formado por fibras musculares lisas separadas y discretas.Cada una de las fibras actúa independientemente de las demás y con frecuencia está inervada por una única terminación nerviosa. Además estas fibras, está cubierta por una capa delgada de sustancia similar a una membrana basal, una mezcla de colágeno fino y glucoproteínasque aísla las fibras separadas entre sí. -Músculo liso unitario. Se denomina músculo liso sincitial o visceral. El término «unitario» es confuso porque no se refiere a fibras musculares únicas.Se refiere a una masa de cientos a miles de fibras que se contraen juntas como una única unidad.Están unidas por muchas uniones en hendidura a través de las cuales los iones pueden fluir libremente desde una célula muscular a otra, de modo que los potenciales de acción puede viajar desde una fibra a otra y hacer que las fibras musculares se contraigan simultáneamente. -Mecanismo contráctil en el músculo liso
  • 13. Contiene filamentos tanto de actina como de miosina. No contiene el complejo de troponinanormal que es necesario para el control de la contracción del músculo esquelético. Los filamentos de actina y miosina del músculo liso interactúan entre sí de manera muy similar a como lo hacen en el músculo esquelético. Además, el proceso contráctil es activado por los iones calcio, y el trifosfato de adenosina se degrada a difosfato de adenosina para proporcionar la energía para la contracción. -Regulación de la contracción por los iones calcio Al igual que en el caso del músculo esquelético, el estímuloque inicia la mayor parte de las contracciones del músculo liso es un aumento de los iones calcio en el medio intracelular. Sin embargo, el músculo liso no contiene troponina, la proteína reguladora que es activada por los iones calcio para producir la contracción del músculo esquelético. -Los iones calcio se combinan con la calmodulina para provocar la activación de la miosinacinasa y fosforilación de la cabeza de miosina. La calmodulina lo hace activando los puentes cruzados de miosina. Esta activación y la posterior contracción se producen según la siguiente secuencia: 1. Los iones calcio se unen a la calmodulina. 2. El complejo calmodulina-calcio se une después a la miosinacinasa de cadena ligera, que es una enzima fosforiladora, y la activa. 3. Una de las cadenas ligeras de cada una de las cabezas de miosina, denominada cabeza reguladora, se fosforila en respuesta a esta miosinacinasa.