SlideShare una empresa de Scribd logo
1 de 35
LIMITACIONES ESTRUCTURALES.
DIAGRAMA DE MANIOBRA.
ELASTICIDAD LEY DE HOOKE.
El salto BUNGEE utiliza
una larga cuerda
elástica que se estira
hasta que llega a una
longitud máxima que
es proporcional al peso
del saltador. La
elasticidad de la cuerda
determina la amplitud
de las vibraciones
resultantes. Si se
excede el límite
elástico de la cuerda,
ésta se romperá.
Elasticidad
Photo © Vol. 10
PhotoDisk/Getty
Objetivos: Después de completar
este módulo, deberá:
• Demostrar su comprensión de elasticidad,
límite elástico, esfuerzo, deformación y
resistencia a la rotura.
• Escribir y aplicar fórmulas para calcular
módulo de Young, módulo de corte y módulo
volumétrico.
• Resolver problemas que involucren cada uno
de los parámetros en los objetivos anteriores.
Propiedades elásticas de la materia
Un cuerpo elástico es aquel que regresa a su
forma original después de una deformación.
Bola de
golf
Balón de
soccer
Banda de
goma
Propiedades elásticas de la materia
Un cuerpo inelástico es aquel que no regresa a su
forma original después de una deformación.
Masa o pan Barro Bola inelástica
¿Elástico o inelástico?
Una colisión elástica no
pierde energía. La
deformación en la
colisión se restaura por
completo.
En una colisión inelástica
se pierde energía y la
deformación puede ser
permanente. (Clic aquí.)
DIAGRAMA
Esfuerzo - Deformación
Un resorte elástico
Un resorte es un ejemplo de un cuerpo elástico
que se puede deformar al estirarse.
Una fuerza restauradora,
F, actúa en la dirección
opuesta al desplazamiento
del cuerpo en oscilación.
F = -kx
x
F
Ley de Hooke
Cuando un resorte se estira, hay una fuerza
restauradora que es proporcional al
desplazamiento.
F = -kx
La constante de
resorte k es una
propiedad del resorte
dada por:
F
x
m
F
k
x



La constante de resorte k es una
medida de la elasticidad del resorte.
Esfuerzo y deformación
Esfuerzo se refiere a la causa de una deformación, y
deformación se refiere al efecto de la deformación.
x
F
La fuerza descendente F
causa el desplazamiento x.
Por tanto, el esfuerzo es la
fuerza; la deformación es la
elongación.
Tipos de esfuerzo
Un esfuerzo de tensión ocurre
cuando fuerzas iguales y
opuestas se dirigen alejándose
mutuamente.
Un esfuerzo de compresión
ocurre cuando fuerzas
iguales y opuestas se dirigen
una hacia la otra.
F
W
Tensión
F
W
Compresión
Resumen de definiciones
Esfuerzo es la razón de una fuerza aplicada F
al área A sobre la que actúa:
Deformación es el cambio relativo en las dimensiones o
forma de un cuerpo como resultado de un esfuerzo aplicado:
Ejemplos: Cambio en longitud por unidad de
longitud; cambio en volumen por unidad de
volumen.
F
Esfuerzo
A
 2
2
o
Pa
:
in
lb
m
N
Unidades 
Esfuerzo y deformación longitudinales
L
L
A
A
F
Para alambres, varillas y
barras, existe un esfuerzo
longitudinal F/A que
produce un cambio en
longitud por unidad de
longitud. En tales casos:
F
Esfuerzo
A
 L
Deformación
L


Ejemplo 1. Un alambre de acero de 10 m
de largo y 2 mm de diámetro se une al
techo y a su extremo se une un peso de
200 N. ¿Cuál es el esfuerzo aplicado?
L
L
A
A
F
Primero encuentre el área del
alambre:
2 2
(0.002 m)
4 4
D
A
 
 
A = 3.14 x 10-6 m2
Esfuerzo
6.37 x 107 Pa
2
6
m
10
x
3.14
N
200



A
F
Esfuerzo
Ejemplo 1 (Cont.) Un alambre de acero
de 10 m se estira 3.08 mm debido a la
carga de 200 N. ¿Cuál es la
deformación longitudinal?
L
L
Dado: L = 10 m; L = 3.08 mm
Deformación longitudinal
3.08 x 10-4
m
10
m
0.00308



L
L
n
Deformació
El límite elástico
El límite elástico es el esfuerzo máximo que un cuerpo puede
experimentar sin quedar deformado permanentemente.
W
W
2 m
Si el esfuerzo supera el límite elástico, la
longitud final será mayor que los 2 m originales.
Bien
Más allá del
límite
F
W
2 m
F
Esfuerzo
A

Resistencia a la rotura
La resistencia a la rotura es el esfuerzo máximo que un
cuerpo puede experimentar sin romperse.
Si el esfuerzo supera la resistencia a la
rotura, ¡la cuerda se rompe!
W
W
F
W
W
W
2 m
F
Esfuerzo
A

Ejemplo 2. El límite elástico para el
acero es 2.48 x 108 Pa. ¿Cuál es el
peso máximo que puede soportar sin
superar el límite elástico?
L
L
A
A
F
Recuerde: A = 3.14 x 10-6 m2
F = (2.48 x 108 Pa) A
F = (2.48 x 108 Pa)(3.14 x 10-6 m2) F = 779 N
Ejemplo 2 (Cont.) La resistencia a la
rotura para el acero es 4089 x 108 Pa.
¿Cuál es el peso máximo que puede
soportar sin romper el alambre?
L
L
A
A
F
Recuerde: A = 3.14 x 10-6 m2
F = (4.89 x 108 Pa) A
F = (4.89 x 108 Pa)(3.14 x 10-6 m2) F = 1536 N
Pa
10
4.89 8



A
F
Esfuerzo
El módulo de elasticidad
Siempre que el límite elástico no se supere,
una deformación elástica (deformación) es
directamente proporcional a la magnitud de la
fuerza aplicada por unidad de área (esfuerzo).
n
deformació
esfuerzo
d
elasticida
de
Módulo 
Ejemplo 3. En el ejemplo anterior, el
esfuerzo aplicado al alambre de acero fue
6.37 x 107 Pa y la deformación fue 3.08 x 10-4.
Encuentre el módulo de elasticidad para el acero.
L
L
Módulo = 207 x 109 Pa
Este módulo de elasticidad longitudinal se llama
módulo de Young y se denota con el símbolo Y.
4
7
10
08
.
3
Pa
10
6.37





n
deformació
esfuerzo
Módulo
Módulo de Young
Para materiales cuya longitud es mucho mayor que el
ancho o espesor, se tiene preocupación por el módulo
longitudinal de elasticidad, o módulo de Young (Y).
/
/
F A FL
Y
L L A L
 
 
al
longitudin
n
deformació
al
longitudin
esfuerzo
Young
de
Módulo 
2
lb
in.
Unidades: Pa o
Ejemplo 4: El módulo de
Young para el latón es 8.96 x
1011 Pa. Un peso de 120 N se
une a un alambre de latón de 8
m de largo; encuentre el
aumento en longitud. El
diámetro es 1.5 mm.
8 m
L
120 N
Primero encuentre el área del alambre:
2 2
(0.0015 m)
4 4
D
A
 
  A = 1.77 x 10-6 m2
or
FL FL
Y L
A L AY
  

Ejemplo 4: (continuación)
8 m
L
120 N
Y = 8.96 x 1011 Pa; F = 120 N;
L = 8 m; A = 1.77 x 10-6 m2
F = 120 N; L = ?
or
FL FL
Y L
A L AY
  

-6 2 11
(120 N)(8.00 m)
(1.77 x 10 m )(8.96 x 10 Pa)
FL
L
AY
  
L = 0.605 mm
Aumento en longitud:
Módulo de corte
A
F
F
f
l
d
Un esfuerzo cortante altera sólo la forma del
cuerpo y deja el volumen invariable. Por ejemplo,
considere las fuerzas cortantes iguales y opuestas
F que actúan sobre el cubo siguiente:
La fuerza cortante F produce un ángulo
cortante f. El ángulo f es la deformación y el
esfuerzo está dado por F/A como antes.
Cálculo del módulo de corte
F
F
f
l
d A
La deformación es el ángulo
expresado en radianes:
El esfuerzo es
fuerza por
unidad de
área:
El módulo de corte S se define como la razón del
esfuerzo cortante F/A a la deformación de corte f:
Módulo de corte:
unidades en pascales.
F A
S
f

F
Esfuerzo
A

l
d
n
Deformació 
 f
Ejemplo 5. Un perno de acero (S = 8.27 x 1010 Pa)
de 1 cm de diámetro se proyecta 4 cm desde la
pared. Al extremo se aplica una fuerza cortante de
36,000 N. ¿Cuál es la desviación d del perno?
d
l
F
2 2
(0.01 m)
4 4
D
A
 
 
Área: A = 7.85 x 10-5 m2
;
F A F A Fl Fl
S d
d l Ad AS
f
   
-5 2 10
(36,000 N)(0.04 m)
(7.85 x 10 m )(8.27 x 10 Pa)
d  d = 0.222 mm
Resumen: Elástico e inelástico
Un cuerpo inelástico es aquel que no regresa a su
forma original después de una deformación.
En una colisión inelástica, se pierde energía y
la deformación puede ser permanente.
Una colisión elástica no pierde energía. La
deformación en la colisión se restaura
completamente.
Un cuerpo elástico es aquel que regresa a su
forma original después de una deformación.
Un esfuerzo de tensión ocurre
cuando fuerzas iguales y
opuestas se dirigen alejándose
mutuamente.
Un esfuerzo de compresión
ocurre cuando fuerzas iguales
y opuestas se dirigen una
hacia la otra.
F
W
Tensión
F
W
Compresión
Resumen
Tipos de esfuerzo
Resumen de definiciones
El esfuerzo es la razón de una fuerza aplicada
F al área A sobre la que actúa:
La deformación es el cambio relativo en dimensiones o
forma de un cuerpo como resultado de un esfuerzo aplicado:
Ejemplos: Cambio en longitud por unidad de
longitud; cambio en volumen por unidad de volumen.
F
Esfuerzo
A
 2
2
o
Pa
in
lb
m
N
Unidades 

Esfuerzo y deformación longitudinales
L
L
A
A
F
Para alambres, varillas y
barras, hay un esfuerzo
longitudinal F/A que
produce un cambio en
longitud por unidad de
longitud. En tales casos:
F
Esfuerzo
A
 L
Deformación
L


El límite elástico
El límite elástico es el esfuerzo máximo que un
cuerpo puede experimentar sin quedar
permanentemente deformado.
La resistencia a la rotura es el mayor estrés que
un cuerpo puede experimentar sin romperse.
La resistencia a la rotura
Módulo de Young
Para materiales cuya longitud es mucho mayor que el
ancho o el espesor, se tiene preocupación por el
módulo longitudinal de elasticidad, o módulo de
Young Y.
/
/
F A FL
Y
L L A L
 
 
al
longitudin
n
deformació
al
longitudin
esfuerzo
Young
de
Módulo 
2
2
o
Pa
in
lb
m
N
Unidades 

El módulo de corte
F
F
f
l
d A
La deformación es el
ángulo expresado en
radianes:
Esfuerzo es
fuerza por
unidad de
área:
El módulo de corte S se define como la razón del
esfuerzo cortante F/A a la deformación de corte f:
El módulo de corte: sus
unidades son pascales.
F A
S
f

F
Esfuerzo
A

d
Deformación
l
f
 
CONCLUSIÓN:

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Movimiento oscilatorio
Movimiento oscilatorioMovimiento oscilatorio
Movimiento oscilatorio
 
Conservación de la cantidad de movimiento
Conservación de la cantidad de movimientoConservación de la cantidad de movimiento
Conservación de la cantidad de movimiento
 
Movimiento circular uniforme
Movimiento circular uniformeMovimiento circular uniforme
Movimiento circular uniforme
 
145112164 informe-l2-fuerzas-concurrentes
145112164 informe-l2-fuerzas-concurrentes145112164 informe-l2-fuerzas-concurrentes
145112164 informe-l2-fuerzas-concurrentes
 
Movimiento circular variado
Movimiento circular variadoMovimiento circular variado
Movimiento circular variado
 
Trabajo, potencia y energía
Trabajo, potencia y energíaTrabajo, potencia y energía
Trabajo, potencia y energía
 
Elasticidad
ElasticidadElasticidad
Elasticidad
 
Introducción a la estática
Introducción a la estáticaIntroducción a la estática
Introducción a la estática
 
Cálculo de momento de inercia
Cálculo de momento de inerciaCálculo de momento de inercia
Cálculo de momento de inercia
 
Peso, fuerza y momento de fuerza slide
Peso, fuerza y momento de fuerza slidePeso, fuerza y momento de fuerza slide
Peso, fuerza y momento de fuerza slide
 
Fuerzas y movimiento
Fuerzas y movimientoFuerzas y movimiento
Fuerzas y movimiento
 
Pendulo de torsion
Pendulo de torsionPendulo de torsion
Pendulo de torsion
 
Fisica Cinematica
Fisica  CinematicaFisica  Cinematica
Fisica Cinematica
 
Momento de inercia
Momento de inerciaMomento de inercia
Momento de inercia
 
Cinematica en una y dos dimensiones FÍSICA A
Cinematica en una y dos dimensiones FÍSICA ACinematica en una y dos dimensiones FÍSICA A
Cinematica en una y dos dimensiones FÍSICA A
 
Movimiento oscilatorio y pendulo simple
Movimiento oscilatorio y pendulo simpleMovimiento oscilatorio y pendulo simple
Movimiento oscilatorio y pendulo simple
 
Movimiento armónico simple y pendulo simple
Movimiento armónico simple y pendulo simpleMovimiento armónico simple y pendulo simple
Movimiento armónico simple y pendulo simple
 
CINEMATICA
CINEMATICA CINEMATICA
CINEMATICA
 
vectores
vectoresvectores
vectores
 
Cantidad movimiento
Cantidad movimientoCantidad movimiento
Cantidad movimiento
 

Similar a Elasticidad y límites estructurales del salto Bungee

Similar a Elasticidad y límites estructurales del salto Bungee (20)

Presentacion Elasticidad
Presentacion ElasticidadPresentacion Elasticidad
Presentacion Elasticidad
 
Modulo de Young
Modulo de YoungModulo de Young
Modulo de Young
 
Clase N°1 LEY DE HOOKE - ESFUERZO, DEFORMACION.ppt
Clase N°1 LEY DE HOOKE - ESFUERZO, DEFORMACION.pptClase N°1 LEY DE HOOKE - ESFUERZO, DEFORMACION.ppt
Clase N°1 LEY DE HOOKE - ESFUERZO, DEFORMACION.ppt
 
Elasticidad ppt
Elasticidad pptElasticidad ppt
Elasticidad ppt
 
Elasticidad
ElasticidadElasticidad
Elasticidad
 
Elasticidad.pptx
Elasticidad.pptxElasticidad.pptx
Elasticidad.pptx
 
Tippens fisica
Tippens fisica Tippens fisica
Tippens fisica
 
Tippens fisica 7e_diapositivas_13
Tippens fisica 7e_diapositivas_13Tippens fisica 7e_diapositivas_13
Tippens fisica 7e_diapositivas_13
 
Tippens fisica 7e_diapositivas_13
Tippens fisica 7e_diapositivas_13Tippens fisica 7e_diapositivas_13
Tippens fisica 7e_diapositivas_13
 
Semana 1 elasticidad
Semana 1 elasticidadSemana 1 elasticidad
Semana 1 elasticidad
 
Semana 1 elasticidad
Semana 1 elasticidadSemana 1 elasticidad
Semana 1 elasticidad
 
Elasticidad.pdf
Elasticidad.pdfElasticidad.pdf
Elasticidad.pdf
 
DEFORMACIÓN Y ELASTICIDAD
DEFORMACIÓN Y ELASTICIDADDEFORMACIÓN Y ELASTICIDAD
DEFORMACIÓN Y ELASTICIDAD
 
Elasticidad
Elasticidad Elasticidad
Elasticidad
 
Elasticidad 1 (1)
Elasticidad 1 (1)Elasticidad 1 (1)
Elasticidad 1 (1)
 
Elasticidad
ElasticidadElasticidad
Elasticidad
 
Elasticidad
ElasticidadElasticidad
Elasticidad
 
Apuntes resistencia de materiales
Apuntes resistencia de materialesApuntes resistencia de materiales
Apuntes resistencia de materiales
 
Esfuerzo y deformacón
Esfuerzo y deformacónEsfuerzo y deformacón
Esfuerzo y deformacón
 
Elasticidad capitulo i_(1)
Elasticidad capitulo i_(1)Elasticidad capitulo i_(1)
Elasticidad capitulo i_(1)
 

Último

Viaje al centro de la Ciencia 6 DOC_WEB.pdf
Viaje al centro de la Ciencia 6 DOC_WEB.pdfViaje al centro de la Ciencia 6 DOC_WEB.pdf
Viaje al centro de la Ciencia 6 DOC_WEB.pdfssuser576aeb
 
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdfGribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdffrank0071
 
Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...
Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...
Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...Juan Carlos Fonseca Mata
 
Harvey, David. - Paris capital de la modernidad [2008].pdf
Harvey, David. - Paris capital de la modernidad [2008].pdfHarvey, David. - Paris capital de la modernidad [2008].pdf
Harvey, David. - Paris capital de la modernidad [2008].pdffrank0071
 
Fowler, Will. - Santa Anna, héroe o villano [2018].pdf
Fowler, Will. - Santa Anna, héroe o villano [2018].pdfFowler, Will. - Santa Anna, héroe o villano [2018].pdf
Fowler, Will. - Santa Anna, héroe o villano [2018].pdffrank0071
 
Procedimiento e interpretación de los coprocultivos.pdf
Procedimiento e interpretación de los coprocultivos.pdfProcedimiento e interpretación de los coprocultivos.pdf
Procedimiento e interpretación de los coprocultivos.pdfCarlaLSarita1
 
tecnica de necropsia en bovinos rum.pptx
tecnica de necropsia en bovinos rum.pptxtecnica de necropsia en bovinos rum.pptx
tecnica de necropsia en bovinos rum.pptxJESUSDANIELYONGOLIVE
 
el amor en los tiempos del colera (resumen).pptx
el amor en los tiempos del colera (resumen).pptxel amor en los tiempos del colera (resumen).pptx
el amor en los tiempos del colera (resumen).pptxhectoralvarado79
 
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdf
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdfHolland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdf
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdffrank0071
 
Codigo rojo manejo y tratamient 2022.pptx
Codigo rojo manejo y tratamient 2022.pptxCodigo rojo manejo y tratamient 2022.pptx
Codigo rojo manejo y tratamient 2022.pptxSergioSanto4
 
Perfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdf
Perfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdfPerfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdf
Perfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdfPieroalex1
 
Tema 1. Generalidades de Microbiologia Universidad de Oriente
Tema 1. Generalidades de Microbiologia Universidad de OrienteTema 1. Generalidades de Microbiologia Universidad de Oriente
Tema 1. Generalidades de Microbiologia Universidad de OrienteUnaLuzParaLasNacione
 
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdfvguadarramaespinal
 
Características emociones y sentimientos
Características emociones y sentimientosCaracterísticas emociones y sentimientos
Características emociones y sentimientosFiorelaMondragon
 
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptx
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptxTEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptx
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptxXavierCrdenasGarca
 
conocer los modelos atómicos a traves de diversos ejemplos y características
conocer los modelos atómicos a traves de diversos ejemplos y característicasconocer los modelos atómicos a traves de diversos ejemplos y características
conocer los modelos atómicos a traves de diversos ejemplos y característicasMarielaMedinaCarrasc4
 
AA.VV. - Reinvención de la metrópoli: 1920-1940 [2024].pdf
AA.VV. - Reinvención de la metrópoli: 1920-1940 [2024].pdfAA.VV. - Reinvención de la metrópoli: 1920-1940 [2024].pdf
AA.VV. - Reinvención de la metrópoli: 1920-1940 [2024].pdffrank0071
 
artropodos fusion 2024 clase universidad de chile
artropodos fusion 2024 clase universidad de chileartropodos fusion 2024 clase universidad de chile
artropodos fusion 2024 clase universidad de chilecatabarria8
 
Generalidades de Anatomía - Ayudantía de Cátedra AHCG .pdf
Generalidades de Anatomía - Ayudantía de Cátedra AHCG .pdfGeneralidades de Anatomía - Ayudantía de Cátedra AHCG .pdf
Generalidades de Anatomía - Ayudantía de Cátedra AHCG .pdfdennissotoleyva
 
DERECHO ROMANO DE JUSTINIANO I EL GRANDE.pptx
DERECHO ROMANO DE JUSTINIANO I EL GRANDE.pptxDERECHO ROMANO DE JUSTINIANO I EL GRANDE.pptx
DERECHO ROMANO DE JUSTINIANO I EL GRANDE.pptxSilverQuispe2
 

Último (20)

Viaje al centro de la Ciencia 6 DOC_WEB.pdf
Viaje al centro de la Ciencia 6 DOC_WEB.pdfViaje al centro de la Ciencia 6 DOC_WEB.pdf
Viaje al centro de la Ciencia 6 DOC_WEB.pdf
 
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdfGribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
Gribbin, John. - Historia de la ciencia, 1543-2001 [EPL-FS] [2019].pdf
 
Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...
Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...
Un repaso de los ensayos recientes de historia de la ciencia y la tecnología ...
 
Harvey, David. - Paris capital de la modernidad [2008].pdf
Harvey, David. - Paris capital de la modernidad [2008].pdfHarvey, David. - Paris capital de la modernidad [2008].pdf
Harvey, David. - Paris capital de la modernidad [2008].pdf
 
Fowler, Will. - Santa Anna, héroe o villano [2018].pdf
Fowler, Will. - Santa Anna, héroe o villano [2018].pdfFowler, Will. - Santa Anna, héroe o villano [2018].pdf
Fowler, Will. - Santa Anna, héroe o villano [2018].pdf
 
Procedimiento e interpretación de los coprocultivos.pdf
Procedimiento e interpretación de los coprocultivos.pdfProcedimiento e interpretación de los coprocultivos.pdf
Procedimiento e interpretación de los coprocultivos.pdf
 
tecnica de necropsia en bovinos rum.pptx
tecnica de necropsia en bovinos rum.pptxtecnica de necropsia en bovinos rum.pptx
tecnica de necropsia en bovinos rum.pptx
 
el amor en los tiempos del colera (resumen).pptx
el amor en los tiempos del colera (resumen).pptxel amor en los tiempos del colera (resumen).pptx
el amor en los tiempos del colera (resumen).pptx
 
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdf
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdfHolland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdf
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdf
 
Codigo rojo manejo y tratamient 2022.pptx
Codigo rojo manejo y tratamient 2022.pptxCodigo rojo manejo y tratamient 2022.pptx
Codigo rojo manejo y tratamient 2022.pptx
 
Perfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdf
Perfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdfPerfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdf
Perfiles NEUROPSI Atención y Memoria 6 a 85 Años (AyM).pdf
 
Tema 1. Generalidades de Microbiologia Universidad de Oriente
Tema 1. Generalidades de Microbiologia Universidad de OrienteTema 1. Generalidades de Microbiologia Universidad de Oriente
Tema 1. Generalidades de Microbiologia Universidad de Oriente
 
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf
 
Características emociones y sentimientos
Características emociones y sentimientosCaracterísticas emociones y sentimientos
Características emociones y sentimientos
 
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptx
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptxTEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptx
TEST BETA III: APLICACIÓN E INTERPRETACIÓN.pptx
 
conocer los modelos atómicos a traves de diversos ejemplos y características
conocer los modelos atómicos a traves de diversos ejemplos y característicasconocer los modelos atómicos a traves de diversos ejemplos y características
conocer los modelos atómicos a traves de diversos ejemplos y características
 
AA.VV. - Reinvención de la metrópoli: 1920-1940 [2024].pdf
AA.VV. - Reinvención de la metrópoli: 1920-1940 [2024].pdfAA.VV. - Reinvención de la metrópoli: 1920-1940 [2024].pdf
AA.VV. - Reinvención de la metrópoli: 1920-1940 [2024].pdf
 
artropodos fusion 2024 clase universidad de chile
artropodos fusion 2024 clase universidad de chileartropodos fusion 2024 clase universidad de chile
artropodos fusion 2024 clase universidad de chile
 
Generalidades de Anatomía - Ayudantía de Cátedra AHCG .pdf
Generalidades de Anatomía - Ayudantía de Cátedra AHCG .pdfGeneralidades de Anatomía - Ayudantía de Cátedra AHCG .pdf
Generalidades de Anatomía - Ayudantía de Cátedra AHCG .pdf
 
DERECHO ROMANO DE JUSTINIANO I EL GRANDE.pptx
DERECHO ROMANO DE JUSTINIANO I EL GRANDE.pptxDERECHO ROMANO DE JUSTINIANO I EL GRANDE.pptx
DERECHO ROMANO DE JUSTINIANO I EL GRANDE.pptx
 

Elasticidad y límites estructurales del salto Bungee

  • 1. LIMITACIONES ESTRUCTURALES. DIAGRAMA DE MANIOBRA. ELASTICIDAD LEY DE HOOKE.
  • 2. El salto BUNGEE utiliza una larga cuerda elástica que se estira hasta que llega a una longitud máxima que es proporcional al peso del saltador. La elasticidad de la cuerda determina la amplitud de las vibraciones resultantes. Si se excede el límite elástico de la cuerda, ésta se romperá. Elasticidad Photo © Vol. 10 PhotoDisk/Getty
  • 3. Objetivos: Después de completar este módulo, deberá: • Demostrar su comprensión de elasticidad, límite elástico, esfuerzo, deformación y resistencia a la rotura. • Escribir y aplicar fórmulas para calcular módulo de Young, módulo de corte y módulo volumétrico. • Resolver problemas que involucren cada uno de los parámetros en los objetivos anteriores.
  • 4. Propiedades elásticas de la materia Un cuerpo elástico es aquel que regresa a su forma original después de una deformación. Bola de golf Balón de soccer Banda de goma
  • 5. Propiedades elásticas de la materia Un cuerpo inelástico es aquel que no regresa a su forma original después de una deformación. Masa o pan Barro Bola inelástica
  • 6. ¿Elástico o inelástico? Una colisión elástica no pierde energía. La deformación en la colisión se restaura por completo. En una colisión inelástica se pierde energía y la deformación puede ser permanente. (Clic aquí.)
  • 8. Un resorte elástico Un resorte es un ejemplo de un cuerpo elástico que se puede deformar al estirarse. Una fuerza restauradora, F, actúa en la dirección opuesta al desplazamiento del cuerpo en oscilación. F = -kx x F
  • 9. Ley de Hooke Cuando un resorte se estira, hay una fuerza restauradora que es proporcional al desplazamiento. F = -kx La constante de resorte k es una propiedad del resorte dada por: F x m F k x    La constante de resorte k es una medida de la elasticidad del resorte.
  • 10. Esfuerzo y deformación Esfuerzo se refiere a la causa de una deformación, y deformación se refiere al efecto de la deformación. x F La fuerza descendente F causa el desplazamiento x. Por tanto, el esfuerzo es la fuerza; la deformación es la elongación.
  • 11. Tipos de esfuerzo Un esfuerzo de tensión ocurre cuando fuerzas iguales y opuestas se dirigen alejándose mutuamente. Un esfuerzo de compresión ocurre cuando fuerzas iguales y opuestas se dirigen una hacia la otra. F W Tensión F W Compresión
  • 12. Resumen de definiciones Esfuerzo es la razón de una fuerza aplicada F al área A sobre la que actúa: Deformación es el cambio relativo en las dimensiones o forma de un cuerpo como resultado de un esfuerzo aplicado: Ejemplos: Cambio en longitud por unidad de longitud; cambio en volumen por unidad de volumen. F Esfuerzo A  2 2 o Pa : in lb m N Unidades 
  • 13. Esfuerzo y deformación longitudinales L L A A F Para alambres, varillas y barras, existe un esfuerzo longitudinal F/A que produce un cambio en longitud por unidad de longitud. En tales casos: F Esfuerzo A  L Deformación L  
  • 14. Ejemplo 1. Un alambre de acero de 10 m de largo y 2 mm de diámetro se une al techo y a su extremo se une un peso de 200 N. ¿Cuál es el esfuerzo aplicado? L L A A F Primero encuentre el área del alambre: 2 2 (0.002 m) 4 4 D A     A = 3.14 x 10-6 m2 Esfuerzo 6.37 x 107 Pa 2 6 m 10 x 3.14 N 200    A F Esfuerzo
  • 15. Ejemplo 1 (Cont.) Un alambre de acero de 10 m se estira 3.08 mm debido a la carga de 200 N. ¿Cuál es la deformación longitudinal? L L Dado: L = 10 m; L = 3.08 mm Deformación longitudinal 3.08 x 10-4 m 10 m 0.00308    L L n Deformació
  • 16. El límite elástico El límite elástico es el esfuerzo máximo que un cuerpo puede experimentar sin quedar deformado permanentemente. W W 2 m Si el esfuerzo supera el límite elástico, la longitud final será mayor que los 2 m originales. Bien Más allá del límite F W 2 m F Esfuerzo A 
  • 17. Resistencia a la rotura La resistencia a la rotura es el esfuerzo máximo que un cuerpo puede experimentar sin romperse. Si el esfuerzo supera la resistencia a la rotura, ¡la cuerda se rompe! W W F W W W 2 m F Esfuerzo A 
  • 18. Ejemplo 2. El límite elástico para el acero es 2.48 x 108 Pa. ¿Cuál es el peso máximo que puede soportar sin superar el límite elástico? L L A A F Recuerde: A = 3.14 x 10-6 m2 F = (2.48 x 108 Pa) A F = (2.48 x 108 Pa)(3.14 x 10-6 m2) F = 779 N
  • 19. Ejemplo 2 (Cont.) La resistencia a la rotura para el acero es 4089 x 108 Pa. ¿Cuál es el peso máximo que puede soportar sin romper el alambre? L L A A F Recuerde: A = 3.14 x 10-6 m2 F = (4.89 x 108 Pa) A F = (4.89 x 108 Pa)(3.14 x 10-6 m2) F = 1536 N Pa 10 4.89 8    A F Esfuerzo
  • 20. El módulo de elasticidad Siempre que el límite elástico no se supere, una deformación elástica (deformación) es directamente proporcional a la magnitud de la fuerza aplicada por unidad de área (esfuerzo). n deformació esfuerzo d elasticida de Módulo 
  • 21. Ejemplo 3. En el ejemplo anterior, el esfuerzo aplicado al alambre de acero fue 6.37 x 107 Pa y la deformación fue 3.08 x 10-4. Encuentre el módulo de elasticidad para el acero. L L Módulo = 207 x 109 Pa Este módulo de elasticidad longitudinal se llama módulo de Young y se denota con el símbolo Y. 4 7 10 08 . 3 Pa 10 6.37      n deformació esfuerzo Módulo
  • 22. Módulo de Young Para materiales cuya longitud es mucho mayor que el ancho o espesor, se tiene preocupación por el módulo longitudinal de elasticidad, o módulo de Young (Y). / / F A FL Y L L A L     al longitudin n deformació al longitudin esfuerzo Young de Módulo  2 lb in. Unidades: Pa o
  • 23. Ejemplo 4: El módulo de Young para el latón es 8.96 x 1011 Pa. Un peso de 120 N se une a un alambre de latón de 8 m de largo; encuentre el aumento en longitud. El diámetro es 1.5 mm. 8 m L 120 N Primero encuentre el área del alambre: 2 2 (0.0015 m) 4 4 D A     A = 1.77 x 10-6 m2 or FL FL Y L A L AY    
  • 24. Ejemplo 4: (continuación) 8 m L 120 N Y = 8.96 x 1011 Pa; F = 120 N; L = 8 m; A = 1.77 x 10-6 m2 F = 120 N; L = ? or FL FL Y L A L AY     -6 2 11 (120 N)(8.00 m) (1.77 x 10 m )(8.96 x 10 Pa) FL L AY    L = 0.605 mm Aumento en longitud:
  • 25. Módulo de corte A F F f l d Un esfuerzo cortante altera sólo la forma del cuerpo y deja el volumen invariable. Por ejemplo, considere las fuerzas cortantes iguales y opuestas F que actúan sobre el cubo siguiente: La fuerza cortante F produce un ángulo cortante f. El ángulo f es la deformación y el esfuerzo está dado por F/A como antes.
  • 26. Cálculo del módulo de corte F F f l d A La deformación es el ángulo expresado en radianes: El esfuerzo es fuerza por unidad de área: El módulo de corte S se define como la razón del esfuerzo cortante F/A a la deformación de corte f: Módulo de corte: unidades en pascales. F A S f  F Esfuerzo A  l d n Deformació   f
  • 27. Ejemplo 5. Un perno de acero (S = 8.27 x 1010 Pa) de 1 cm de diámetro se proyecta 4 cm desde la pared. Al extremo se aplica una fuerza cortante de 36,000 N. ¿Cuál es la desviación d del perno? d l F 2 2 (0.01 m) 4 4 D A     Área: A = 7.85 x 10-5 m2 ; F A F A Fl Fl S d d l Ad AS f     -5 2 10 (36,000 N)(0.04 m) (7.85 x 10 m )(8.27 x 10 Pa) d  d = 0.222 mm
  • 28. Resumen: Elástico e inelástico Un cuerpo inelástico es aquel que no regresa a su forma original después de una deformación. En una colisión inelástica, se pierde energía y la deformación puede ser permanente. Una colisión elástica no pierde energía. La deformación en la colisión se restaura completamente. Un cuerpo elástico es aquel que regresa a su forma original después de una deformación.
  • 29. Un esfuerzo de tensión ocurre cuando fuerzas iguales y opuestas se dirigen alejándose mutuamente. Un esfuerzo de compresión ocurre cuando fuerzas iguales y opuestas se dirigen una hacia la otra. F W Tensión F W Compresión Resumen Tipos de esfuerzo
  • 30. Resumen de definiciones El esfuerzo es la razón de una fuerza aplicada F al área A sobre la que actúa: La deformación es el cambio relativo en dimensiones o forma de un cuerpo como resultado de un esfuerzo aplicado: Ejemplos: Cambio en longitud por unidad de longitud; cambio en volumen por unidad de volumen. F Esfuerzo A  2 2 o Pa in lb m N Unidades  
  • 31. Esfuerzo y deformación longitudinales L L A A F Para alambres, varillas y barras, hay un esfuerzo longitudinal F/A que produce un cambio en longitud por unidad de longitud. En tales casos: F Esfuerzo A  L Deformación L  
  • 32. El límite elástico El límite elástico es el esfuerzo máximo que un cuerpo puede experimentar sin quedar permanentemente deformado. La resistencia a la rotura es el mayor estrés que un cuerpo puede experimentar sin romperse. La resistencia a la rotura
  • 33. Módulo de Young Para materiales cuya longitud es mucho mayor que el ancho o el espesor, se tiene preocupación por el módulo longitudinal de elasticidad, o módulo de Young Y. / / F A FL Y L L A L     al longitudin n deformació al longitudin esfuerzo Young de Módulo  2 2 o Pa in lb m N Unidades  
  • 34. El módulo de corte F F f l d A La deformación es el ángulo expresado en radianes: Esfuerzo es fuerza por unidad de área: El módulo de corte S se define como la razón del esfuerzo cortante F/A a la deformación de corte f: El módulo de corte: sus unidades son pascales. F A S f  F Esfuerzo A  d Deformación l f  