SlideShare una empresa de Scribd logo
1 de 6
Técnicas para el Análisis y Solución de Circuitos Eléctricos
Existen diversas técnicas para la solución y el análisis de Circuitos Eléctricos, los
cuales se fundamentan en las principales leyes de Teoría de Circuitos que son: La
Ley de Ohm, las leyes de Voltaje y Corriente de Kirchoff y el análisis de redes de
Thévenin y Norton.
Cada una de ellas arroja diversas formas de comprensión y tratamiento sobre
cada uno de los parámetros que hacen parte de un circuito en particular. Algunas
de éstas técnicas pueden parecer más sencillas que otras, sin embargo,
dependiendo el tipo de circuito ellas pueden presentar un comportamiento más
adecuado o no, facilitando su análisis y obtención de resultados.
Las técnicas más utilizadas son las siguientes: División de Tensión y división de
corriente (Ley de Ohm), Análisis de Mallas y Nodos (Leyes de Kirchoff),
Transformación de Fuentes y Reducción de redes (Thévenin y Norton).
A continuación se explican los pasos a seguir para implementar cada una de ellas
según sea necesario.
ANÁLISIS DE CIRCUITOS POR EL MÉTODO DE MALLAS
Es una de las técnicas más conocidas y aplicadas a nivel mundial; consiste en
calcular cada una de las corrientes que circulan por las diversas mallas que
componen el circuito eléctrico. Vale la pena recalcar, que aunque ésta técnica
permite la obtención de cada una de las corrientes, se fundamenta en la Ley de
Voltajes de Kirchoff, la cual dice: “que la sumatoria de voltajes a través de un
circuito cerrado es igual a CERO”.
La metodología para realizar el análisis de mallas es la siguiente:
1. Identificar y clasificar el número total de mallas en el circuito, a cada malla
asignarle una corriente de malla.
2. Aplique la LVK a cada malla, siempre y cuando no esté presente una fuente de
corriente, expresando los voltajes en función de las corrientes de malla.
3. Si existe una fuente de corriente y ésta afecta a una sola malla, entonces la
corriente de malla toma el valor de la fuente de corriente, verificando el sentido
de la corriente de malla respecto al sentido de la fuente de corriente.
4. Si existe una fuente de corriente que afecta a dos mallas, entonces se dice
que hay una supermalla, para obtener la ecuación de la supermalla es
necesario:
 Eliminar la fuente de corriente (circuito abierto).
 Aplicar la LVK a la supermalla resultante expresando los voltajes en función de
las corrientes de las malla que la integran.
5. Resolver las ecuaciones resultantes
6. ANÁLISIS DE CIRCUITOS POR EL MÉTODO DE NODOS
7. Esta técnica al igual que la correspondiente al análisis de mallas, hace
parte de las técnicas por excelencia para el análisis de Circuitos Eléctricos.
Este método se basa en la Ley Kirchhoff de corrientes (LKC) y permite
establecer las ecuaciones que entregan como resultado el valor presente
en cada uno de los voltajes de nodo vistos desde un nodo de referencia
común.
8. Este sistema nos permite obtener los valores de las tensiones
desconocidas en los distintos elementos que conforman el circuito. Si un
circuito tiene n nodos, debe tener (n-1) voltajes desconocidos, por lo tanto
debemos plantear (n-1) ecuaciones.
9. Las ecuaciones resultantes (n-1) se pueden resolver por cualquiera de los
sistemas conocidos aunque se recomienda utilizar el método de matrices.
Vale la pena recordar que un nodo es simplemente el punto de unión de
dos o más elementos.
La metodología para realizar el análisis de nodos es la siguiente:
1. Identifique el total de nodos del circuito y clasifíquelos.
2. Seleccione un nodo como referencia, en donde el voltaje será de 0 V.
3. Aplique la LCK a cada nodo excepto al de referencia, siempre y cuando no
esté presente una fuente de voltaje, expresando las corrientes en función de
los voltajes de nodo. (I=GV)
4. Si existe una fuente de voltaje conectada al nodo de referencia, entonces el
voltaje de nodo toma el valor de la fuente de voltaje, verificando la polaridad
del voltaje de nodo respecto a la polaridad de la fuente.
5. Si existe una fuente de voltaje conectada entre dos nodos y ninguno de ellos
es referencia, entonces se dice que hay un supernodo, para obtener la
ecuación del supernodo es necesario:
 Eliminar la fuente de voltaje (corto circuito).
 Aplicar la LCK al supernodo resultante expresando las corrientes en función de
los voltajes de los nodos que lo conforman.
6. Resolver las ecuaciones resultantes
7. Teorema de Superposición
8. Una de las técnicas más antiguas y de gran importancia en el campo de la
Teoría de circuitos es el Teorema de Superposición. El término
superposición significa sumatoria, lo cual obedece a que el resultado de
aplicar ésta técnica proviene de la sumatoria de cada uno de los resultados
obtenidos según el efecto producido por cada fuente de alimentación, ya
sea de voltaje o corriente que haga parte del circuito en particular.
9. Por su definición este teorema se aplica a circuitos que tienen dos o más
mallas con varias fuentes. Su enunciado dice así:
10. “Dado un circuito con elementos lineales únicamente y con más de
una fuente, la corriente o tensión en cualquier rama o elemento es
igual a la suma algebraica de los efectos producidos por cada fuente
considerada individualmente, cuando el resto de las fuentes se
eliminan, de tal forma que todas la fuentes de voltaje se cortocircuitan
y la fuentes de corriente se ponen a circuito abierto” .
11. Ello es posible debido a que la intensidad o diferencia de potencial entre
dos puntos cualesquiera del circuito se debe a la contribución simultánea
de las distintas fuentes distribuidas en el circuito.
12. Para aplicar el teorema de superposición a un circuito con un número m de
fuentes, hay que resolver otros tantos m circuitos sencillos que contengan
cada vez una sola fuente cortocircuitando las fuentes de tensión y abriendo
las de corriente.
13. Técnicas para al análisis de Redes de Circuitos
14. Existen dos técnicas de gran utilidad y de uso común, aplicadas al análisis
de redes de circuitos. Una red de circuitos es un sistema complejo de
componentes que interactúan entre sí cumpliendo una función en particular.
Estos sistemas pueden estar compuestos por cientos de elementos
resistivos, fuentes de alimentación entre otros.
15. La importancia de ésta técnica consiste en que es posible representar
cualquier sistema visto desde dos puntos como una fuente de voltaje y una
resistencia en serie, o como una fuente de corriente en paralelo con una
resistencia.
16. Teorema de Thévenin
17. Cualquier circuito, por complejo que sea, visto desde dos terminales
cualesquiera A y B, es equivalente a una fuente ideal de tensión en serie
con una resistencia, donde: la fuerza electromotriz de la fuente de tensión
es igual al voltaje que se mide en circuito abierto en dichos terminales
18. La resistencia es la que presenta el circuito vista desde dichos terminales,
cortocircuitando todas las fuentes de tensión y dejando en circuito abierto
las de corriente. (Se la conoce como la resistencia equivalente Thévenin)
19. Teorema de Norton
20. Es el recíproco del Teorema de Thevenin y dice: "Todo circuito por
complejo que sea, compuesto de fuentes y resistencias visto desde dos
terminales determinados, se puede reemplazar por una fuente ideal de
corriente en paralelo con una resistencia, donde:
21. La corriente de la fuente es la que se mide en el cortocircuito entre los
terminales en cuestión.
22. La resistencia es la que presenta el circuito vista desde dichos terminales,
cortocircuitando todas las fuentes de tensión y dejando en circuito abierto
las de corriente. ( es igual a la resistencia equivalente Thévenin)
23. Teorema de Máxima Transferencia de Potencia
24. Es una técnica que permite calcular cuál deberá ser el valor exacto de
resistencia que se debe aplicar entre dos puntos para obtener como su
nombre lo indica máxima transferencia de potencia desde la fuente.
25. Cuando realizamos análisis de circuitos es necesario en algunas
oportunidades determinar la máxima transferencia de potencia que puede
ser entregada a la carga. Para ello podemos utilizar una de las técnicas
vistas anteriormente como es el teorema de Thévenin, la cual permite
establecer que el valor resistivo de la carga para obtener máxima
transferencia de potencia, deberá ser igual a la resistencia Thévenin
presente en el sistema.
26. La ley aplicada a la técnica correspondiente al análisis de mallas para la
solución de circuitos eléctricos es:
27. Su respuesta :
28. Ley de Voltajes de Kirchoff
29.
30. Correcto
La metodología para realizar el análisis de mallas es la siguiente:
(Seleccione las afirmaciones correctas)
Su respuesta :
Identificar y clasificar el número total de mallas en el circuito, a cada malla
asignarle una corriente de malla.
Aplique la LVK a cada malla, siempre y cuando no esté presente una fuente de
corriente, expresando los voltajes en función de las corrientes de malla.
Si existe una fuente de corriente y ésta afecta a una sola malla, entonces la
corriente de malla toma el valor de la fuente de corriente, verificando el sentido de
la corriente de malla respecto al sentido de la fuente de corriente.
Si existe una fuente de corriente que afecta a dos mallas, entonces se dice que
hay una supermalla, para obtener la ecuación de la supermalla es necesario:
Eliminar la fuente de corriente (circuito abierto), Aplicar la LVK a la supermalla
resultante expresando los voltajes en función de las corrientes de las malla que la
integran y resolver las ecuaciones resultantes
Correcto
Cuando se tiene un sistema representado por equivalente Thévenin y se requiere
representarlo en el equivalente Norton, es necesario aplicar:
Su respuesta :
Transformación de Fuentes
Correcto
El siguiente enunciado “la sumatoria de todas las corrientes que entran por un
punto de unión de dos o más elementos es igual a la sumatoria de corrientes que
salen de él”, es un concepto aplicado a:
Su respuesta :
Análisis de Nodos
Correcto
Si existe una fuente de voltaje conectada entre dos nodos y ninguno de ellos es
referencia, entonces se dice que hay un
Su respuesta :
Super Nodo
Correcto
Si existe una fuente de corriente y ésta afecta a una sola malla, entonces la
corriente de malla toma el valor de
Su respuesta :
La fuente de Corriente
Correcto
Es una de las técnicas más conocidas y aplicadas a nivel mundial; consiste
en calcular cada una de las corrientes que circulan por las diversas mallas
que componen el circuito eléctrico. Fundamentándose en el siguiente
enunciado “que la sumatoria de voltajes a través de un circuito cerrado es
igual a CERO”.
Su respuesta :
Análisis de Circuitos por el método de Mallas
Correcto
Esta técnica, hace parte de las técnicas por excelencia para el análisis de
Circuitos Eléctricos. Este método permite establecer las ecuaciones que entregan
como resultado el valor presente en cada uno de los voltajes de nodo vistos desde
un nodo de referencia común y nos permite obtener los valores de las tensiones
desconocidas en los distintos elementos que conforman el circuito.
Su respuesta :
Análisis de Circuitos por el método de Nodos
Correcto
Técnica que se aplica a circuitos que tienen dos o más mallas con varias fuentes:
Su respuesta :
Análisis de Circuitos por medio del Teorema de Superposición
Correcto
Técnica que permite calcular cuál deberá ser el valor exacto de resistencia que se debe
aplicar entre dos puntos para obtener la máxima transferencia de potencia desde la
fuente.
Su respuesta :
Análisis de circuitos por medio del Teorema de la Máxima Transferencia de
Potencia
Correcto

Más contenido relacionado

La actualidad más candente

Clase 5 teorema de superposición
Clase 5 teorema de superposiciónClase 5 teorema de superposición
Clase 5 teorema de superposiciónTensor
 
Cap3
Cap3Cap3
Cap3CJAO
 
Teoremas de redes
Teoremas de redesTeoremas de redes
Teoremas de redesDEILYDEURI
 
Clase 7 teorema de superposición
Clase 7 teorema de superposiciónClase 7 teorema de superposición
Clase 7 teorema de superposiciónTensor
 
Jesus Badell teoremas de circuitos electricos (45)
Jesus Badell teoremas de circuitos electricos (45)Jesus Badell teoremas de circuitos electricos (45)
Jesus Badell teoremas de circuitos electricos (45)jesus badell
 
Practica de teoremas de redes
Practica de teoremas de redes Practica de teoremas de redes
Practica de teoremas de redes kenny torres
 
teorema de Thevenin y Zbarra
teorema de Thevenin y Zbarrateorema de Thevenin y Zbarra
teorema de Thevenin y Zbarranorenelson
 
Exp cap-3-circ-electricos
Exp cap-3-circ-electricosExp cap-3-circ-electricos
Exp cap-3-circ-electricosmaria_amanta
 
Mallas eléctricas
Mallas eléctricasMallas eléctricas
Mallas eléctricasguestaf7868
 
Circuitos Eléctricos (Universidad Nacional de Loja)
Circuitos Eléctricos (Universidad Nacional de Loja)Circuitos Eléctricos (Universidad Nacional de Loja)
Circuitos Eléctricos (Universidad Nacional de Loja)Universidad Nacional de Loja
 
Teoremas de circuito eléctricos
Teoremas de circuito eléctricosTeoremas de circuito eléctricos
Teoremas de circuito eléctricosMariRizcala
 
Guia digital Analisis Nodal AC y Divisor de Fuentes AC
Guia digital Analisis Nodal AC y Divisor de Fuentes ACGuia digital Analisis Nodal AC y Divisor de Fuentes AC
Guia digital Analisis Nodal AC y Divisor de Fuentes ACMaille Altuve
 
Cursos de electricidad y electronica
Cursos de electricidad y electronicaCursos de electricidad y electronica
Cursos de electricidad y electronicaVictor Tito
 
Clase 8 teorema de norton y thevenin
Clase 8 teorema de norton y theveninClase 8 teorema de norton y thevenin
Clase 8 teorema de norton y theveninTensor
 

La actualidad más candente (20)

Clase 5 teorema de superposición
Clase 5 teorema de superposiciónClase 5 teorema de superposición
Clase 5 teorema de superposición
 
Teoría de circuitos 1/8
Teoría de circuitos 1/8Teoría de circuitos 1/8
Teoría de circuitos 1/8
 
Cap3
Cap3Cap3
Cap3
 
Teoremas de redes
Teoremas de redesTeoremas de redes
Teoremas de redes
 
Clase 7 teorema de superposición
Clase 7 teorema de superposiciónClase 7 teorema de superposición
Clase 7 teorema de superposición
 
Jesus Badell teoremas de circuitos electricos (45)
Jesus Badell teoremas de circuitos electricos (45)Jesus Badell teoremas de circuitos electricos (45)
Jesus Badell teoremas de circuitos electricos (45)
 
Circuito
CircuitoCircuito
Circuito
 
Practica de teoremas de redes
Practica de teoremas de redes Practica de teoremas de redes
Practica de teoremas de redes
 
teorema de Thevenin y Zbarra
teorema de Thevenin y Zbarrateorema de Thevenin y Zbarra
teorema de Thevenin y Zbarra
 
Análisis de nodos
Análisis de nodosAnálisis de nodos
Análisis de nodos
 
Exp cap-3-circ-electricos
Exp cap-3-circ-electricosExp cap-3-circ-electricos
Exp cap-3-circ-electricos
 
Teorema de la superposición
Teorema de la superposiciónTeorema de la superposición
Teorema de la superposición
 
Mallas eléctricas
Mallas eléctricasMallas eléctricas
Mallas eléctricas
 
Circuitos serie-y-paralelo-ejercicios (1)
Circuitos serie-y-paralelo-ejercicios (1)Circuitos serie-y-paralelo-ejercicios (1)
Circuitos serie-y-paralelo-ejercicios (1)
 
Circuitoselctricoprevio
CircuitoselctricoprevioCircuitoselctricoprevio
Circuitoselctricoprevio
 
Circuitos Eléctricos (Universidad Nacional de Loja)
Circuitos Eléctricos (Universidad Nacional de Loja)Circuitos Eléctricos (Universidad Nacional de Loja)
Circuitos Eléctricos (Universidad Nacional de Loja)
 
Teoremas de circuito eléctricos
Teoremas de circuito eléctricosTeoremas de circuito eléctricos
Teoremas de circuito eléctricos
 
Guia digital Analisis Nodal AC y Divisor de Fuentes AC
Guia digital Analisis Nodal AC y Divisor de Fuentes ACGuia digital Analisis Nodal AC y Divisor de Fuentes AC
Guia digital Analisis Nodal AC y Divisor de Fuentes AC
 
Cursos de electricidad y electronica
Cursos de electricidad y electronicaCursos de electricidad y electronica
Cursos de electricidad y electronica
 
Clase 8 teorema de norton y thevenin
Clase 8 teorema de norton y theveninClase 8 teorema de norton y thevenin
Clase 8 teorema de norton y thevenin
 

Similar a Act 8

Manual apuntes y_ejercicios_circuitos_electricos_i
Manual apuntes y_ejercicios_circuitos_electricos_iManual apuntes y_ejercicios_circuitos_electricos_i
Manual apuntes y_ejercicios_circuitos_electricos_idestionalfre
 
Bloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptx
Bloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptxBloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptx
Bloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptxDomingoHernandez31
 
Unidad v analisis de circuitos en corriente alterna
Unidad v analisis de circuitos en corriente alternaUnidad v analisis de circuitos en corriente alterna
Unidad v analisis de circuitos en corriente alternaMónica centeno
 
Exp cap-2-circ-electricos
Exp cap-2-circ-electricosExp cap-2-circ-electricos
Exp cap-2-circ-electricosmaria_amanta
 
Mallas 091113110741-phpapp01
Mallas 091113110741-phpapp01Mallas 091113110741-phpapp01
Mallas 091113110741-phpapp01marcosgabo
 
CIRCUITOS RLC CBTis # 37
CIRCUITOS RLC CBTis # 37CIRCUITOS RLC CBTis # 37
CIRCUITOS RLC CBTis # 37Hossman Ruiz
 
analisissssAnálisis de nodos
analisissssAnálisis de nodosanalisissssAnálisis de nodos
analisissssAnálisis de nodosWilson Vargas
 
Circuitos electricos (1)
Circuitos electricos (1)Circuitos electricos (1)
Circuitos electricos (1)Andy Dextre
 
Circuitos electricos máxima potencia norton thevenin
Circuitos electricos máxima potencia norton theveninCircuitos electricos máxima potencia norton thevenin
Circuitos electricos máxima potencia norton theveninjobesop
 
Presentación de Analisis de redes para Electrónicos
Presentación de Analisis de redes para ElectrónicosPresentación de Analisis de redes para Electrónicos
Presentación de Analisis de redes para ElectrónicosSantosRiosJoel
 
MÉTODOS DE ANÁLISIS Y TEMAS SELECCIONADOS .pptx
MÉTODOS DE ANÁLISIS Y TEMAS SELECCIONADOS .pptxMÉTODOS DE ANÁLISIS Y TEMAS SELECCIONADOS .pptx
MÉTODOS DE ANÁLISIS Y TEMAS SELECCIONADOS .pptxnitoookami
 
Circuitos Eléctricos
Circuitos EléctricosCircuitos Eléctricos
Circuitos EléctricosCEMEX
 
Análisis nodal y mallas
Análisis nodal y mallasAnálisis nodal y mallas
Análisis nodal y mallasuniversitario
 
1 meyvi-candedo
1   meyvi-candedo1   meyvi-candedo
1 meyvi-candedodgffdf346
 

Similar a Act 8 (20)

Manual apuntes y_ejercicios_circuitos_electricos_i
Manual apuntes y_ejercicios_circuitos_electricos_iManual apuntes y_ejercicios_circuitos_electricos_i
Manual apuntes y_ejercicios_circuitos_electricos_i
 
Bloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptx
Bloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptxBloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptx
Bloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptx
 
Unidad v analisis de circuitos en corriente alterna
Unidad v analisis de circuitos en corriente alternaUnidad v analisis de circuitos en corriente alterna
Unidad v analisis de circuitos en corriente alterna
 
Exp cap-2-circ-electricos
Exp cap-2-circ-electricosExp cap-2-circ-electricos
Exp cap-2-circ-electricos
 
Mallas 091113110741-phpapp01
Mallas 091113110741-phpapp01Mallas 091113110741-phpapp01
Mallas 091113110741-phpapp01
 
CIRCUITOS RLC CBTis # 37
CIRCUITOS RLC CBTis # 37CIRCUITOS RLC CBTis # 37
CIRCUITOS RLC CBTis # 37
 
República bolivariana de venezuela
República bolivariana de venezuelaRepública bolivariana de venezuela
República bolivariana de venezuela
 
República bolivariana de venezuela
República bolivariana de venezuelaRepública bolivariana de venezuela
República bolivariana de venezuela
 
CAPITULO 2
CAPITULO 2CAPITULO 2
CAPITULO 2
 
Semana 3-clase-04-lm 1
Semana 3-clase-04-lm 1Semana 3-clase-04-lm 1
Semana 3-clase-04-lm 1
 
analisissssAnálisis de nodos
analisissssAnálisis de nodosanalisissssAnálisis de nodos
analisissssAnálisis de nodos
 
Circuitos electricos (1)
Circuitos electricos (1)Circuitos electricos (1)
Circuitos electricos (1)
 
Circuitos electricos máxima potencia norton thevenin
Circuitos electricos máxima potencia norton theveninCircuitos electricos máxima potencia norton thevenin
Circuitos electricos máxima potencia norton thevenin
 
Presentación de Analisis de redes para Electrónicos
Presentación de Analisis de redes para ElectrónicosPresentación de Analisis de redes para Electrónicos
Presentación de Analisis de redes para Electrónicos
 
MÉTODOS DE ANÁLISIS Y TEMAS SELECCIONADOS .pptx
MÉTODOS DE ANÁLISIS Y TEMAS SELECCIONADOS .pptxMÉTODOS DE ANÁLISIS Y TEMAS SELECCIONADOS .pptx
MÉTODOS DE ANÁLISIS Y TEMAS SELECCIONADOS .pptx
 
Circuitos Eléctricos
Circuitos EléctricosCircuitos Eléctricos
Circuitos Eléctricos
 
Circuitos RLC
Circuitos RLCCircuitos RLC
Circuitos RLC
 
teoria de mallas
teoria de mallasteoria de mallas
teoria de mallas
 
Análisis nodal y mallas
Análisis nodal y mallasAnálisis nodal y mallas
Análisis nodal y mallas
 
1 meyvi-candedo
1   meyvi-candedo1   meyvi-candedo
1 meyvi-candedo
 

Último

institucion educativa la esperanza sede magdalena
institucion educativa la esperanza sede magdalenainstitucion educativa la esperanza sede magdalena
institucion educativa la esperanza sede magdalenajuniorcuellargomez
 
COMOGANARAMIGODPARACRISTOIGLESIAADVENTISTANECOCLI,COM
COMOGANARAMIGODPARACRISTOIGLESIAADVENTISTANECOCLI,COMCOMOGANARAMIGODPARACRISTOIGLESIAADVENTISTANECOCLI,COM
COMOGANARAMIGODPARACRISTOIGLESIAADVENTISTANECOCLI,COMcespitiacardales
 
Institucion educativa la esperanza sede la magdalena
Institucion educativa la esperanza sede la magdalenaInstitucion educativa la esperanza sede la magdalena
Institucion educativa la esperanza sede la magdalenadanielaerazok
 
Guia para el registro en el sitio slideshare.pdf
Guia para el registro en el sitio slideshare.pdfGuia para el registro en el sitio slideshare.pdf
Guia para el registro en el sitio slideshare.pdflauradbernals
 
libro de Ciencias Sociales_6to grado.pdf
libro de Ciencias Sociales_6to grado.pdflibro de Ciencias Sociales_6to grado.pdf
libro de Ciencias Sociales_6to grado.pdfFAUSTODANILOCRUZCAST
 
Buscadores, SEM SEO: el desafío de ser visto en la web
Buscadores, SEM SEO: el desafío de ser visto en la webBuscadores, SEM SEO: el desafío de ser visto en la web
Buscadores, SEM SEO: el desafío de ser visto en la webDecaunlz
 
INSTITUCION EDUCATIVA LA ESPERANZA SEDE MAGDALENA
INSTITUCION EDUCATIVA LA ESPERANZA SEDE MAGDALENAINSTITUCION EDUCATIVA LA ESPERANZA SEDE MAGDALENA
INSTITUCION EDUCATIVA LA ESPERANZA SEDE MAGDALENAdanielaerazok
 
NUVO PROGRAMAS DE ESCUELAS NUEVO-ACUERDO-CTE.pdf
NUVO PROGRAMAS DE ESCUELAS NUEVO-ACUERDO-CTE.pdfNUVO PROGRAMAS DE ESCUELAS NUEVO-ACUERDO-CTE.pdf
NUVO PROGRAMAS DE ESCUELAS NUEVO-ACUERDO-CTE.pdfisrael garcia
 
12 Clasificacion de las Computadoras.pdf
12 Clasificacion de las Computadoras.pdf12 Clasificacion de las Computadoras.pdf
12 Clasificacion de las Computadoras.pdfedwinmelgarschlink2
 
COMPETENCIAS CIUDADANASadadadadadadada .pdf
COMPETENCIAS CIUDADANASadadadadadadada .pdfCOMPETENCIAS CIUDADANASadadadadadadada .pdf
COMPETENCIAS CIUDADANASadadadadadadada .pdfOscarBlas6
 

Último (10)

institucion educativa la esperanza sede magdalena
institucion educativa la esperanza sede magdalenainstitucion educativa la esperanza sede magdalena
institucion educativa la esperanza sede magdalena
 
COMOGANARAMIGODPARACRISTOIGLESIAADVENTISTANECOCLI,COM
COMOGANARAMIGODPARACRISTOIGLESIAADVENTISTANECOCLI,COMCOMOGANARAMIGODPARACRISTOIGLESIAADVENTISTANECOCLI,COM
COMOGANARAMIGODPARACRISTOIGLESIAADVENTISTANECOCLI,COM
 
Institucion educativa la esperanza sede la magdalena
Institucion educativa la esperanza sede la magdalenaInstitucion educativa la esperanza sede la magdalena
Institucion educativa la esperanza sede la magdalena
 
Guia para el registro en el sitio slideshare.pdf
Guia para el registro en el sitio slideshare.pdfGuia para el registro en el sitio slideshare.pdf
Guia para el registro en el sitio slideshare.pdf
 
libro de Ciencias Sociales_6to grado.pdf
libro de Ciencias Sociales_6to grado.pdflibro de Ciencias Sociales_6to grado.pdf
libro de Ciencias Sociales_6to grado.pdf
 
Buscadores, SEM SEO: el desafío de ser visto en la web
Buscadores, SEM SEO: el desafío de ser visto en la webBuscadores, SEM SEO: el desafío de ser visto en la web
Buscadores, SEM SEO: el desafío de ser visto en la web
 
INSTITUCION EDUCATIVA LA ESPERANZA SEDE MAGDALENA
INSTITUCION EDUCATIVA LA ESPERANZA SEDE MAGDALENAINSTITUCION EDUCATIVA LA ESPERANZA SEDE MAGDALENA
INSTITUCION EDUCATIVA LA ESPERANZA SEDE MAGDALENA
 
NUVO PROGRAMAS DE ESCUELAS NUEVO-ACUERDO-CTE.pdf
NUVO PROGRAMAS DE ESCUELAS NUEVO-ACUERDO-CTE.pdfNUVO PROGRAMAS DE ESCUELAS NUEVO-ACUERDO-CTE.pdf
NUVO PROGRAMAS DE ESCUELAS NUEVO-ACUERDO-CTE.pdf
 
12 Clasificacion de las Computadoras.pdf
12 Clasificacion de las Computadoras.pdf12 Clasificacion de las Computadoras.pdf
12 Clasificacion de las Computadoras.pdf
 
COMPETENCIAS CIUDADANASadadadadadadada .pdf
COMPETENCIAS CIUDADANASadadadadadadada .pdfCOMPETENCIAS CIUDADANASadadadadadadada .pdf
COMPETENCIAS CIUDADANASadadadadadadada .pdf
 

Act 8

  • 1. Técnicas para el Análisis y Solución de Circuitos Eléctricos Existen diversas técnicas para la solución y el análisis de Circuitos Eléctricos, los cuales se fundamentan en las principales leyes de Teoría de Circuitos que son: La Ley de Ohm, las leyes de Voltaje y Corriente de Kirchoff y el análisis de redes de Thévenin y Norton. Cada una de ellas arroja diversas formas de comprensión y tratamiento sobre cada uno de los parámetros que hacen parte de un circuito en particular. Algunas de éstas técnicas pueden parecer más sencillas que otras, sin embargo, dependiendo el tipo de circuito ellas pueden presentar un comportamiento más adecuado o no, facilitando su análisis y obtención de resultados. Las técnicas más utilizadas son las siguientes: División de Tensión y división de corriente (Ley de Ohm), Análisis de Mallas y Nodos (Leyes de Kirchoff), Transformación de Fuentes y Reducción de redes (Thévenin y Norton). A continuación se explican los pasos a seguir para implementar cada una de ellas según sea necesario. ANÁLISIS DE CIRCUITOS POR EL MÉTODO DE MALLAS Es una de las técnicas más conocidas y aplicadas a nivel mundial; consiste en calcular cada una de las corrientes que circulan por las diversas mallas que componen el circuito eléctrico. Vale la pena recalcar, que aunque ésta técnica permite la obtención de cada una de las corrientes, se fundamenta en la Ley de Voltajes de Kirchoff, la cual dice: “que la sumatoria de voltajes a través de un circuito cerrado es igual a CERO”. La metodología para realizar el análisis de mallas es la siguiente: 1. Identificar y clasificar el número total de mallas en el circuito, a cada malla asignarle una corriente de malla. 2. Aplique la LVK a cada malla, siempre y cuando no esté presente una fuente de corriente, expresando los voltajes en función de las corrientes de malla. 3. Si existe una fuente de corriente y ésta afecta a una sola malla, entonces la corriente de malla toma el valor de la fuente de corriente, verificando el sentido de la corriente de malla respecto al sentido de la fuente de corriente. 4. Si existe una fuente de corriente que afecta a dos mallas, entonces se dice que hay una supermalla, para obtener la ecuación de la supermalla es necesario:  Eliminar la fuente de corriente (circuito abierto).  Aplicar la LVK a la supermalla resultante expresando los voltajes en función de las corrientes de las malla que la integran. 5. Resolver las ecuaciones resultantes 6. ANÁLISIS DE CIRCUITOS POR EL MÉTODO DE NODOS 7. Esta técnica al igual que la correspondiente al análisis de mallas, hace parte de las técnicas por excelencia para el análisis de Circuitos Eléctricos. Este método se basa en la Ley Kirchhoff de corrientes (LKC) y permite
  • 2. establecer las ecuaciones que entregan como resultado el valor presente en cada uno de los voltajes de nodo vistos desde un nodo de referencia común. 8. Este sistema nos permite obtener los valores de las tensiones desconocidas en los distintos elementos que conforman el circuito. Si un circuito tiene n nodos, debe tener (n-1) voltajes desconocidos, por lo tanto debemos plantear (n-1) ecuaciones. 9. Las ecuaciones resultantes (n-1) se pueden resolver por cualquiera de los sistemas conocidos aunque se recomienda utilizar el método de matrices. Vale la pena recordar que un nodo es simplemente el punto de unión de dos o más elementos. La metodología para realizar el análisis de nodos es la siguiente: 1. Identifique el total de nodos del circuito y clasifíquelos. 2. Seleccione un nodo como referencia, en donde el voltaje será de 0 V. 3. Aplique la LCK a cada nodo excepto al de referencia, siempre y cuando no esté presente una fuente de voltaje, expresando las corrientes en función de los voltajes de nodo. (I=GV) 4. Si existe una fuente de voltaje conectada al nodo de referencia, entonces el voltaje de nodo toma el valor de la fuente de voltaje, verificando la polaridad del voltaje de nodo respecto a la polaridad de la fuente. 5. Si existe una fuente de voltaje conectada entre dos nodos y ninguno de ellos es referencia, entonces se dice que hay un supernodo, para obtener la ecuación del supernodo es necesario:  Eliminar la fuente de voltaje (corto circuito).  Aplicar la LCK al supernodo resultante expresando las corrientes en función de los voltajes de los nodos que lo conforman. 6. Resolver las ecuaciones resultantes 7. Teorema de Superposición 8. Una de las técnicas más antiguas y de gran importancia en el campo de la Teoría de circuitos es el Teorema de Superposición. El término superposición significa sumatoria, lo cual obedece a que el resultado de aplicar ésta técnica proviene de la sumatoria de cada uno de los resultados obtenidos según el efecto producido por cada fuente de alimentación, ya sea de voltaje o corriente que haga parte del circuito en particular. 9. Por su definición este teorema se aplica a circuitos que tienen dos o más mallas con varias fuentes. Su enunciado dice así: 10. “Dado un circuito con elementos lineales únicamente y con más de una fuente, la corriente o tensión en cualquier rama o elemento es igual a la suma algebraica de los efectos producidos por cada fuente considerada individualmente, cuando el resto de las fuentes se eliminan, de tal forma que todas la fuentes de voltaje se cortocircuitan y la fuentes de corriente se ponen a circuito abierto” . 11. Ello es posible debido a que la intensidad o diferencia de potencial entre dos puntos cualesquiera del circuito se debe a la contribución simultánea de las distintas fuentes distribuidas en el circuito. 12. Para aplicar el teorema de superposición a un circuito con un número m de fuentes, hay que resolver otros tantos m circuitos sencillos que contengan
  • 3. cada vez una sola fuente cortocircuitando las fuentes de tensión y abriendo las de corriente. 13. Técnicas para al análisis de Redes de Circuitos 14. Existen dos técnicas de gran utilidad y de uso común, aplicadas al análisis de redes de circuitos. Una red de circuitos es un sistema complejo de componentes que interactúan entre sí cumpliendo una función en particular. Estos sistemas pueden estar compuestos por cientos de elementos resistivos, fuentes de alimentación entre otros. 15. La importancia de ésta técnica consiste en que es posible representar cualquier sistema visto desde dos puntos como una fuente de voltaje y una resistencia en serie, o como una fuente de corriente en paralelo con una resistencia. 16. Teorema de Thévenin 17. Cualquier circuito, por complejo que sea, visto desde dos terminales cualesquiera A y B, es equivalente a una fuente ideal de tensión en serie con una resistencia, donde: la fuerza electromotriz de la fuente de tensión es igual al voltaje que se mide en circuito abierto en dichos terminales 18. La resistencia es la que presenta el circuito vista desde dichos terminales, cortocircuitando todas las fuentes de tensión y dejando en circuito abierto las de corriente. (Se la conoce como la resistencia equivalente Thévenin) 19. Teorema de Norton 20. Es el recíproco del Teorema de Thevenin y dice: "Todo circuito por complejo que sea, compuesto de fuentes y resistencias visto desde dos terminales determinados, se puede reemplazar por una fuente ideal de corriente en paralelo con una resistencia, donde: 21. La corriente de la fuente es la que se mide en el cortocircuito entre los terminales en cuestión. 22. La resistencia es la que presenta el circuito vista desde dichos terminales, cortocircuitando todas las fuentes de tensión y dejando en circuito abierto las de corriente. ( es igual a la resistencia equivalente Thévenin) 23. Teorema de Máxima Transferencia de Potencia 24. Es una técnica que permite calcular cuál deberá ser el valor exacto de resistencia que se debe aplicar entre dos puntos para obtener como su nombre lo indica máxima transferencia de potencia desde la fuente. 25. Cuando realizamos análisis de circuitos es necesario en algunas oportunidades determinar la máxima transferencia de potencia que puede ser entregada a la carga. Para ello podemos utilizar una de las técnicas vistas anteriormente como es el teorema de Thévenin, la cual permite establecer que el valor resistivo de la carga para obtener máxima transferencia de potencia, deberá ser igual a la resistencia Thévenin presente en el sistema. 26. La ley aplicada a la técnica correspondiente al análisis de mallas para la solución de circuitos eléctricos es: 27. Su respuesta : 28. Ley de Voltajes de Kirchoff 29. 30. Correcto La metodología para realizar el análisis de mallas es la siguiente: (Seleccione las afirmaciones correctas) Su respuesta :
  • 4. Identificar y clasificar el número total de mallas en el circuito, a cada malla asignarle una corriente de malla. Aplique la LVK a cada malla, siempre y cuando no esté presente una fuente de corriente, expresando los voltajes en función de las corrientes de malla. Si existe una fuente de corriente y ésta afecta a una sola malla, entonces la corriente de malla toma el valor de la fuente de corriente, verificando el sentido de la corriente de malla respecto al sentido de la fuente de corriente. Si existe una fuente de corriente que afecta a dos mallas, entonces se dice que hay una supermalla, para obtener la ecuación de la supermalla es necesario: Eliminar la fuente de corriente (circuito abierto), Aplicar la LVK a la supermalla resultante expresando los voltajes en función de las corrientes de las malla que la integran y resolver las ecuaciones resultantes Correcto Cuando se tiene un sistema representado por equivalente Thévenin y se requiere representarlo en el equivalente Norton, es necesario aplicar: Su respuesta : Transformación de Fuentes Correcto El siguiente enunciado “la sumatoria de todas las corrientes que entran por un punto de unión de dos o más elementos es igual a la sumatoria de corrientes que salen de él”, es un concepto aplicado a: Su respuesta : Análisis de Nodos Correcto Si existe una fuente de voltaje conectada entre dos nodos y ninguno de ellos es referencia, entonces se dice que hay un Su respuesta : Super Nodo
  • 5. Correcto Si existe una fuente de corriente y ésta afecta a una sola malla, entonces la corriente de malla toma el valor de Su respuesta : La fuente de Corriente Correcto Es una de las técnicas más conocidas y aplicadas a nivel mundial; consiste en calcular cada una de las corrientes que circulan por las diversas mallas que componen el circuito eléctrico. Fundamentándose en el siguiente enunciado “que la sumatoria de voltajes a través de un circuito cerrado es igual a CERO”. Su respuesta : Análisis de Circuitos por el método de Mallas Correcto Esta técnica, hace parte de las técnicas por excelencia para el análisis de Circuitos Eléctricos. Este método permite establecer las ecuaciones que entregan como resultado el valor presente en cada uno de los voltajes de nodo vistos desde un nodo de referencia común y nos permite obtener los valores de las tensiones desconocidas en los distintos elementos que conforman el circuito. Su respuesta : Análisis de Circuitos por el método de Nodos Correcto Técnica que se aplica a circuitos que tienen dos o más mallas con varias fuentes: Su respuesta : Análisis de Circuitos por medio del Teorema de Superposición
  • 6. Correcto Técnica que permite calcular cuál deberá ser el valor exacto de resistencia que se debe aplicar entre dos puntos para obtener la máxima transferencia de potencia desde la fuente. Su respuesta : Análisis de circuitos por medio del Teorema de la Máxima Transferencia de Potencia Correcto