SlideShare una empresa de Scribd logo
1 de 9
Descargar para leer sin conexión
Transferencia de calor en el Sistema de Refrigeración
Ing. Leopoldo Rosario Ramos Página 1
REFRIGERACION
Si echamos agua en fase líquido a temperatura ambiente en un recipiente y tomamos
agua en la fase sólido y las echamos en el mismo recipiente se produce una transferencia
de calor del agua que se encuentra en la fase líquido hacia el agua que se encuentra en
la fase solido hasta alcanzar el equilibrio térmico. Esta transferencia de calor que se
efectúa desde un cuerpo de mayor calor hacia uno de menor calor es los que se llama
refrigeración. Ya que el agua que se encontraba a una temperatura por encima de 0 o
C
transfirió su calor a la que se encontraba por debajo de 0 o
C, aumentando una su
temperatura y bajando la otra su temperatura.
Entonces podemos decir que refrigeración es cuando se le extrae calor a un cuerpo
provocando una transferencia de calor de uno de mayor calor a otro de menor calor hasta
alcanzar su equilibrio térmico.
TRANSFERENCIA DE CALOR POR CONDUCCIÓN
Cuando en un cuerpo existe un gradiente de temperatura, se puede observar que hay una
transferencia de energía desde la región de mayor calor hacia la región de menor calor.
Se dice que la energía se ha transferido por conducción y que el flujo de calor por unidad
de área es proporcional al gradiente normal de temperatura:
Resistencia térmica
Propiedad física de los materiales que mide su capacidad de oponerse a un flujo de calor
Transmitancia térmica
Propiedad física de los materiales que mide la cantidad de energía que atraviesa un
elemento en una unidad de tiempo, es decir, mide el calor que se pierde o se gana a
través de un elemento
Transferencia de calor en el Sistema de Refrigeración
Ing. Leopoldo Rosario Ramos Página 2
CONDUCTIVIDAD TÉRMICA
Propiedad física de los materiales que mide su capacidad de conducción de calor, es
decir, mide como de fácil es el paso de calor a través de ellos.
Donde q es el flujo de calor, A es el área de la superficie donde se transferirá dicho calor y
𝜕𝑇
𝑑𝑇
es el gradiente de temperatura en la dirección del flujo de calor. La constante positiva k
se llama conductividad térmica del material, y se ha puesto el signo menos para satisfacer
el segundo principio de la termodinámica; esto es, el calor debe fluir hacia las
temperaturas decrecientes, como se indica en el sistema de coordenadas de la Figura 1
.1.
La Ec. (1.1) se llama ley de Fourier de la conducción de calor en honor al físico-
matemático francés Joseph Fourier, quien hizo contribuciones muy importantes al
tratamiento analítico de la transferencia de calor por conducción. Es importante señalar
que la Ec. (1.1) es la ecuación que define la conductividad térmica y que k tiene las
unidades de vatios por metro y por grado Celsius en un sistema de unidades en el que el
flujo de calor se exprese en vatios.
La Ec. (1.1) es la que define la conductividad térmica. Basándose en esta definición
pueden realizarse medidas experimentales para determinar la conductividad térmica de
diferentes materiales. Para gases, a temperaturas moderadamente bajas, pueden
utilizarse los tratamientos analíticos de la teoría cinética de gases para predecir con
precisión los valores observados experimentalmente. En algunos casos, se dispone de
teorías para la predicción de las conductividades térmicas de líquidos y sólidos, pero, por
lo general, cuando se trata de líquidos y sólidos es preciso clarificar algunas cuestiones y
conceptos todavía abiertos.
El mecanismo de la conducción térmica en gases es muy simple. Se identifica la energía
cinética de una molécula con su temperatura; así, en una región de alta temperatura, las
moléculas poseen velocidades más altas que en una región de baja temperatura. Las
moléculas están en continuo movimiento aleatorio, chocando unas con otras e
Transferencia de calor en el Sistema de Refrigeración
Ing. Leopoldo Rosario Ramos Página 3
intercambiando energía y cantidad de movimiento. Las moléculas tienen ese movimiento
aleatorio exista o no un gradiente de temperatura en el gas.
Si una molécula se mueve desde una región de alta temperatura a otra de menor
temperatura, transporta energía cinética hacia la zona del sistema de baja temperatura y
cede esta energía mediante los choques con las moléculas de menor energía.
En la Tabla 1.1 se da la lista de valores típicos de la conductividad térmica de algunos
materiales para indicar los órdenes de magnitud relativos que se esperan en la práctica.
En el Apéndice A se da una tabla con información más completa. En general, la
conductividad térmica depende fuertemente de la temperatura. Se señala que la
conductividad térmica tiene unidades de vatio por metro y por grado Celsius cuando el
flujo de calor se expresa en vatios. Nótese que está involucrada la rapidez del calor y el
valor numérico de la conductividad térmica indica lo rápido que el calor fluirá en un mate-
rial dado. ¿Cómo se ha tenido en cuenta la rapidez de la transferencia de energía en el
modelo molecular del que se ha hablado anteriormente?
Sencillamente cuando más rápidamente se mueven las moléculas, más rápidamente
transportaran la energía. Por tanto, la conductividad térmica de un gas debe depender de
la temperatura. Un tratamiento analítico simplificado muestra que la conductividad térmica
de un gas varía con la raíz cuadrada de la temperatura absoluta. (Conviene recordar que
la velocidad del sonido en un gas varía con la raíz cuadrada de la temperatura absoluta;
esta velocidad es aproximadamente la velocidad media de las moléculas.) En la Figura se
muestran la conductividad térmica de algunos gases típicos. Para la mayoría de los
gases a presiones moderadas la conductividad térmica es solo función de la temperatura.
Más debajo podremos ver cómo funciona la transferencia de calor en algunos equipos de
refrigeración, solo mencionaremos la transferencia de calor por conducción y por
convección.
Primero empezaremos hablando como interactúa la transferencia de calor en la válvula de
expansión termostática y el funcionamiento de esta válvula en el sistema de refrigeración.
También estaremos hablando de la transferencia de calor en el condensador, la línea de
descarga y la línea de descarga, y por ultimo hablaremos de la transferencia de calor en
el evaporador y la línea de succión
Transferencia de calor en el Sistema de Refrigeración
Ing. Leopoldo Rosario Ramos Página 4
Transferencia de calor en la válvula de expansión termostática
Funciones de una Válvula de Expansión Termostática (VET)
Una VET tiene tres funciones principales las cuales podemos clasificar de las
siguientes formas:
Podemos decir que su primera función es provocar una caída de presión y de temperada
al fluido refrigerante al paso de este hacia el evaporador.
Atomizar el fluido refrigerante a la entrada de la tubería del serpentín del evaporador para
que este pueda ser distribuido en todas las paredes del conducto de dicho evaporador, y
así provocar una transferencia de calor más efectiva hacia las paredes del tubo.
Controlar el flujo de refrigerante hacia el evaporador de las siguientes maneras:
Si la temperatura dentro del evaporador aumenta por la transferencia de calor del aire
caliente succionado por el abanico del habitáculo, aire este que extrae el calor de las
carga térmica de este habitáculo, este refrigerante al salir del evaporador por la línea de
succión la cual va hacia el compresor con todo el calor recogido en el evaporador el
proporcional un recalentamiento de dicho en dicha línea. Este calor es transferido por
transferencia de calor por conducción al bulbo termostático de la válvula de expansión, el
cual contiene un refrigerante especial al cual también se les transfiere calor por
convección y al recibir este calor el refrigerante disminuye su densidad, viajando hacia la
Transferencia de calor en el Sistema de Refrigeración
Ing. Leopoldo Rosario Ramos Página 5
el diafragma de la válvula de expansión, haciendo que esta se expanda, empujando hacia
abajo el resorte de sobrecalentamiento, anchando así el orificio de paso de refringente
para que este pueda fluir en mayor proporción hacia el evaporador.
Cuando al evaporador ha penetrado suficiente refrigerante en estado líquido con un
porcentaje de calor bien bajo, este se enfría los suficiente, provocando que parte del
refrigerante llegue a la línea de succión con poco calor, es decir frio, esto hace que el
bulbo al encontrarse caliente transfiera por conducción su calor a la tubería de la línea de
succión a la vez que el refrigerante que se encuentra en el capilar del bulbo transfiera su
calor a la pared del bulbo, lo cual ocasiona un enfriamiento del refrigerante, lo cual hace
que este refrigerante aumente su densidad y por tanto su volumen, provocando que el
diafragma deje la expansión y deje de presionar el resorte, disminuyendo así el orificio
que da paso al refringente por la válvula de expansión cuyo refrigerante es atomizado a la
entrada del evaporador.
Nota:
Este proceso es el que hace que cuando el refrigerando se encuentra muy caliente en el
evaporador la válvula deje pasar más refrigerante y cuando este se ha enfriado los
suficiente hace que la válvula sierre para que pase meno refrigerante, es los que se
puede denominar como control de flujo de refringente al evaporador.
Transferencia de calor en el Sistema de Refrigeración
Ing. Leopoldo Rosario Ramos Página 6
En la figura de más arriba se muestra una válvula de expansión termostática para trabajar
en un sistema de aire para Vehículo de motor. Donde, si observa la figura podrá ver la
diferencia entre esta y la de un sistema de aire industrial, esta válvula no posee un bulbo
térmico, ni tubo capilar solo posee una varilla (embolo) especial que hace la veces de
sensor térmico que al recibir la sensibilidad del calor del refrigerante hace que el gas
refrigerante contenido en el diafragma (membrana) aumente o disminuya su densidad a la
vez que aumenta o disminuye su volumen al calentarse o enfriarse, los cual sucede como
se describe más abajo:
Cuando el refrigerante que has entrado al evaporador se calienta al recibir el calor que
trae el aire succionado por el abanico, calor este que es de la carga térmica del habitáculo
del vehículo, hace que el refrigerante sufra un sobrecalentamiento a la salida del
evaporador, este calor de sobrecalentamiento transfiere su calor por conversión al embolo
(varilla) de la válvula, la cual a su vez transfiere su calor por conversión al fluido
refrigerante especial que se encuentra en el diafragma (membrana) haciendo que este
aumente su volumen, haciendo que el diafragma (membrana) empuje el embolo para que
la bola habrá más el paso de refrigerante hacia el evaporador.
Cuando al evaporador ha pasado una cantidad de refrigerante suficiente para provocar
que todo el refrigerante que se encuentre en el evaporador se encuentre frio, empezará a
salir refrigerante más frio del evaporador por donde se encuentra el embolo (Varilla), y al
el embolo encontrarse caliente, este empieza a transferir su calor al refrigerante, a la vez
que este pierde calor, el gas refrigerante especial que se encuentra en el diafragma
(membrana) también transfiere su calor por convección al embolo (varilla). Al refrigerante
trasferir su calor al embolo (varilla) este aumenta su densidad y por tanto disminuye su
volumen haciendo que el diafragma deje de expandirse y deje de presionar el resorte para
que la bola cierre más el espacio por donde fluye el refrigerante que va al evaporador.
Transferencia de Calor en el Condensador
Cuando el refrigerante sale del compresor a alta temperatura, alta presión y con la
máxima cantidad de calor hacia el condensador a través de la línea de descarga, es
desde este inicio donde empieza la transferencia de calor por convección natural, cuando
el aire a temperatura ambiente choca con la tubería de descarga y esta transfiere su calor
Transferencia de calor en el Sistema de Refrigeración
Ing. Leopoldo Rosario Ramos Página 7
al aire que choca contra ella, de igual manera el refrigerante caliente que viene del
compresor en dirección al condensador transfiere su calor por convección a la pared de la
tubería, la cual transfiere su calor al aire del medio ambiente iniciando así su
condensación durante este proceso.
Ya el refrigerante dentro del condensador, al recibir el aire extraído o expulsado por el
abanico de del condensador aumenta la transferencia de calor por convección forzada,
cuando las tuberías y aletas de enfriamientos transfirieren su calor al aire exterior, al
transferir su calor las aletas de enfriamientos y la tubería del serpentín al aire exterior
estas se enfrían, para dar comienzo a la transferencia de calor del refrigerante a las
paredes de las tubería del serpentín al tiempo en que los tubos transfieren su calor a las
aletas de enfriamiento por conducción. Al refrigerante transferir su calor a las paredes de
la tubería, este deja de perder el calor sensible de evaporación para perder el calor latente
de evaporación para su cambio de fase, donde pasa a la fase liquida ya a la salida del
evaporador, dirigiéndose al depósito de líquido a través de la línea de líquido.
Sistema de refrigeración y aire acondicionado por compresión
Transferencia de Calor en el Evaporador
Cuando el refrigerante sale de la válvula de expansión ya viene a baja presión y a baja
temperatura, con su mínima cantidad de calor ya a la entrada del evaporador.
Durante el paso del refrigerante a través de las tuberías del evaporador este empieza
recibir calor transferido desde las paredes de la tubería por convección natural por lo cual
el refrigerante gana una cantidad de calor sensible hasta llegar hasta la línea de succión
don recibe un sobrecalentamiento ya en la salida del evaporador al recibir una cantidad de
calor latente de evaporación para convertirse en vapor. Cuando la tubería transfiere su
Transferencia de calor en el Sistema de Refrigeración
Ing. Leopoldo Rosario Ramos Página 8
calor al fluido refrigerante esta se enfría por lo cual empiezan a ganar calor transferido
desde las aletas de enfriamientos por conducción y del aire extraído o expulsado por el
abanico del evaporador por convección forzada. Al aire transferir su calor a las tuberías y
las aletas de enfriamiento del serpentín del evaporador este se enfría al traspasar el
evaporador y llegar al habitáculo donde se encuentran los cuerpos a refrigerar, donde
este aire empieza a ganar calor por las cargas térmicas producidas por los cuerpos,
equipos y materiales que generan calor en dicho espacio.
Este aire al ganar calor de estas cargas térmicas es extraído nuevamente por el abanico
del evaporador para transferir su calor a las tuberías y aletas de enfriamiento
nuevamente.
Sistema de refrigeración y aire acondicionado
Transferencia de calor en el Sistema de Refrigeración
Ing. Leopoldo Rosario Ramos Página 9
El grafico muestra una circulación de aire en un Sistema automotriz y sus componentes
Nota de conclusión:
Para que un sistema de refrigeración pueda funcionar tiene que haber un intercambio de
calor del sistema con el medio que los rodea, por tanto es preciso decir que la
refrigeración no existiría si no existiera la trasferencia de calor, puesto que sus
componentes más importantes son intercambiadores de calor. Sin temor a equivocarme
puedo decir que la refrigeración y la transferencia de calor van tomada de las manos en
todo el trayecto del funcionamiento de un equipo de refrigeración y aire acondicionados.

Más contenido relacionado

La actualidad más candente

Cálculo de el condensador en un intercambiador de calor
Cálculo de el condensador en un intercambiador de calorCálculo de el condensador en un intercambiador de calor
Cálculo de el condensador en un intercambiador de calorE.T.I.R EUGENIO MENDOZA
 
Tema 4. intercambiadores de calor mejorado
Tema 4. intercambiadores de calor mejoradoTema 4. intercambiadores de calor mejorado
Tema 4. intercambiadores de calor mejoradomahulig
 
Tipos y equipos de evaporadores
Tipos y equipos de evaporadoresTipos y equipos de evaporadores
Tipos y equipos de evaporadoresKarina Chavez
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calorskiper chuck
 
Evaporadores, clasificación de los evaporadores de refrigeración
Evaporadores, clasificación de los evaporadores de refrigeraciónEvaporadores, clasificación de los evaporadores de refrigeración
Evaporadores, clasificación de los evaporadores de refrigeraciónWJC HVAC
 
Intercambiadores de-calor-tipos-generales-y-aplicaciones
Intercambiadores de-calor-tipos-generales-y-aplicacionesIntercambiadores de-calor-tipos-generales-y-aplicaciones
Intercambiadores de-calor-tipos-generales-y-aplicacionesyumardiaz
 
Intercambiadores de Calor
Intercambiadores de Calor Intercambiadores de Calor
Intercambiadores de Calor Andres Cullay
 
Ciclos de refrigeración-termodinamica
Ciclos de refrigeración-termodinamicaCiclos de refrigeración-termodinamica
Ciclos de refrigeración-termodinamicaYanina C.J
 
Reporte intercambiadores de calor
Reporte intercambiadores de calorReporte intercambiadores de calor
Reporte intercambiadores de calorAndres Flores
 
Problemas resueltos tf refrigeracion
Problemas resueltos tf refrigeracionProblemas resueltos tf refrigeracion
Problemas resueltos tf refrigeracionulises445
 
Diagrama entálpico
Diagrama entálpicoDiagrama entálpico
Diagrama entálpicopachecoman
 
Cuadro de comparación de calderas pirotubulares y acuatubulares
Cuadro de comparación de calderas pirotubulares y acuatubularesCuadro de comparación de calderas pirotubulares y acuatubulares
Cuadro de comparación de calderas pirotubulares y acuatubularesJohn Agudelo
 
Práctica X y XI Aplicación de la Ley de Fourier
Práctica X y XI Aplicación de la Ley de FourierPráctica X y XI Aplicación de la Ley de Fourier
Práctica X y XI Aplicación de la Ley de FourierKaren M. Guillén
 

La actualidad más candente (20)

Condensadores
CondensadoresCondensadores
Condensadores
 
INTERCAMBIADORES DE CALOR
INTERCAMBIADORES DE CALORINTERCAMBIADORES DE CALOR
INTERCAMBIADORES DE CALOR
 
Cálculo de el condensador en un intercambiador de calor
Cálculo de el condensador en un intercambiador de calorCálculo de el condensador en un intercambiador de calor
Cálculo de el condensador en un intercambiador de calor
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calor
 
Tema 4. intercambiadores de calor mejorado
Tema 4. intercambiadores de calor mejoradoTema 4. intercambiadores de calor mejorado
Tema 4. intercambiadores de calor mejorado
 
Evaporador
EvaporadorEvaporador
Evaporador
 
Tipos y equipos de evaporadores
Tipos y equipos de evaporadoresTipos y equipos de evaporadores
Tipos y equipos de evaporadores
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calor
 
Informe caldera
Informe calderaInforme caldera
Informe caldera
 
Transferencia de calor
Transferencia de calorTransferencia de calor
Transferencia de calor
 
Evaporadores, clasificación de los evaporadores de refrigeración
Evaporadores, clasificación de los evaporadores de refrigeraciónEvaporadores, clasificación de los evaporadores de refrigeración
Evaporadores, clasificación de los evaporadores de refrigeración
 
Intercambiadores de-calor-tipos-generales-y-aplicaciones
Intercambiadores de-calor-tipos-generales-y-aplicacionesIntercambiadores de-calor-tipos-generales-y-aplicaciones
Intercambiadores de-calor-tipos-generales-y-aplicaciones
 
Intercambiadores de Calor
Intercambiadores de Calor Intercambiadores de Calor
Intercambiadores de Calor
 
Perfil de temperatura
Perfil de temperaturaPerfil de temperatura
Perfil de temperatura
 
Ciclos de refrigeración-termodinamica
Ciclos de refrigeración-termodinamicaCiclos de refrigeración-termodinamica
Ciclos de refrigeración-termodinamica
 
Reporte intercambiadores de calor
Reporte intercambiadores de calorReporte intercambiadores de calor
Reporte intercambiadores de calor
 
Problemas resueltos tf refrigeracion
Problemas resueltos tf refrigeracionProblemas resueltos tf refrigeracion
Problemas resueltos tf refrigeracion
 
Diagrama entálpico
Diagrama entálpicoDiagrama entálpico
Diagrama entálpico
 
Cuadro de comparación de calderas pirotubulares y acuatubulares
Cuadro de comparación de calderas pirotubulares y acuatubularesCuadro de comparación de calderas pirotubulares y acuatubulares
Cuadro de comparación de calderas pirotubulares y acuatubulares
 
Práctica X y XI Aplicación de la Ley de Fourier
Práctica X y XI Aplicación de la Ley de FourierPráctica X y XI Aplicación de la Ley de Fourier
Práctica X y XI Aplicación de la Ley de Fourier
 

Destacado

Tipos de refrigerantes y cargas de refrigeracion
Tipos de refrigerantes y cargas de refrigeracionTipos de refrigerantes y cargas de refrigeracion
Tipos de refrigerantes y cargas de refrigeracionjuliethperez21
 
Sistema refrigeracion
Sistema refrigeracionSistema refrigeracion
Sistema refrigeracionJavier Jalomo
 
Refrigeración
RefrigeraciónRefrigeración
Refrigeraciónamechato
 
Conceptos básicos de transferencia de calor
Conceptos básicos de transferencia de calorConceptos básicos de transferencia de calor
Conceptos básicos de transferencia de calorheverika
 
Tema 2 conceptos mecanicos
Tema 2 conceptos mecanicosTema 2 conceptos mecanicos
Tema 2 conceptos mecanicosRoger Montecinos
 
Tema 2-ciclos-de-refrigeracion
Tema 2-ciclos-de-refrigeracionTema 2-ciclos-de-refrigeracion
Tema 2-ciclos-de-refrigeracionrichardson342
 
Sistema de aire acondicionado
Sistema de aire acondicionadoSistema de aire acondicionado
Sistema de aire acondicionadoVictor Ruiz Ortiz
 
Los componentes del sistema de refrigeración
Los componentes del sistema de refrigeraciónLos componentes del sistema de refrigeración
Los componentes del sistema de refrigeraciónSofia Nathaly
 
Sistema de enfriamiento
Sistema de enfriamientoSistema de enfriamiento
Sistema de enfriamientotheonesi
 
Sistema de enfriamiento en motores de combustion interna
Sistema de enfriamiento en motores de combustion internaSistema de enfriamiento en motores de combustion interna
Sistema de enfriamiento en motores de combustion internaDaniel Martinez Ortiz
 
Refrigeracion por Compresion Exposicion
Refrigeracion por Compresion ExposicionRefrigeracion por Compresion Exposicion
Refrigeracion por Compresion ExposicionGiovana Vargas Colque
 
Conservacion de los alimentos por refrigeracion
Conservacion de los alimentos por refrigeracionConservacion de los alimentos por refrigeracion
Conservacion de los alimentos por refrigeracionOmar Rubalcava
 
Refrigeracion automotriz
Refrigeracion automotrizRefrigeracion automotriz
Refrigeracion automotrizSENA
 
Transferencia de calor
Transferencia de calorTransferencia de calor
Transferencia de calorGuillermo Diaz
 
Refrigerantes, Codigo de Colores
Refrigerantes, Codigo de ColoresRefrigerantes, Codigo de Colores
Refrigerantes, Codigo de ColoresGildardo Yañez
 
Diapositiva de sistemsa de refrigeracion
Diapositiva de sistemsa de refrigeracionDiapositiva de sistemsa de refrigeracion
Diapositiva de sistemsa de refrigeracionDenis Ugeño
 
Sistema de refrigeracion
Sistema de refrigeracionSistema de refrigeracion
Sistema de refrigeracionJenny Troya
 

Destacado (20)

Tipos de refrigerantes y cargas de refrigeracion
Tipos de refrigerantes y cargas de refrigeracionTipos de refrigerantes y cargas de refrigeracion
Tipos de refrigerantes y cargas de refrigeracion
 
Sistema refrigeracion
Sistema refrigeracionSistema refrigeracion
Sistema refrigeracion
 
Sistema de enfriamiento de motores de combustión
Sistema de enfriamiento de motores de combustiónSistema de enfriamiento de motores de combustión
Sistema de enfriamiento de motores de combustión
 
Refrigeración
RefrigeraciónRefrigeración
Refrigeración
 
Conceptos básicos de transferencia de calor
Conceptos básicos de transferencia de calorConceptos básicos de transferencia de calor
Conceptos básicos de transferencia de calor
 
Tema 2 conceptos mecanicos
Tema 2 conceptos mecanicosTema 2 conceptos mecanicos
Tema 2 conceptos mecanicos
 
Tema 2-ciclos-de-refrigeracion
Tema 2-ciclos-de-refrigeracionTema 2-ciclos-de-refrigeracion
Tema 2-ciclos-de-refrigeracion
 
Sistema de aire acondicionado
Sistema de aire acondicionadoSistema de aire acondicionado
Sistema de aire acondicionado
 
Los componentes del sistema de refrigeración
Los componentes del sistema de refrigeraciónLos componentes del sistema de refrigeración
Los componentes del sistema de refrigeración
 
sistema de refrigeración del motor
sistema de refrigeración del motorsistema de refrigeración del motor
sistema de refrigeración del motor
 
Sistema de enfriamiento
Sistema de enfriamientoSistema de enfriamiento
Sistema de enfriamiento
 
Sistema de enfriamiento en motores de combustion interna
Sistema de enfriamiento en motores de combustion internaSistema de enfriamiento en motores de combustion interna
Sistema de enfriamiento en motores de combustion interna
 
Refrigeracion por Compresion Exposicion
Refrigeracion por Compresion ExposicionRefrigeracion por Compresion Exposicion
Refrigeracion por Compresion Exposicion
 
Conservacion de los alimentos por refrigeracion
Conservacion de los alimentos por refrigeracionConservacion de los alimentos por refrigeracion
Conservacion de los alimentos por refrigeracion
 
Refrigeracion automotriz
Refrigeracion automotrizRefrigeracion automotriz
Refrigeracion automotriz
 
Transferencia de calor
Transferencia de calorTransferencia de calor
Transferencia de calor
 
Refrigerantes, Codigo de Colores
Refrigerantes, Codigo de ColoresRefrigerantes, Codigo de Colores
Refrigerantes, Codigo de Colores
 
Diapositiva de sistemsa de refrigeracion
Diapositiva de sistemsa de refrigeracionDiapositiva de sistemsa de refrigeracion
Diapositiva de sistemsa de refrigeracion
 
Sistema de refrigeracion
Sistema de refrigeracionSistema de refrigeracion
Sistema de refrigeracion
 
Sistema de refrigeracion
Sistema de refrigeracionSistema de refrigeracion
Sistema de refrigeracion
 

Similar a Trasferencia de calor en los componentes de refrigeracion

Transferencia de calor, mecanismos de transferencia de calor
Transferencia de calor, mecanismos de transferencia de calorTransferencia de calor, mecanismos de transferencia de calor
Transferencia de calor, mecanismos de transferencia de calorCristian Guerra Cetrone
 
2 do trabajo de investigacion de fisica ii
2 do trabajo de investigacion de fisica ii2 do trabajo de investigacion de fisica ii
2 do trabajo de investigacion de fisica iioswaldo
 
Teorico introduccion a_la_t_de_q
Teorico introduccion a_la_t_de_qTeorico introduccion a_la_t_de_q
Teorico introduccion a_la_t_de_qJorge Ferrer
 
Presentación de transferencia de Calor1.ppt
Presentación de transferencia de Calor1.pptPresentación de transferencia de Calor1.ppt
Presentación de transferencia de Calor1.pptLuisRodrigoBolvarnLa
 
Práctica 12 Transferencia de Calor por Convección
Práctica 12 Transferencia de Calor por ConvecciónPráctica 12 Transferencia de Calor por Convección
Práctica 12 Transferencia de Calor por ConvecciónJasminSeufert
 
Práctica de transferencia de calor por coductividad, convección y transferenc...
Práctica de transferencia de calor por coductividad, convección y transferenc...Práctica de transferencia de calor por coductividad, convección y transferenc...
Práctica de transferencia de calor por coductividad, convección y transferenc...Mauricio Huhn
 
Tema 1 aspectos generales
Tema 1   aspectos generalesTema 1   aspectos generales
Tema 1 aspectos generalesegliomar
 
9.INTERCAMBIADORES DE CALOR.pdf
9.INTERCAMBIADORES DE CALOR.pdf9.INTERCAMBIADORES DE CALOR.pdf
9.INTERCAMBIADORES DE CALOR.pdfssuser1c613d
 
Temas selectos de fisica
Temas selectos de fisicaTemas selectos de fisica
Temas selectos de fisicaCyM5317
 
Wilmer bravo presentacion slideshare
Wilmer bravo presentacion slideshareWilmer bravo presentacion slideshare
Wilmer bravo presentacion slideshareleottaengels
 

Similar a Trasferencia de calor en los componentes de refrigeracion (20)

Intercambiadores de Calor
Intercambiadores de CalorIntercambiadores de Calor
Intercambiadores de Calor
 
Transferencia de calor, mecanismos de transferencia de calor
Transferencia de calor, mecanismos de transferencia de calorTransferencia de calor, mecanismos de transferencia de calor
Transferencia de calor, mecanismos de transferencia de calor
 
Intercambio de calor
Intercambio de calorIntercambio de calor
Intercambio de calor
 
Intercambio de calor
Intercambio de calorIntercambio de calor
Intercambio de calor
 
Intercambio de calor
Intercambio de calorIntercambio de calor
Intercambio de calor
 
Cedeño fernandez - maldonado
Cedeño   fernandez - maldonadoCedeño   fernandez - maldonado
Cedeño fernandez - maldonado
 
2 do trabajo de investigacion de fisica ii
2 do trabajo de investigacion de fisica ii2 do trabajo de investigacion de fisica ii
2 do trabajo de investigacion de fisica ii
 
Calorimetría
CalorimetríaCalorimetría
Calorimetría
 
Teorico introduccion a_la_t_de_q
Teorico introduccion a_la_t_de_qTeorico introduccion a_la_t_de_q
Teorico introduccion a_la_t_de_q
 
Imprimir dos
Imprimir dosImprimir dos
Imprimir dos
 
Presentación de transferencia de Calor1.ppt
Presentación de transferencia de Calor1.pptPresentación de transferencia de Calor1.ppt
Presentación de transferencia de Calor1.ppt
 
Práctica 12 Transferencia de Calor por Convección
Práctica 12 Transferencia de Calor por ConvecciónPráctica 12 Transferencia de Calor por Convección
Práctica 12 Transferencia de Calor por Convección
 
Práctica de transferencia de calor por coductividad, convección y transferenc...
Práctica de transferencia de calor por coductividad, convección y transferenc...Práctica de transferencia de calor por coductividad, convección y transferenc...
Práctica de transferencia de calor por coductividad, convección y transferenc...
 
Tema 1 aspectos generales
Tema 1   aspectos generalesTema 1   aspectos generales
Tema 1 aspectos generales
 
9.INTERCAMBIADORES DE CALOR.pdf
9.INTERCAMBIADORES DE CALOR.pdf9.INTERCAMBIADORES DE CALOR.pdf
9.INTERCAMBIADORES DE CALOR.pdf
 
Temas selectos de fisica
Temas selectos de fisicaTemas selectos de fisica
Temas selectos de fisica
 
Wilmer bravo presentacion slideshare
Wilmer bravo presentacion slideshareWilmer bravo presentacion slideshare
Wilmer bravo presentacion slideshare
 
Practicas de fisica ii
Practicas de fisica iiPracticas de fisica ii
Practicas de fisica ii
 
Practicas de fisica ii
Practicas de fisica iiPracticas de fisica ii
Practicas de fisica ii
 
transferencia de calor
transferencia de calortransferencia de calor
transferencia de calor
 

Último

Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanenteDiapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanenteinmaculadatorressanc
 
animalesdelaproincia de beunos aires.pdf
animalesdelaproincia de beunos aires.pdfanimalesdelaproincia de beunos aires.pdf
animalesdelaproincia de beunos aires.pdfSofiaArias58
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxFernando Solis
 
Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024IES Vicent Andres Estelles
 
AEC2. Egipto Antiguo. Adivina, Adivinanza.pptx
AEC2. Egipto Antiguo. Adivina, Adivinanza.pptxAEC2. Egipto Antiguo. Adivina, Adivinanza.pptx
AEC2. Egipto Antiguo. Adivina, Adivinanza.pptxhenarfdez
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalJonathanCovena1
 
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdfLas Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdfDemetrio Ccesa Rayme
 
12 - Planetas Extrasolares - Seminario de las Aulas de la Experiencia UPV/EHU
12 - Planetas Extrasolares - Seminario de las Aulas de la Experiencia UPV/EHU12 - Planetas Extrasolares - Seminario de las Aulas de la Experiencia UPV/EHU
12 - Planetas Extrasolares - Seminario de las Aulas de la Experiencia UPV/EHUSantiago Perez-Hoyos
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOluismii249
 
La Evaluacion Formativa SM6 Ccesa007.pdf
La Evaluacion Formativa SM6  Ccesa007.pdfLa Evaluacion Formativa SM6  Ccesa007.pdf
La Evaluacion Formativa SM6 Ccesa007.pdfDemetrio Ccesa Rayme
 
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docx
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docxUNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docx
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docxMaria Jimena Leon Malharro
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primariaWilian24
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONamelia poma
 
10-08 Avances tecnológicos del siglo XXI.pdf
10-08 Avances tecnológicos del siglo XXI.pdf10-08 Avances tecnológicos del siglo XXI.pdf
10-08 Avances tecnológicos del siglo XXI.pdfVanyraCumplido
 
1ERGRA~2.PDF EVALUACION DIAGNOSTICA 2024
1ERGRA~2.PDF EVALUACION DIAGNOSTICA 20241ERGRA~2.PDF EVALUACION DIAGNOSTICA 2024
1ERGRA~2.PDF EVALUACION DIAGNOSTICA 2024hlitocs
 
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Lineamientos de la Escuela de la Confianza  SJA  Ccesa.pptxLineamientos de la Escuela de la Confianza  SJA  Ccesa.pptx
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptxDemetrio Ccesa Rayme
 
FICHA CUENTO BUSCANDO UNA MAMÁ 2024 MAESTRA JANET.pdf
FICHA CUENTO BUSCANDO UNA MAMÁ  2024 MAESTRA JANET.pdfFICHA CUENTO BUSCANDO UNA MAMÁ  2024 MAESTRA JANET.pdf
FICHA CUENTO BUSCANDO UNA MAMÁ 2024 MAESTRA JANET.pdfPaulaAnglicaBustaman
 
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 

Último (20)

Sesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdfSesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdf
 
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanenteDiapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
 
animalesdelaproincia de beunos aires.pdf
animalesdelaproincia de beunos aires.pdfanimalesdelaproincia de beunos aires.pdf
animalesdelaproincia de beunos aires.pdf
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 
Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024
 
AEC2. Egipto Antiguo. Adivina, Adivinanza.pptx
AEC2. Egipto Antiguo. Adivina, Adivinanza.pptxAEC2. Egipto Antiguo. Adivina, Adivinanza.pptx
AEC2. Egipto Antiguo. Adivina, Adivinanza.pptx
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración Ambiental
 
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdfLas Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
 
12 - Planetas Extrasolares - Seminario de las Aulas de la Experiencia UPV/EHU
12 - Planetas Extrasolares - Seminario de las Aulas de la Experiencia UPV/EHU12 - Planetas Extrasolares - Seminario de las Aulas de la Experiencia UPV/EHU
12 - Planetas Extrasolares - Seminario de las Aulas de la Experiencia UPV/EHU
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
 
La Evaluacion Formativa SM6 Ccesa007.pdf
La Evaluacion Formativa SM6  Ccesa007.pdfLa Evaluacion Formativa SM6  Ccesa007.pdf
La Evaluacion Formativa SM6 Ccesa007.pdf
 
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docx
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docxUNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docx
UNIDAD DIDACTICA nivel inicial EL SUPERMERCADO.docx
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
 
10-08 Avances tecnológicos del siglo XXI.pdf
10-08 Avances tecnológicos del siglo XXI.pdf10-08 Avances tecnológicos del siglo XXI.pdf
10-08 Avances tecnológicos del siglo XXI.pdf
 
1ERGRA~2.PDF EVALUACION DIAGNOSTICA 2024
1ERGRA~2.PDF EVALUACION DIAGNOSTICA 20241ERGRA~2.PDF EVALUACION DIAGNOSTICA 2024
1ERGRA~2.PDF EVALUACION DIAGNOSTICA 2024
 
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Lineamientos de la Escuela de la Confianza  SJA  Ccesa.pptxLineamientos de la Escuela de la Confianza  SJA  Ccesa.pptx
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
 
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdfTÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
 
FICHA CUENTO BUSCANDO UNA MAMÁ 2024 MAESTRA JANET.pdf
FICHA CUENTO BUSCANDO UNA MAMÁ  2024 MAESTRA JANET.pdfFICHA CUENTO BUSCANDO UNA MAMÁ  2024 MAESTRA JANET.pdf
FICHA CUENTO BUSCANDO UNA MAMÁ 2024 MAESTRA JANET.pdf
 
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
 

Trasferencia de calor en los componentes de refrigeracion

  • 1. Transferencia de calor en el Sistema de Refrigeración Ing. Leopoldo Rosario Ramos Página 1 REFRIGERACION Si echamos agua en fase líquido a temperatura ambiente en un recipiente y tomamos agua en la fase sólido y las echamos en el mismo recipiente se produce una transferencia de calor del agua que se encuentra en la fase líquido hacia el agua que se encuentra en la fase solido hasta alcanzar el equilibrio térmico. Esta transferencia de calor que se efectúa desde un cuerpo de mayor calor hacia uno de menor calor es los que se llama refrigeración. Ya que el agua que se encontraba a una temperatura por encima de 0 o C transfirió su calor a la que se encontraba por debajo de 0 o C, aumentando una su temperatura y bajando la otra su temperatura. Entonces podemos decir que refrigeración es cuando se le extrae calor a un cuerpo provocando una transferencia de calor de uno de mayor calor a otro de menor calor hasta alcanzar su equilibrio térmico. TRANSFERENCIA DE CALOR POR CONDUCCIÓN Cuando en un cuerpo existe un gradiente de temperatura, se puede observar que hay una transferencia de energía desde la región de mayor calor hacia la región de menor calor. Se dice que la energía se ha transferido por conducción y que el flujo de calor por unidad de área es proporcional al gradiente normal de temperatura: Resistencia térmica Propiedad física de los materiales que mide su capacidad de oponerse a un flujo de calor Transmitancia térmica Propiedad física de los materiales que mide la cantidad de energía que atraviesa un elemento en una unidad de tiempo, es decir, mide el calor que se pierde o se gana a través de un elemento
  • 2. Transferencia de calor en el Sistema de Refrigeración Ing. Leopoldo Rosario Ramos Página 2 CONDUCTIVIDAD TÉRMICA Propiedad física de los materiales que mide su capacidad de conducción de calor, es decir, mide como de fácil es el paso de calor a través de ellos. Donde q es el flujo de calor, A es el área de la superficie donde se transferirá dicho calor y 𝜕𝑇 𝑑𝑇 es el gradiente de temperatura en la dirección del flujo de calor. La constante positiva k se llama conductividad térmica del material, y se ha puesto el signo menos para satisfacer el segundo principio de la termodinámica; esto es, el calor debe fluir hacia las temperaturas decrecientes, como se indica en el sistema de coordenadas de la Figura 1 .1. La Ec. (1.1) se llama ley de Fourier de la conducción de calor en honor al físico- matemático francés Joseph Fourier, quien hizo contribuciones muy importantes al tratamiento analítico de la transferencia de calor por conducción. Es importante señalar que la Ec. (1.1) es la ecuación que define la conductividad térmica y que k tiene las unidades de vatios por metro y por grado Celsius en un sistema de unidades en el que el flujo de calor se exprese en vatios. La Ec. (1.1) es la que define la conductividad térmica. Basándose en esta definición pueden realizarse medidas experimentales para determinar la conductividad térmica de diferentes materiales. Para gases, a temperaturas moderadamente bajas, pueden utilizarse los tratamientos analíticos de la teoría cinética de gases para predecir con precisión los valores observados experimentalmente. En algunos casos, se dispone de teorías para la predicción de las conductividades térmicas de líquidos y sólidos, pero, por lo general, cuando se trata de líquidos y sólidos es preciso clarificar algunas cuestiones y conceptos todavía abiertos. El mecanismo de la conducción térmica en gases es muy simple. Se identifica la energía cinética de una molécula con su temperatura; así, en una región de alta temperatura, las moléculas poseen velocidades más altas que en una región de baja temperatura. Las moléculas están en continuo movimiento aleatorio, chocando unas con otras e
  • 3. Transferencia de calor en el Sistema de Refrigeración Ing. Leopoldo Rosario Ramos Página 3 intercambiando energía y cantidad de movimiento. Las moléculas tienen ese movimiento aleatorio exista o no un gradiente de temperatura en el gas. Si una molécula se mueve desde una región de alta temperatura a otra de menor temperatura, transporta energía cinética hacia la zona del sistema de baja temperatura y cede esta energía mediante los choques con las moléculas de menor energía. En la Tabla 1.1 se da la lista de valores típicos de la conductividad térmica de algunos materiales para indicar los órdenes de magnitud relativos que se esperan en la práctica. En el Apéndice A se da una tabla con información más completa. En general, la conductividad térmica depende fuertemente de la temperatura. Se señala que la conductividad térmica tiene unidades de vatio por metro y por grado Celsius cuando el flujo de calor se expresa en vatios. Nótese que está involucrada la rapidez del calor y el valor numérico de la conductividad térmica indica lo rápido que el calor fluirá en un mate- rial dado. ¿Cómo se ha tenido en cuenta la rapidez de la transferencia de energía en el modelo molecular del que se ha hablado anteriormente? Sencillamente cuando más rápidamente se mueven las moléculas, más rápidamente transportaran la energía. Por tanto, la conductividad térmica de un gas debe depender de la temperatura. Un tratamiento analítico simplificado muestra que la conductividad térmica de un gas varía con la raíz cuadrada de la temperatura absoluta. (Conviene recordar que la velocidad del sonido en un gas varía con la raíz cuadrada de la temperatura absoluta; esta velocidad es aproximadamente la velocidad media de las moléculas.) En la Figura se muestran la conductividad térmica de algunos gases típicos. Para la mayoría de los gases a presiones moderadas la conductividad térmica es solo función de la temperatura. Más debajo podremos ver cómo funciona la transferencia de calor en algunos equipos de refrigeración, solo mencionaremos la transferencia de calor por conducción y por convección. Primero empezaremos hablando como interactúa la transferencia de calor en la válvula de expansión termostática y el funcionamiento de esta válvula en el sistema de refrigeración. También estaremos hablando de la transferencia de calor en el condensador, la línea de descarga y la línea de descarga, y por ultimo hablaremos de la transferencia de calor en el evaporador y la línea de succión
  • 4. Transferencia de calor en el Sistema de Refrigeración Ing. Leopoldo Rosario Ramos Página 4 Transferencia de calor en la válvula de expansión termostática Funciones de una Válvula de Expansión Termostática (VET) Una VET tiene tres funciones principales las cuales podemos clasificar de las siguientes formas: Podemos decir que su primera función es provocar una caída de presión y de temperada al fluido refrigerante al paso de este hacia el evaporador. Atomizar el fluido refrigerante a la entrada de la tubería del serpentín del evaporador para que este pueda ser distribuido en todas las paredes del conducto de dicho evaporador, y así provocar una transferencia de calor más efectiva hacia las paredes del tubo. Controlar el flujo de refrigerante hacia el evaporador de las siguientes maneras: Si la temperatura dentro del evaporador aumenta por la transferencia de calor del aire caliente succionado por el abanico del habitáculo, aire este que extrae el calor de las carga térmica de este habitáculo, este refrigerante al salir del evaporador por la línea de succión la cual va hacia el compresor con todo el calor recogido en el evaporador el proporcional un recalentamiento de dicho en dicha línea. Este calor es transferido por transferencia de calor por conducción al bulbo termostático de la válvula de expansión, el cual contiene un refrigerante especial al cual también se les transfiere calor por convección y al recibir este calor el refrigerante disminuye su densidad, viajando hacia la
  • 5. Transferencia de calor en el Sistema de Refrigeración Ing. Leopoldo Rosario Ramos Página 5 el diafragma de la válvula de expansión, haciendo que esta se expanda, empujando hacia abajo el resorte de sobrecalentamiento, anchando así el orificio de paso de refringente para que este pueda fluir en mayor proporción hacia el evaporador. Cuando al evaporador ha penetrado suficiente refrigerante en estado líquido con un porcentaje de calor bien bajo, este se enfría los suficiente, provocando que parte del refrigerante llegue a la línea de succión con poco calor, es decir frio, esto hace que el bulbo al encontrarse caliente transfiera por conducción su calor a la tubería de la línea de succión a la vez que el refrigerante que se encuentra en el capilar del bulbo transfiera su calor a la pared del bulbo, lo cual ocasiona un enfriamiento del refrigerante, lo cual hace que este refrigerante aumente su densidad y por tanto su volumen, provocando que el diafragma deje la expansión y deje de presionar el resorte, disminuyendo así el orificio que da paso al refringente por la válvula de expansión cuyo refrigerante es atomizado a la entrada del evaporador. Nota: Este proceso es el que hace que cuando el refrigerando se encuentra muy caliente en el evaporador la válvula deje pasar más refrigerante y cuando este se ha enfriado los suficiente hace que la válvula sierre para que pase meno refrigerante, es los que se puede denominar como control de flujo de refringente al evaporador.
  • 6. Transferencia de calor en el Sistema de Refrigeración Ing. Leopoldo Rosario Ramos Página 6 En la figura de más arriba se muestra una válvula de expansión termostática para trabajar en un sistema de aire para Vehículo de motor. Donde, si observa la figura podrá ver la diferencia entre esta y la de un sistema de aire industrial, esta válvula no posee un bulbo térmico, ni tubo capilar solo posee una varilla (embolo) especial que hace la veces de sensor térmico que al recibir la sensibilidad del calor del refrigerante hace que el gas refrigerante contenido en el diafragma (membrana) aumente o disminuya su densidad a la vez que aumenta o disminuye su volumen al calentarse o enfriarse, los cual sucede como se describe más abajo: Cuando el refrigerante que has entrado al evaporador se calienta al recibir el calor que trae el aire succionado por el abanico, calor este que es de la carga térmica del habitáculo del vehículo, hace que el refrigerante sufra un sobrecalentamiento a la salida del evaporador, este calor de sobrecalentamiento transfiere su calor por conversión al embolo (varilla) de la válvula, la cual a su vez transfiere su calor por conversión al fluido refrigerante especial que se encuentra en el diafragma (membrana) haciendo que este aumente su volumen, haciendo que el diafragma (membrana) empuje el embolo para que la bola habrá más el paso de refrigerante hacia el evaporador. Cuando al evaporador ha pasado una cantidad de refrigerante suficiente para provocar que todo el refrigerante que se encuentre en el evaporador se encuentre frio, empezará a salir refrigerante más frio del evaporador por donde se encuentra el embolo (Varilla), y al el embolo encontrarse caliente, este empieza a transferir su calor al refrigerante, a la vez que este pierde calor, el gas refrigerante especial que se encuentra en el diafragma (membrana) también transfiere su calor por convección al embolo (varilla). Al refrigerante trasferir su calor al embolo (varilla) este aumenta su densidad y por tanto disminuye su volumen haciendo que el diafragma deje de expandirse y deje de presionar el resorte para que la bola cierre más el espacio por donde fluye el refrigerante que va al evaporador. Transferencia de Calor en el Condensador Cuando el refrigerante sale del compresor a alta temperatura, alta presión y con la máxima cantidad de calor hacia el condensador a través de la línea de descarga, es desde este inicio donde empieza la transferencia de calor por convección natural, cuando el aire a temperatura ambiente choca con la tubería de descarga y esta transfiere su calor
  • 7. Transferencia de calor en el Sistema de Refrigeración Ing. Leopoldo Rosario Ramos Página 7 al aire que choca contra ella, de igual manera el refrigerante caliente que viene del compresor en dirección al condensador transfiere su calor por convección a la pared de la tubería, la cual transfiere su calor al aire del medio ambiente iniciando así su condensación durante este proceso. Ya el refrigerante dentro del condensador, al recibir el aire extraído o expulsado por el abanico de del condensador aumenta la transferencia de calor por convección forzada, cuando las tuberías y aletas de enfriamientos transfirieren su calor al aire exterior, al transferir su calor las aletas de enfriamientos y la tubería del serpentín al aire exterior estas se enfrían, para dar comienzo a la transferencia de calor del refrigerante a las paredes de las tubería del serpentín al tiempo en que los tubos transfieren su calor a las aletas de enfriamiento por conducción. Al refrigerante transferir su calor a las paredes de la tubería, este deja de perder el calor sensible de evaporación para perder el calor latente de evaporación para su cambio de fase, donde pasa a la fase liquida ya a la salida del evaporador, dirigiéndose al depósito de líquido a través de la línea de líquido. Sistema de refrigeración y aire acondicionado por compresión Transferencia de Calor en el Evaporador Cuando el refrigerante sale de la válvula de expansión ya viene a baja presión y a baja temperatura, con su mínima cantidad de calor ya a la entrada del evaporador. Durante el paso del refrigerante a través de las tuberías del evaporador este empieza recibir calor transferido desde las paredes de la tubería por convección natural por lo cual el refrigerante gana una cantidad de calor sensible hasta llegar hasta la línea de succión don recibe un sobrecalentamiento ya en la salida del evaporador al recibir una cantidad de calor latente de evaporación para convertirse en vapor. Cuando la tubería transfiere su
  • 8. Transferencia de calor en el Sistema de Refrigeración Ing. Leopoldo Rosario Ramos Página 8 calor al fluido refrigerante esta se enfría por lo cual empiezan a ganar calor transferido desde las aletas de enfriamientos por conducción y del aire extraído o expulsado por el abanico del evaporador por convección forzada. Al aire transferir su calor a las tuberías y las aletas de enfriamiento del serpentín del evaporador este se enfría al traspasar el evaporador y llegar al habitáculo donde se encuentran los cuerpos a refrigerar, donde este aire empieza a ganar calor por las cargas térmicas producidas por los cuerpos, equipos y materiales que generan calor en dicho espacio. Este aire al ganar calor de estas cargas térmicas es extraído nuevamente por el abanico del evaporador para transferir su calor a las tuberías y aletas de enfriamiento nuevamente. Sistema de refrigeración y aire acondicionado
  • 9. Transferencia de calor en el Sistema de Refrigeración Ing. Leopoldo Rosario Ramos Página 9 El grafico muestra una circulación de aire en un Sistema automotriz y sus componentes Nota de conclusión: Para que un sistema de refrigeración pueda funcionar tiene que haber un intercambio de calor del sistema con el medio que los rodea, por tanto es preciso decir que la refrigeración no existiría si no existiera la trasferencia de calor, puesto que sus componentes más importantes son intercambiadores de calor. Sin temor a equivocarme puedo decir que la refrigeración y la transferencia de calor van tomada de las manos en todo el trayecto del funcionamiento de un equipo de refrigeración y aire acondicionados.