SlideShare una empresa de Scribd logo
1 de 13
Tema 8. Conducción del impulso nervioso y
fisiología general de las fibras
nerviosas.
1. Introducción.
2. Morfología de la neurona.
3. Tipos de células del sistema nervioso.
4. Conducción del impulso nervioso.
5. Tipos de fibras nerviosas.
1. Introducción
→ Ramón y Cajal: teoría neuronal de organización
del SN.
→ La unidad anatómico funcional del SN es la
neurona.
→ Las ramificaciones neuronales se entrelazan entre
sí.
→ Los puntos de contacto entre neuronas son las
sinapsis.
Árbol
dendrítico
Soma
Axón
Núcleo
Cono
axónico
2. Morfología de la neurona
Las neuronas presentan grandes diferencias en su morfología.
• Dendritas (árbol dendrítico):
- Prolongaciones cortas
-MP ricas en receptores
- Actúan como una antena que detecta cambios en el entorno
neuronal
- Sinapsis con los axones de otras neuronas
• Soma: cuerpo celular central. El núcleo posee una elevada
actividad transcripcional.
• Axón: prolongación larga que parte del cono axónico, desde
el que se aleja el impulso nervioso.
- Isodiamétrico (0,5-20 µm)
- Longitud variable (hasta 1m).
- Termina en ramificaciones (telodendrón) que contiene los
terminales o botones sinápticos que contactan con otras
neuronas
- El citoesqueleto permite el tránsito bidireccional de orgánulos
(mitocondrias) y vesículas de neurotransmisores
3. Generación del potencial de acción
http://cajal.com/
• Las dendritas actúan como antena
receptoras de señales: sinapsis de
otras neuronas.
• Estas señales pueden ser
activadoras o inhibidoras (siguiente
tema).
• La despolarización se transmite a
través del soma hasta el cono
axónico.
• Si la despolarización llega a un
cierto umbral, se dispara un
potencial de acción que se
transmite por todo el axón hasta los
• El potencial de acción es conducido a lo largo de las
fibras nerviosas (axones) sin reducir su intensidad.
• La forma y la amplitud del potencial de acción es siempre la
misma: para codificar información se utilizan variaciones
de frecuencia.
• La frecuencia máx. Está limitada por la duración del
PRA (1 ms): 1000 impulsos por segundo.
• La conducción se lleva a cabo por corrientes de
circuitos locales: las regiones adyacentes a la zona
despolarizada se acercan al umbral de disparo y
desencadenan potenciales de acción (conducción
electrotónica).
4. Conducción del potencial de acción
• La velocidad de conducción
electrotónica depende de las
propiedades eléctricas del
citoplasma y de la MP.
• A mayor diámetro de la
fibra, mayor velocidad de
conducción electrotónica…
• … a menor resistencia
interna del axón, menor será
la caída electrotónica con la
distancia
• Una fibra nerviosa de 10
micras conduciría a 0,5 m/s:
4 segundos para retirar el
4. Conducción del potencial de acción
• Los axones están recubiertos
de mielina
• La cubierta de mielina aisla
electricamente el axón,
aumentando la resistencia
eléctrica de la membrana:
- Menor pérdida de señal
conducida
- Mayor velocidad de
conducción
• Los intercambios de iones
ocurren en los nódulos de
Ranvier.
4. Conducción del potencial de acción
El recubrimiento de mielina
es llevado a cabo por los
oligodendrocitos en el SNC
y las células de Schwann
en el SNP a intervalos
regulares (entre 1 y 3mm).
5. Conducción saltatoria del potencial de acción
5. Conducción saltatoria del potencial de acción
• El potencial de acción “salta” de un nódulo de Ranvier a otro.
• Entre ellos la corriente sufre conducción electrotónica.
• En la MP del nódulo es donde hay canales de Na+ y K+ y bomba Na+/K+
• La conducción saltatoria permite mayor velocidad de conducción 100
veces mayor, y con menor movimiento de iones y menor gasto energético
TemperaturaEdad
FACTORES QUE CONDICIONAN LA
VELOCIDAD DE CONDUCCIÓN
Características propias de la fibra:
• Presencia o ausencia de mielina
• Diámetro
5. Conducción saltatoria del potencial de acción
CLASIFICACIÓN DE LAS FIBRAS NERVIOSAS
Guyton (McGraw Hill, 1992)

Más contenido relacionado

La actualidad más candente

Sistema Nervioso Central: Vías Motoras Descendentes
Sistema Nervioso Central: Vías Motoras DescendentesSistema Nervioso Central: Vías Motoras Descendentes
Sistema Nervioso Central: Vías Motoras DescendentesMZ_ ANV11L
 
Sinapsis y potencial de accion
Sinapsis y potencial de accionSinapsis y potencial de accion
Sinapsis y potencial de accionpsico2015
 
Conduccion nerviosa y celulas gliales
Conduccion nerviosa y celulas glialesConduccion nerviosa y celulas gliales
Conduccion nerviosa y celulas glialesELIANA ORTIZ
 
Generación de Potenciales PostSinápticos Potencial de Acción
Generación de Potenciales PostSinápticos Potencial de AcciónGeneración de Potenciales PostSinápticos Potencial de Acción
Generación de Potenciales PostSinápticos Potencial de AcciónMedical & Gabeents
 
Sistema nervioso autonomo
Sistema nervioso autonomoSistema nervioso autonomo
Sistema nervioso autonomoJose Mouat
 
Fisiologia de la placa neuromuscular
Fisiologia de la placa neuromuscularFisiologia de la placa neuromuscular
Fisiologia de la placa neuromuscularanestesiahsb
 
Segundos mensajeros Fisiología USMP - 2013 Filial Norte
Segundos mensajeros Fisiología USMP - 2013  Filial NorteSegundos mensajeros Fisiología USMP - 2013  Filial Norte
Segundos mensajeros Fisiología USMP - 2013 Filial NorteRudy Olivares
 
La transmision sinaptica
La transmision sinapticaLa transmision sinaptica
La transmision sinapticaFany Jimenez
 
Desarrollo del sistema nervioso embrionario diapositiva
Desarrollo del sistema nervioso embrionario diapositivaDesarrollo del sistema nervioso embrionario diapositiva
Desarrollo del sistema nervioso embrionario diapositivaVictor Montero
 
Potencial de reposo y potencial de accion
Potencial de reposo y potencial de accionPotencial de reposo y potencial de accion
Potencial de reposo y potencial de accionjulio martinez
 
Excitabilidad. potenciales de membrana
Excitabilidad. potenciales de membranaExcitabilidad. potenciales de membrana
Excitabilidad. potenciales de membranaMatías Cofré Torres
 

La actualidad más candente (20)

Potencial de acción.
Potencial de acción.Potencial de acción.
Potencial de acción.
 
Sinapsis
SinapsisSinapsis
Sinapsis
 
Sistema Nervioso Central: Vías Motoras Descendentes
Sistema Nervioso Central: Vías Motoras DescendentesSistema Nervioso Central: Vías Motoras Descendentes
Sistema Nervioso Central: Vías Motoras Descendentes
 
Sinapsis y potencial de accion
Sinapsis y potencial de accionSinapsis y potencial de accion
Sinapsis y potencial de accion
 
Conduccion nerviosa y celulas gliales
Conduccion nerviosa y celulas glialesConduccion nerviosa y celulas gliales
Conduccion nerviosa y celulas gliales
 
Generación de Potenciales PostSinápticos Potencial de Acción
Generación de Potenciales PostSinápticos Potencial de AcciónGeneración de Potenciales PostSinápticos Potencial de Acción
Generación de Potenciales PostSinápticos Potencial de Acción
 
Sistema nervioso autonomo
Sistema nervioso autonomoSistema nervioso autonomo
Sistema nervioso autonomo
 
Capitulo 7 - Tejido Nervioso
Capitulo 7 - Tejido NerviosoCapitulo 7 - Tejido Nervioso
Capitulo 7 - Tejido Nervioso
 
Histologìa Retina
Histologìa RetinaHistologìa Retina
Histologìa Retina
 
Medula anatomia
Medula anatomiaMedula anatomia
Medula anatomia
 
NEUROTRANSMISORES INHIBIDORES
NEUROTRANSMISORES INHIBIDORESNEUROTRANSMISORES INHIBIDORES
NEUROTRANSMISORES INHIBIDORES
 
Fisiologia de la placa neuromuscular
Fisiologia de la placa neuromuscularFisiologia de la placa neuromuscular
Fisiologia de la placa neuromuscular
 
Segundos mensajeros Fisiología USMP - 2013 Filial Norte
Segundos mensajeros Fisiología USMP - 2013  Filial NorteSegundos mensajeros Fisiología USMP - 2013  Filial Norte
Segundos mensajeros Fisiología USMP - 2013 Filial Norte
 
La transmision sinaptica
La transmision sinapticaLa transmision sinaptica
La transmision sinaptica
 
Desarrollo del sistema nervioso embrionario diapositiva
Desarrollo del sistema nervioso embrionario diapositivaDesarrollo del sistema nervioso embrionario diapositiva
Desarrollo del sistema nervioso embrionario diapositiva
 
Potencial de reposo y potencial de accion
Potencial de reposo y potencial de accionPotencial de reposo y potencial de accion
Potencial de reposo y potencial de accion
 
Cortes Cerebro
Cortes CerebroCortes Cerebro
Cortes Cerebro
 
Excitabilidad. potenciales de membrana
Excitabilidad. potenciales de membranaExcitabilidad. potenciales de membrana
Excitabilidad. potenciales de membrana
 
Sinapsis
SinapsisSinapsis
Sinapsis
 
Introduccion a la neurofisiologia
Introduccion a la neurofisiologiaIntroduccion a la neurofisiologia
Introduccion a la neurofisiologia
 

Similar a conduccion de impulsos nerviosos

Conducción del impulso nervioso y fisiología general de las fibras nerviosas
Conducción del impulso nervioso y fisiología general de las fibras nerviosasConducción del impulso nervioso y fisiología general de las fibras nerviosas
Conducción del impulso nervioso y fisiología general de las fibras nerviosasRodrigo Lopez
 
1. neurohistología
1. neurohistología1. neurohistología
1. neurohistologíaNinna Flores
 
clase 03 fisiologia muscular d CORREGIDOOOOO.pptx
clase 03 fisiologia muscular d CORREGIDOOOOO.pptxclase 03 fisiologia muscular d CORREGIDOOOOO.pptx
clase 03 fisiologia muscular d CORREGIDOOOOO.pptxDa Na
 
1 6 tejido_nervioso
1 6 tejido_nervioso1 6 tejido_nervioso
1 6 tejido_nerviosoMelisa Apaza
 
Clase 4 Sinapsis Act..pdf
Clase 4 Sinapsis Act..pdfClase 4 Sinapsis Act..pdf
Clase 4 Sinapsis Act..pdfKatitaChasca1
 
1 transmisión sináptica y neurotransmisores
1 transmisión sináptica y neurotransmisores1 transmisión sináptica y neurotransmisores
1 transmisión sináptica y neurotransmisoresLeandro Malina
 
Clase 2_Impulso Nervioso.pptx
Clase 2_Impulso Nervioso.pptxClase 2_Impulso Nervioso.pptx
Clase 2_Impulso Nervioso.pptxRandallMartnez2
 
Fisio xeral tema_4
Fisio xeral tema_4Fisio xeral tema_4
Fisio xeral tema_4practica005
 
UNIDAD 1 CONTENIDO 3 TEJIDO NERVIOSO
UNIDAD 1 CONTENIDO 3 TEJIDO NERVIOSOUNIDAD 1 CONTENIDO 3 TEJIDO NERVIOSO
UNIDAD 1 CONTENIDO 3 TEJIDO NERVIOSOOscar Morales
 
Tema 3 fisiologia snc cerebro y conducta ulacit
Tema 3 fisiologia snc cerebro y conducta ulacitTema 3 fisiologia snc cerebro y conducta ulacit
Tema 3 fisiologia snc cerebro y conducta ulacitkarlaguzmn
 
Obradors etal (2007). unidad didáctica viaje al universo neuronal c4
Obradors etal (2007). unidad didáctica viaje al universo neuronal c4Obradors etal (2007). unidad didáctica viaje al universo neuronal c4
Obradors etal (2007). unidad didáctica viaje al universo neuronal c4Selene Catarino
 
Células Gliales y Conducción Nerviosa.
Células Gliales y Conducción Nerviosa.Células Gliales y Conducción Nerviosa.
Células Gliales y Conducción Nerviosa.Mariangel Villalobos
 
electromiografía(1).pptx
electromiografía(1).pptxelectromiografía(1).pptx
electromiografía(1).pptxKariR6
 
Neurotrasmisores
NeurotrasmisoresNeurotrasmisores
NeurotrasmisoresANY GRISEL
 
NEUROANATOMIA SNELL_CAPITULO_2 FINAL pptx
NEUROANATOMIA SNELL_CAPITULO_2 FINAL pptxNEUROANATOMIA SNELL_CAPITULO_2 FINAL pptx
NEUROANATOMIA SNELL_CAPITULO_2 FINAL pptxdanielalbertoga1206
 

Similar a conduccion de impulsos nerviosos (20)

Impulso nervioso
Impulso nerviosoImpulso nervioso
Impulso nervioso
 
Conducción del impulso nervioso y fisiología general de las fibras nerviosas
Conducción del impulso nervioso y fisiología general de las fibras nerviosasConducción del impulso nervioso y fisiología general de las fibras nerviosas
Conducción del impulso nervioso y fisiología general de las fibras nerviosas
 
1. neurohistología
1. neurohistología1. neurohistología
1. neurohistología
 
Mielina
MielinaMielina
Mielina
 
clase 03 fisiologia muscular d CORREGIDOOOOO.pptx
clase 03 fisiologia muscular d CORREGIDOOOOO.pptxclase 03 fisiologia muscular d CORREGIDOOOOO.pptx
clase 03 fisiologia muscular d CORREGIDOOOOO.pptx
 
Sistema nervioso
Sistema nerviosoSistema nervioso
Sistema nervioso
 
La neurona
La neuronaLa neurona
La neurona
 
1 6 tejido_nervioso
1 6 tejido_nervioso1 6 tejido_nervioso
1 6 tejido_nervioso
 
Impulso Nervioso y Sinapsis
Impulso Nervioso y SinapsisImpulso Nervioso y Sinapsis
Impulso Nervioso y Sinapsis
 
Clase 4 Sinapsis Act..pdf
Clase 4 Sinapsis Act..pdfClase 4 Sinapsis Act..pdf
Clase 4 Sinapsis Act..pdf
 
1 transmisión sináptica y neurotransmisores
1 transmisión sináptica y neurotransmisores1 transmisión sináptica y neurotransmisores
1 transmisión sináptica y neurotransmisores
 
Clase 2_Impulso Nervioso.pptx
Clase 2_Impulso Nervioso.pptxClase 2_Impulso Nervioso.pptx
Clase 2_Impulso Nervioso.pptx
 
Fisio xeral tema_4
Fisio xeral tema_4Fisio xeral tema_4
Fisio xeral tema_4
 
UNIDAD 1 CONTENIDO 3 TEJIDO NERVIOSO
UNIDAD 1 CONTENIDO 3 TEJIDO NERVIOSOUNIDAD 1 CONTENIDO 3 TEJIDO NERVIOSO
UNIDAD 1 CONTENIDO 3 TEJIDO NERVIOSO
 
Tema 3 fisiologia snc cerebro y conducta ulacit
Tema 3 fisiologia snc cerebro y conducta ulacitTema 3 fisiologia snc cerebro y conducta ulacit
Tema 3 fisiologia snc cerebro y conducta ulacit
 
Obradors etal (2007). unidad didáctica viaje al universo neuronal c4
Obradors etal (2007). unidad didáctica viaje al universo neuronal c4Obradors etal (2007). unidad didáctica viaje al universo neuronal c4
Obradors etal (2007). unidad didáctica viaje al universo neuronal c4
 
Células Gliales y Conducción Nerviosa.
Células Gliales y Conducción Nerviosa.Células Gliales y Conducción Nerviosa.
Células Gliales y Conducción Nerviosa.
 
electromiografía(1).pptx
electromiografía(1).pptxelectromiografía(1).pptx
electromiografía(1).pptx
 
Neurotrasmisores
NeurotrasmisoresNeurotrasmisores
Neurotrasmisores
 
NEUROANATOMIA SNELL_CAPITULO_2 FINAL pptx
NEUROANATOMIA SNELL_CAPITULO_2 FINAL pptxNEUROANATOMIA SNELL_CAPITULO_2 FINAL pptx
NEUROANATOMIA SNELL_CAPITULO_2 FINAL pptx
 

Último

PLANTAS MEDICINALES EN HONDURAS EN UN HUERTO CASERO
PLANTAS MEDICINALES EN HONDURAS  EN UN HUERTO CASEROPLANTAS MEDICINALES EN HONDURAS  EN UN HUERTO CASERO
PLANTAS MEDICINALES EN HONDURAS EN UN HUERTO CASEROSeoanySanders
 
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdf
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdfSISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdf
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdfTruGaCshirley
 
CONTROL DE CALIDAD EN LA INDUSTRIA FARMACEUTICA
CONTROL DE CALIDAD EN LA INDUSTRIA FARMACEUTICACONTROL DE CALIDAD EN LA INDUSTRIA FARMACEUTICA
CONTROL DE CALIDAD EN LA INDUSTRIA FARMACEUTICAmjaicocr
 
Sangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptx
Sangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptxSangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptx
Sangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptxCarlos Quiroz
 
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)UDMAFyC SECTOR ZARAGOZA II
 
SISTEMA NERVIOSO ORGANIZADOR GRAFICO.pdf
SISTEMA NERVIOSO ORGANIZADOR GRAFICO.pdfSISTEMA NERVIOSO ORGANIZADOR GRAFICO.pdf
SISTEMA NERVIOSO ORGANIZADOR GRAFICO.pdfFabiTorrico
 
1. PRESENTACION DE MANEJO DE CLAVE ROJA
1. PRESENTACION DE  MANEJO DE CLAVE ROJA1. PRESENTACION DE  MANEJO DE CLAVE ROJA
1. PRESENTACION DE MANEJO DE CLAVE ROJAanamamani2023
 
Enferemedades reproductivas de Yeguas.pdf
Enferemedades reproductivas  de Yeguas.pdfEnferemedades reproductivas  de Yeguas.pdf
Enferemedades reproductivas de Yeguas.pdftaniacgcclassroom
 
Celulas del sistema nervioso clase medicina
Celulas del sistema nervioso clase medicinaCelulas del sistema nervioso clase medicina
Celulas del sistema nervioso clase medicinaSalomeLoor1
 
PRESENTACIÓN SÍNDROME GUILLAIN BARRE.pptx
PRESENTACIÓN SÍNDROME GUILLAIN BARRE.pptxPRESENTACIÓN SÍNDROME GUILLAIN BARRE.pptx
PRESENTACIÓN SÍNDROME GUILLAIN BARRE.pptxCristianOswaldoMunoz
 
1 mapa mental acerca del virus VIH o sida
1 mapa mental acerca del virus VIH o sida1 mapa mental acerca del virus VIH o sida
1 mapa mental acerca del virus VIH o sidagsandovalariana
 
Revista de psicología sobre el sistema nervioso.pdf
Revista de psicología sobre el sistema nervioso.pdfRevista de psicología sobre el sistema nervioso.pdf
Revista de psicología sobre el sistema nervioso.pdfleechiorosalia
 
infografía seminario.pdf.................
infografía seminario.pdf.................infografía seminario.pdf.................
infografía seminario.pdf.................ScarletMedina4
 
patologia de robbins capitulo 4 Lesion celular.pdf
patologia de robbins capitulo 4 Lesion celular.pdfpatologia de robbins capitulo 4 Lesion celular.pdf
patologia de robbins capitulo 4 Lesion celular.pdfVilcheGuevaraKimberl
 
OFICIAL TABIQUE DESVIADO presentacion de desviacion del tabique por sinusitis
OFICIAL TABIQUE DESVIADO presentacion de desviacion del tabique por sinusitisOFICIAL TABIQUE DESVIADO presentacion de desviacion del tabique por sinusitis
OFICIAL TABIQUE DESVIADO presentacion de desviacion del tabique por sinusitisYeseniaChura1
 
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptx
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptxCuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptx
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptxguadalupedejesusrios
 
DETERMINISMO DEL TRABAJO DE PARTO-1.pptx
DETERMINISMO DEL TRABAJO DE PARTO-1.pptxDETERMINISMO DEL TRABAJO DE PARTO-1.pptx
DETERMINISMO DEL TRABAJO DE PARTO-1.pptxfiorellaanayaserrano
 
PUNTOS CRANEOMÉTRICOS PARA PLANEACIÓN QUIRÚRGICA
PUNTOS CRANEOMÉTRICOS  PARA PLANEACIÓN QUIRÚRGICAPUNTOS CRANEOMÉTRICOS  PARA PLANEACIÓN QUIRÚRGICA
PUNTOS CRANEOMÉTRICOS PARA PLANEACIÓN QUIRÚRGICAVeronica Martínez Zerón
 
Trombocitopenia Inmune primaria , clínica
Trombocitopenia Inmune primaria , clínicaTrombocitopenia Inmune primaria , clínica
Trombocitopenia Inmune primaria , clínicaVillegasValentnJosAl
 
Cuidados de enfermeria en RN con bajo peso y prematuro.pdf
Cuidados de enfermeria en RN con bajo peso y prematuro.pdfCuidados de enfermeria en RN con bajo peso y prematuro.pdf
Cuidados de enfermeria en RN con bajo peso y prematuro.pdfHelenReyes29
 

Último (20)

PLANTAS MEDICINALES EN HONDURAS EN UN HUERTO CASERO
PLANTAS MEDICINALES EN HONDURAS  EN UN HUERTO CASEROPLANTAS MEDICINALES EN HONDURAS  EN UN HUERTO CASERO
PLANTAS MEDICINALES EN HONDURAS EN UN HUERTO CASERO
 
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdf
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdfSISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdf
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdf
 
CONTROL DE CALIDAD EN LA INDUSTRIA FARMACEUTICA
CONTROL DE CALIDAD EN LA INDUSTRIA FARMACEUTICACONTROL DE CALIDAD EN LA INDUSTRIA FARMACEUTICA
CONTROL DE CALIDAD EN LA INDUSTRIA FARMACEUTICA
 
Sangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptx
Sangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptxSangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptx
Sangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptx
 
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
 
SISTEMA NERVIOSO ORGANIZADOR GRAFICO.pdf
SISTEMA NERVIOSO ORGANIZADOR GRAFICO.pdfSISTEMA NERVIOSO ORGANIZADOR GRAFICO.pdf
SISTEMA NERVIOSO ORGANIZADOR GRAFICO.pdf
 
1. PRESENTACION DE MANEJO DE CLAVE ROJA
1. PRESENTACION DE  MANEJO DE CLAVE ROJA1. PRESENTACION DE  MANEJO DE CLAVE ROJA
1. PRESENTACION DE MANEJO DE CLAVE ROJA
 
Enferemedades reproductivas de Yeguas.pdf
Enferemedades reproductivas  de Yeguas.pdfEnferemedades reproductivas  de Yeguas.pdf
Enferemedades reproductivas de Yeguas.pdf
 
Celulas del sistema nervioso clase medicina
Celulas del sistema nervioso clase medicinaCelulas del sistema nervioso clase medicina
Celulas del sistema nervioso clase medicina
 
PRESENTACIÓN SÍNDROME GUILLAIN BARRE.pptx
PRESENTACIÓN SÍNDROME GUILLAIN BARRE.pptxPRESENTACIÓN SÍNDROME GUILLAIN BARRE.pptx
PRESENTACIÓN SÍNDROME GUILLAIN BARRE.pptx
 
1 mapa mental acerca del virus VIH o sida
1 mapa mental acerca del virus VIH o sida1 mapa mental acerca del virus VIH o sida
1 mapa mental acerca del virus VIH o sida
 
Revista de psicología sobre el sistema nervioso.pdf
Revista de psicología sobre el sistema nervioso.pdfRevista de psicología sobre el sistema nervioso.pdf
Revista de psicología sobre el sistema nervioso.pdf
 
infografía seminario.pdf.................
infografía seminario.pdf.................infografía seminario.pdf.................
infografía seminario.pdf.................
 
patologia de robbins capitulo 4 Lesion celular.pdf
patologia de robbins capitulo 4 Lesion celular.pdfpatologia de robbins capitulo 4 Lesion celular.pdf
patologia de robbins capitulo 4 Lesion celular.pdf
 
OFICIAL TABIQUE DESVIADO presentacion de desviacion del tabique por sinusitis
OFICIAL TABIQUE DESVIADO presentacion de desviacion del tabique por sinusitisOFICIAL TABIQUE DESVIADO presentacion de desviacion del tabique por sinusitis
OFICIAL TABIQUE DESVIADO presentacion de desviacion del tabique por sinusitis
 
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptx
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptxCuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptx
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptx
 
DETERMINISMO DEL TRABAJO DE PARTO-1.pptx
DETERMINISMO DEL TRABAJO DE PARTO-1.pptxDETERMINISMO DEL TRABAJO DE PARTO-1.pptx
DETERMINISMO DEL TRABAJO DE PARTO-1.pptx
 
PUNTOS CRANEOMÉTRICOS PARA PLANEACIÓN QUIRÚRGICA
PUNTOS CRANEOMÉTRICOS  PARA PLANEACIÓN QUIRÚRGICAPUNTOS CRANEOMÉTRICOS  PARA PLANEACIÓN QUIRÚRGICA
PUNTOS CRANEOMÉTRICOS PARA PLANEACIÓN QUIRÚRGICA
 
Trombocitopenia Inmune primaria , clínica
Trombocitopenia Inmune primaria , clínicaTrombocitopenia Inmune primaria , clínica
Trombocitopenia Inmune primaria , clínica
 
Cuidados de enfermeria en RN con bajo peso y prematuro.pdf
Cuidados de enfermeria en RN con bajo peso y prematuro.pdfCuidados de enfermeria en RN con bajo peso y prematuro.pdf
Cuidados de enfermeria en RN con bajo peso y prematuro.pdf
 

conduccion de impulsos nerviosos

  • 1. Tema 8. Conducción del impulso nervioso y fisiología general de las fibras nerviosas. 1. Introducción. 2. Morfología de la neurona. 3. Tipos de células del sistema nervioso. 4. Conducción del impulso nervioso. 5. Tipos de fibras nerviosas.
  • 2. 1. Introducción → Ramón y Cajal: teoría neuronal de organización del SN. → La unidad anatómico funcional del SN es la neurona. → Las ramificaciones neuronales se entrelazan entre sí. → Los puntos de contacto entre neuronas son las sinapsis.
  • 3.
  • 4. Árbol dendrítico Soma Axón Núcleo Cono axónico 2. Morfología de la neurona Las neuronas presentan grandes diferencias en su morfología. • Dendritas (árbol dendrítico): - Prolongaciones cortas -MP ricas en receptores - Actúan como una antena que detecta cambios en el entorno neuronal - Sinapsis con los axones de otras neuronas • Soma: cuerpo celular central. El núcleo posee una elevada actividad transcripcional. • Axón: prolongación larga que parte del cono axónico, desde el que se aleja el impulso nervioso. - Isodiamétrico (0,5-20 µm) - Longitud variable (hasta 1m). - Termina en ramificaciones (telodendrón) que contiene los terminales o botones sinápticos que contactan con otras neuronas - El citoesqueleto permite el tránsito bidireccional de orgánulos (mitocondrias) y vesículas de neurotransmisores
  • 5. 3. Generación del potencial de acción http://cajal.com/ • Las dendritas actúan como antena receptoras de señales: sinapsis de otras neuronas. • Estas señales pueden ser activadoras o inhibidoras (siguiente tema). • La despolarización se transmite a través del soma hasta el cono axónico. • Si la despolarización llega a un cierto umbral, se dispara un potencial de acción que se transmite por todo el axón hasta los
  • 6. • El potencial de acción es conducido a lo largo de las fibras nerviosas (axones) sin reducir su intensidad. • La forma y la amplitud del potencial de acción es siempre la misma: para codificar información se utilizan variaciones de frecuencia. • La frecuencia máx. Está limitada por la duración del PRA (1 ms): 1000 impulsos por segundo. • La conducción se lleva a cabo por corrientes de circuitos locales: las regiones adyacentes a la zona despolarizada se acercan al umbral de disparo y desencadenan potenciales de acción (conducción electrotónica). 4. Conducción del potencial de acción
  • 7.
  • 8. • La velocidad de conducción electrotónica depende de las propiedades eléctricas del citoplasma y de la MP. • A mayor diámetro de la fibra, mayor velocidad de conducción electrotónica… • … a menor resistencia interna del axón, menor será la caída electrotónica con la distancia • Una fibra nerviosa de 10 micras conduciría a 0,5 m/s: 4 segundos para retirar el 4. Conducción del potencial de acción
  • 9. • Los axones están recubiertos de mielina • La cubierta de mielina aisla electricamente el axón, aumentando la resistencia eléctrica de la membrana: - Menor pérdida de señal conducida - Mayor velocidad de conducción • Los intercambios de iones ocurren en los nódulos de Ranvier. 4. Conducción del potencial de acción
  • 10. El recubrimiento de mielina es llevado a cabo por los oligodendrocitos en el SNC y las células de Schwann en el SNP a intervalos regulares (entre 1 y 3mm). 5. Conducción saltatoria del potencial de acción
  • 11. 5. Conducción saltatoria del potencial de acción • El potencial de acción “salta” de un nódulo de Ranvier a otro. • Entre ellos la corriente sufre conducción electrotónica. • En la MP del nódulo es donde hay canales de Na+ y K+ y bomba Na+/K+ • La conducción saltatoria permite mayor velocidad de conducción 100 veces mayor, y con menor movimiento de iones y menor gasto energético
  • 12. TemperaturaEdad FACTORES QUE CONDICIONAN LA VELOCIDAD DE CONDUCCIÓN Características propias de la fibra: • Presencia o ausencia de mielina • Diámetro 5. Conducción saltatoria del potencial de acción
  • 13. CLASIFICACIÓN DE LAS FIBRAS NERVIOSAS Guyton (McGraw Hill, 1992)

Notas del editor

  1. La compleja estructura del sistema nervioso hizo que la identificación microscópica y demostración de tales elementos celulares fuera compleja y objeto de numerosas polémicas. De hecho, inicialmente la opinión científica se inclinaba por la conocida teoría reticularista, la cual suponía que las prolongaciones de las neuronas se fundían formando una red en la que no existía la identidad celular individual.Tanto el enunciado como las implicaciones conceptuales de la teoría celular no se aplicaron al estudio del tejido nervioso hasta más de medio siglo después de su enunciación. La teoría reticularista fue desechada gracias a los estudios histológicos de Cajal, quien aportó argumentos esenciales para el establecimiento de la teoría neuronal y considerar así a las neuronas como células individuales. Pero no fue hasta mediados del siglo XX, con el desarrollo de la microscopía electrónica, cuando se pudieron observar la membrana plasmática y los contactos sinápticos entre las neuronas, confirmando plenamente los postulados sobre la unidad anatómica de las neuronas de Cajal.
  2. A diferencia con el resto de tejidos, las neuronas muestran una tremenda disparidad en su morfología. Gracias a la diversidad morfológica y funcional entre las neuronas es posible la compleja actividad del sistema nervioso y de los epifenómenos derivados como la memoria y el aprendizaje. A pesar de esta enorme heterogeneidad existe, a partir de una serie de características comunes, el concepto generalizado de neurona como una célula constituida por: las dendritas (árbol dendrítico), el soma (cuerpo celular) y el axón (árbol axónico). Evidentemente existen excepciones que no se ajustan completamente a esta constitución general. Por ejemplo existen neuronas sin dendritas o reducidas a una mínima expresión como en las neuronas ganglionares, otras carecen de axón como las células amacrinas de retina y bulbo olfatorio incluso pueden carecer de dendritas y axón, como las células cromafines adrenales. La transmisión nerviosa ocurre en dirección desde las dendritas hasta el axón. Las dendritas se extienden desde el soma neuronal como ramas a partir del tronco de un árbol, de ahí que al conjunto de dendritas de una neurona individual se le denomine árbol dendrítico. Así pues las dendritas actúan como una gran antena receptora de los acontecimientos que ocurren en el entorno neural, de hecho tienen la función especializada de la recepción de contactos sinápticos. El árbol dendrítico es la zona de recepción de información procedente de los axones de otras neuronas, aunque no son las únicas zonas de recepción, de hecho también existen espinas somáticas y axónicas (a nivel del cono axónico). En el tema siguiente se realizará un estudio pormenorizado de sobre la estructura y función de las dendritas en contacto sináptico. Soma o cuerpo neuronal Usualmente ocupa la porción central de la célula. Contiene un gran núcleo en estrecha colaboración con los procesos citoplasmáticos y con una elevada actividad transcripcional. Esto queda patente en la cromatina distendida, un nucleolo hipertrófico y la elevada concentración de poros nucleares que presenta. La elevada actividad en la traducción y síntesis proteica se manifiesta en los abundantes polirribosomas y áreas de retículo endoplasmático rugoso, alrededor del núcleo, conocido como grumos de Nissl. Axón Tiene su origen en el cono axónico, pegado al soma neuronal, región importante en el desencadenamiento del potencial de acción. A partir de él, el impulso nervioso se aleja del cuerpo celular. Normalmente es único, largo y delgado. Su diámetro, aunque puede variar de menos de una micra a muchas micras, es isodiamétrico (mantiene su diámetro en su extensión). Su longitud también es variable, llegando a alcanzar más de un metro en algunas neuronas motoras. Puede presentar alguna ramificación, las cuales se disponen en ángulo recto y en su extremo terminal presentan una profusa ramificación denominada telodendrón o arborización terminal. En el telodendrón se localizan una dilataciones denominadas botones terminales o botones sinápticos, lugar donde se produce el contacto sináptico con otras neuronas. Al seccionar un axón se observa que en su axoplasma (citoplasma axónico) apenas existe maquinaria de síntesis proteica (casi no existen proteínas), sin embargo abundan los neurotúbulos (microtúbulos) y neurofilamentos, los cuales se encuentran distribuidos en sentido longitudinal del axón. Estos componentes estructurales del citoesqueleto son muy útiles en el transporte axonal bidireccional
  3. Debajo de la vaina de mielina la corriente fluye longitudinalmente por el axolema (no hay conducción activa)hasta el siguiente nodo donde la apertura de los canales Na+ permitirá la propagación del potencial de acción. De forma que el potencial recobra su amplitud y sigue viajando pasivamente hasta el próximo nodo. Estos saltos de potencial de acción de un nodo al siguiente se denominan conducción saltatoria. Este mecanismo es más rápido que el hallado en las fibras amielínicas (120 m/s en comparación con 0,5 m/s). Ha desempeñado un papel importante en la evolución de organismos mayores y más complejos cuyos sistemas nerviosos necesitan transmitir rápidamente potenciales de acción a largas distancias. Sin conducción saltatoria, la velocidad de conducción requeriría incrementos drásticos en el diámetro del axón, a tal punto que podrían resultar en la formación de sistemas nerviosos excesivamente grandes para los cuerpos que deben alojarlos.
  4. Tres factores influyen directamente en la velocidad de transmisión del impulso nervioso:  1.- Diámetro de la neurona.  2.- Espesor de la capa mielínica.  3.- Temperatura.  A mayor diámetro, espesor o temperatura mayor es la velocidad de conducción. En general, la conducción nerviosa es rápida pero bastante más lenta que la electricidad. Propagación En los axones amielínicos, los potenciales de acción se propagan como una interacción pasiva entre la despolarización que se desplaza por la membrana y los canales de sodio regulados por voltaje. Los potenciales de acción de membrana pueden representarse uniendo varios circuitos RC, cada uno representando un trozo de membrana. Cuando una parte de la membrana celular se despolariza lo suficiente como para que se abran los canales de sodio dependientes de voltaje, los iones de sodio entran en la célula por difusión facilitada. Una vez dentro, los iones positivos de sodio impulsan los iones próximos a lo largo del axón por repulsión electrostática, y atraen los iones negativos desde la membrana adyacente. Como resultado, una corriente positiva se desplaza a lo largo del axón, sin que ningún ion se esté desplazando muy rápido. Una vez que la membrana adyacente está sufiencientemente despolarizada, sus canales de sodio dependientes de voltaje se abren, realimentando el ciclo. El proceso se repite a lo largo del axón, generándose un nuevo potencial de acción en cada segmento de la membrana. [editar] Velocidad de propagación Los potenciales de acción se propagan más rápido en axones de mayor diámetro, si los demás parámetros se mantienen. La principal razón para que ocurra es que la resistencia axial de la luz del axón es menor cuanto mayor sea el diámetro, debido a la mayor relación entre superficie total y superficie de membrana en un corte transversal. Como la superficie de la membrana es el obstáculo principal para la propagación del potencial en axones amielínicos, el incremento de esta tasa es una forma especialmente efectiva de incrementar la velocidad de la transmisión. Un ejemplo extremo de un animal que utiliza el aumento de diámetro de axón como regulador de la velocidad de propagación del potencial de membrana es el calamar gigante. El axón del calamar gigante controla la contracción muscular asociada con la respuesta de evasión de depredadores del animal. Este axón puede sobrepasar 1 mm de diámetro, y posiblemente sea una adaptación para permitir una activación muy rápida del mecanismo de escape. La velocidad de los impulsos nerviosos en estas fibras es una de las más rápidas de la naturaleza. [editar] Mecanismo detallado El principal obstáculo para la velocidad de transmisión en axones amielínicos es la capacitancia de la membrana. La capacidad de un condensador puede disminuirse bajando el área de un corte transversal de sus placas, o incrementando la distancia entre las placas. El sistema nervioso utiliza la mielinización para reducir la capacitancia de la membrana. La mielina es una vaina protectora creada alrededor de los axones por las células de Schwann y los oligodendrocitos, células de la neuroglía que aplastan sus citoplasmas formando láminas de membrana y plasma. Estas láminas se arrollan en el axón, alejando las placas conductoras (el plasma intra y extracelular) entre sí, disminuyendo la capacitancia de la membrana. El aislamiento resultante redunda en un conducción rápida (prácticamente instantánea) de los iones a través de las secciones mielinizadas del axón, pero impide la generación de potenciales de acción en estos segmentos. Los potenciales de acción sólo se vuelven a producir en los nodos de Ranvier desmielinizados, que se sitúan entre los segmentos mielinizados. En estos anillos hay un gran número de canales de sodio dependientes de voltaje (hasta cuatro órdenes de magnitud superior a la densidad de axones amielínicos), que permiten que los potenciales de acción se regeneren de forma eficaz en ellos. Debido a la mielinización, los segmentos aislados del axón actúan como un cable pasivo: conducen los potenciales de acción rápidamente porque la capacitancia de la membrana es muy baja, y minimizan la degradación de los potenciales de acción porque la resistencia de la membrana es alta. Cuando esta señal que se propaga de forma pasiva alcanza un nodo de Ranvier, inicia un potencial de acción que viaja de nuevo de forma pasiva hasta que alcanza el siguiente nodo, repitiendo el ciclo.
  5. La clasificación de las fibras nerviosas se puede realizar en función de diferentes criterios. Una de las clasificaciones más generalizadas es la presentada en esta diapositiva. En primer lugar se muestra una clasificación general en la que se dividen en mielínicas y amielínicas. Siendo las fibras tipo A las que poseen envoltura mielínica y las tipo C las que no la poseen. A su vez las tipo A se subdividen en función de su diámetro, y por tanto en función de su velocidad de conducción en alpha, beta, gamma, delta. A su vez los nervios sensoriales tipo A se pueden clasificar como I, II, III y los tipo C como IV.