SlideShare una empresa de Scribd logo
1 de 7
Laboratorio 4. Circuitos 1.<br />Universidad Distrital Francisco José de Caldas<br />Velosa A. Silvia P. -  León R. Cesar A.- Bello G. Iván D. <br />Morticia-30@hotmail.com - cesar-leon14@hotmail.com - idbellog@hotmail.com <br />Porras B. Jorge E.<br />Abril de 2010<br />Objetivos<br />Comprobar los conocimientos adquiridos en clase sobre el análisis de nodos en una red, midiendo corrientes y voltajes en cada uno de los circuitos<br />Elementos<br />-Amperimetro<br />-Fuente de voltaje<br />-Multimetro<br />-Resistencias 1kΩ, 10kΩ, 4.7KΩ, 6.8KΩ, 150Ω, 270kΩ. <br />Resumen <br />En este cuarto laboratorio se empezó midiendo el valor real de cada una de las resistencias luego de realizar este paso se procedió a montar el circuito y medir los voltajes de cada una de las resistencias enseguida se tomó las corrientes que fluye por cada uno de los elementos que compone el circuito al terminar el paso anterior se prosiguió a montar el segundo circuito electrónico en el cual solo se necesitaba medir la corriente total que fluía en el circuito electrónico y por ultimo con los valores tomados se realizaron los cálculos necesarios para hallar voltaje. <br />Palabras Clave<br />Multimetro, resistencias, Metrología, código de Colores, Simbología Electrónica, esquemas electrónicos, Protoboard, ley de Ohm, leyes de corrientes de kirchhoff, leyes de voltaje de kirchhoff, mallas, nodos.<br />1. Introducción <br />El objetivo fundamental de este cuarto laboratorio fue verificar correctamente las leyes de corriente y análisis de nodos aprendidos en el aula y llevarlas a priori en el momento de realizar los cálculos de cada uno de los circuitos. También identificar fácilmente los nodos que componen las mallas y a su vez el flujo que pasa por los dispositivos electrónicos en este caso resistencias, es muy importante conocer tanto el flujo de corriente como la cantidad que le llega a un dispositivo electrónico puesto que mas adelante cuando utilicemos compuertas se necesita ser lo suficiente preciso en la parte de los voltajes cuando se necesite un uno lógico o un cero lógico. En los cálculos con los valores ideales y los medidos siempre se nota un desfasamiento aunque puede ser pequeño en algunos puede causar graves consecuencias a un circuito electrónico. <br />2. Contenido <br />Resistencia:<br />-198755182245Se denomina resistencia eléctrica, simbolizada habitualmente como R, a la dificultad u oposición que presenta un cuerpo al paso de una corriente para circular a través de él. En el Sistema Internacional de Unidades, su valor se expresa en ohmios, que se designa con la letra griega omega mayúscula, Ω. Para su medida existen diversos métodos, entre los que se encuentra el uso de un ohmímetro.<br />Esta definición es válida para la corriente continua y para la corriente alterna cuando se trate de elementos resistivos puros, esto es, sin componente inductiva ni capacitiva. De existir estos componentes reactivos, la oposición presentada a la circulación de corriente recibe el nombre de impedancia.<br />Según sea la magnitud de esta oposición, las sustancias se clasifican en conductoras, aislantes y semiconductoras. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo. Imagen que muestra el código de colores de la resistenciasttp://upload.wikimedia.org/wikipedia/commons/thumb/5/56/Res_000.svg/150px-Res_000.svg.png<br />Análisis de nodos circuitos resistivos<br />El método de análisis de nodos es muy utilizado para resolver circuitos resistivos (sólo resistencias) lineales (este método, un poco más ampliado, se aplica a también a circuitos resistivos – reactivos) Resolver en este caso significa obtener los valores que tienen las tensiones en todas las resistencias que haya en el circuito.Conociendo estos valores se pueden obtener otros datos como: corrientes, potencias, etc., en todos los elementos del circuito<br />El análisis de nodos se basa en la ley de corrientes de Kirchhoff:<br />La suma algebraica  de las corrientes quesalen y entran de un nodo es igual a cero.<br />Donde un nodo se define como el lugar en el circuito donde se unen de dos o más ramas.<br />Pasos a seguir son:1- Convertir todas las fuentes de tensión en fuentes de corriente (ver Teorema de Norton)2- Escoger un nodo para que sea el nodo de referencia (usualmente se escoge tierra).3- Etiquetar todos los otros nodos con V1, V2, V3, V4, etc.4- Armar una tabla para formar las ecuaciones de nodos. Hay 3 columnas y el número de filas depende del número de nodos (no se cuenta el nodo de referencia)5- El término de la columna A es la suma de las conductancias que se conectan con en nodo N multiplicado por VN6- los términos de la columna son las conductancias que se conectan al nodo N y a otro nodo X por VX (El nodo de referencia no se incluye como nodo X). Pueden haber varios términos en la columna B. Cada uno de ellos se resta del término de la columna A.7- El término de la columna C, al lado derecho del signo de igual, es la suma algebraica de todas las fuentes de corriente conectadas al nodo N. La fuente es considerada positiva si suministra corriente hacia el nodo (al nodo) y negativa si la corriente sale del nodo8- Una vez elaborada la tabla, se resuelve el sistema de ecuaciones para cada VN. Se puede hacer por el método de sustitución o por el método de determinante. Al final si un valor de V tiene un valor negativo significa que la tensión original supuesto para el era el opuesto. Ejemplo: Obtener los valores de las tensiones V1 y V2 en al gráfico siguiente<br />                 Figura # 1 tomada de http://www.unicrom.com/Tut_AnalisisNodos.asp<br />Primero se transforman todas las fuentes de tensión en fuentes de corriente (Teorema de Norton) y se obtiene el primer circuito (Figura # 2). Después se calculan las resistencias equivalentes de las resistencias en paralelo (2 y 4 ohmios en V1) y (2 y 4 ohmios en V2). (Figura # 3).<br />                       Figura # 2 tomada de http://www.unicrom.com/Tut_AnalisisNodos.asp                                                   Figura # 3 tomada de http://www.unicrom.com/Tut_AnalisisNodos.asp<br />En el análisis de nodos, es más cómodo utilizar conductancias en vez de resistencias. Se transforma cada una de ellas en su valor de conductancia correspondiente y se obtiene el circuito que sigue:<br />                 <br />Tomada de http://www.unicrom.com/Tut_AnalisisNodos.asp<br />Se escoge el nodo inferior (unión de todas las resistencias menos la de 5 ohmios) como nodo de referencia y se etiquetan los otros nodos V1 y V2, como se ve en al figura.<br />Se implementa la tabla de dos filas (2 ecuaciones) pues hay dos nodos sin tomar en cuenta el nodo de referencia.<br />Tomada de http://www.unicrom.com/Tut_AnalisisNodos.asp<br />     <br />Con la tabla generada se procede a la solución de las variables V1 y V2, ya sea por el método de sustitución o con ayuda de determinantes. Los resultados son:V1 = 9.15 voltiosV2 = - 6.5 voltios<br />Potencia que disipa una resistencia<br />Una resistencia disipa en calor una cantidad de potencia cuadráticamente proporcional a la intensidad que la atraviesa y a la caída de tensión que aparece en sus bornes. Esto es , aunque suele ser más cómodo usar la ley de Joule . Observando las dimensiones del cuerpo de la resistencia, las características de conductividad de calor del material que la forma y que la recubre, y el ambiente en el cual está pensado que opere, el fabricante calcula la potencia que es capaz de disipar cada resistencia como componente discreto, sin que el aumento de temperatura provoque su destrucción. Esta temperatura de fallo puede ser muy distinta según los materiales que se estén usando. Esto es, una resistencia de 2 W formada por un material que no soporte mucha temperatura, estará casi fría (y será grande); pero formada por un material metálico, con recubrimiento cerámico, podría alcanzar altas temperaturas (y podrá ser mucho más pequeña).<br />El fabricante dará como dato el valor en vatios que puede disipar cada resistencia en cuestión. Este valor puede estar escrito en el cuerpo del componente o se tiene que deducir de comparar su tamaño con los tamaños estándar y su respectiva potencia. El tamaño de las resistencias comunes, cuerpo cilíndrico con 2 terminales, que aparecen en los aparatos eléctricos domésticos suelen ser de 1/4 W, existiendo otros valores de potencias de comerciales de ½ W, 1 W, 2 W, etc.<br />Leyes de Kirchhoff de circuitos eléctricos<br />Las leyes (o Lemas) de Kirchhoff fueron formuladas por Gustav Robert Kirchhoff en 1845, cuando aún era estudiante. Estas son:<br />La Ley de los nodos o ley de corrientes.<br />La Ley de las quot;
mallasquot;
 o ley de tensiones.<br />Son muy utilizadas en ingeniería eléctrica para obtener los valores de intensidad de corriente y potencial en cada punto de un circuito eléctrico. Surgen de la aplicación de la ley de conservación de la energía.<br />En circuitos complejos, así como en aproximaciones de circuitos dinámicos, se pueden aplicar utilizando un algoritmo sistemático, sencillamente programable en sistemas de cálculo informatizado mediante matrices de un solo núcleo.<br /> El Multimetro:<br />Es el instrumento que utiliza en su funcionamiento los parámetros del amperímetro, el voltímetro y el Ohmimetro. Las funciones son seleccionadas por medio de un conmutador. Por consiguiente todas las medidas de Uso y precaución son iguales y es multifuncional dependiendo el tipo de corriente (C.C o C.A.)<br />El Multimetro Digital (DMM):<br />Es el instrumento que puede medir el amperaje, el voltaje y el Ohmiaje obteniendo resultados numéricos - digitales. Trabaja también con los tipos de corriente<br />El Amperímetro: Es el instrumento que mide la intensidad de la Corriente Eléctrica. Su unidad de medida es el Amperio y sus Submúltiplos, el miliamperio y el micro-amperio. Los usos dependen del tipo de corriente, ósea, que cuando midamos Corriente Continua, se usara el amperímetro de bobina móvil y cuando usemos Corriente Alterna, usaremos el electromagnético.<br />El Voltímetro: Es el instrumento que mide el valor de la tensión. Su unidad básica de medición es el Voltio (V) con sus múltiplos: el Megavoltio (MV) y el Kilovoltio (KV) y sub.-múltiplos como el milivoltio (mV) y el micro voltio. Existen Voltímetros que miden tensiones continuas llamados voltímetros de bobina móvil y de tensiones alternas, los electromagnéticos.<br />Sus características son también parecidas a las del galvanómetro, pero con una resistencia en serie.<br />El Ohmímetro:<br />Es un arreglo de los circuitos del Voltímetro y del Amperímetro, pero con una batería y una resistencia. Dicha resistencia es la que ajusta en cero el instrumento en la escala de los Ohmios cuando se cortocircuitan los terminales. En este caso, el voltímetro marca la caída de voltaje de la batería y si ajustamos la resistencia variable, obtendremos el cero en la escala. Generalmente, estos instrumentos se venden en forma de Multimetro el cual es la combinación del amperímetro, el voltímetro y el Ohmimetro juntos. Los que se venden solos son llamados medidores de aislamiento de resistencia y poseen una escala bastante amplia.<br />Imagen de http://html.rincondelvago.com/000417330.jpg muestra la forma fisica de un multimetro digital<br />Protoboard<br />ProtoBoard o Breadboard: Es en la actualidad las placas de prueba más usadas están compuestas por bloques de plástico perforados y numerosas láminas delgadas -de una aleación de cobre, estaño y fósforo; que unen dichas perforaciones, creando una serie de líneas de conducción paralelas. Las líneas se cortan en la parte central del bloque de plástico para garantizar que dispositivos en circuitos integrados tipo DIP (Dual Inline Packages), puedan ser insertados perpendicularmente a las líneas de conductores. En la cara opuesta se coloca un forro con pegamento, que sirve para sellar y mantener en su lugar a las tiras metálicas. Un computador basado en el Motorola 68000-con varios circuitos TTL montados sobre una arreglo de protoboard. Debido a las características de capacitancia (de 2 a 30 pF por punto de contacto) y resistencia que suelen tener los protoboard están confinados a trabajar a relativamente baja frecuencias - inferiores a los 10 ó 20 MHz dependiendo del tipo y calidad de los componentes electrónicos utilizados.<br />3. Resultados y medidas<br />1) Elaborar el siguiente circuito<br />Grupo 1 de resistencias<br />-243205127635Imagen hecha con electronics workbench<br />Medir cada una de las resistencias para obtener el valor real<br />Grupo 1Val. IdealVal. RealVol.MediR11KΩ981Ω7.64VR210KΩ9,85KΩ4.51VR34.7KΩ4,59KΩ2.64VR46.8KΩ6,65KΩ3.56VR5270KΩ262KΩ2.36VR610KΩ8,7KΩ5.46V<br />2900045166370<br />Grupo 2Val. IdealVal. RealVol.MediR110KΩ9,85KΩ8.61VR2270KΩ262KΩ8.15VR36.8KΩ6,65KΩ7.56VR44.7KΩ4,59KΩ4.59mVR510KΩ6,7KΩ593.2mVR61KΩ981Ω1.04V<br />Medir la corriente AF para los dos grupos de resistencias<br />Grupo 1Grupo 1I AF8.60mAI AF2.04mA<br />Grupo 1A10.4mAA27.60mAA30.45mAA40.45mAA55.8µAA6467µAA75.8µAA80.4mAA9840µA<br />Grupo 2A11.13mAA2874µAA331.14µAA431.14µAA568.18mA A699.92µAA768.18mAA81.13mAA91.06mA<br />Grupo 2 de resistencias<br />4. Conclusiones <br />Ser ordenado es de gran prioridad en análisis de nodos y de mallas puesto que si no se tiene una buena organización algunos valores saldrían mal.<br />Es muy importante conocer el flujo de corriente en un circuito electrónico puesto que mas adelante cuando estemos trabajando compuertas lógicas necesitamos exactitud en los voltajes en cuando a los unos y ceros lógicos, también en el voltaje exacto que una compuerta lógica puede recibir que es de 5 voltios.<br />Aprendimos también que las leyes de Kirchhoff facilitan bastante el cálculo de mallas y nodos en un circuito electrónico y que su desfasamiento simplemente se debe al margen de error de las resistencias que componen el circuito.<br />5. Referencias<br />http://es.wikipedia.org/wiki/Leyes_de_Kirchhoff_de_circuitos_eléctricos<br />http://html.rincondelvago.com/000417330.jpg<br />http://www.electronicafacil.net/tutoriales/Leyes-Kirchoff.php<br />http://es.wikipedia.org/wiki/Resistencia_eléctrica<br />http://www.slideshare.net/Estefa_Arias/mallas-y-nodos-presentation<br />http://www.unicrom.com/Tut_AnalisisNodos.asp<br />Autores: Velosa A. Silvia P. - León R. Cesar A.-Bello G. Iván D. <br />
Circuitos 1. Análisis nodos UDistrital
Circuitos 1. Análisis nodos UDistrital
Circuitos 1. Análisis nodos UDistrital
Circuitos 1. Análisis nodos UDistrital
Circuitos 1. Análisis nodos UDistrital
Circuitos 1. Análisis nodos UDistrital

Más contenido relacionado

La actualidad más candente

Problemario circuitos electricos
Problemario circuitos electricosProblemario circuitos electricos
Problemario circuitos electricosClai Roman
 
Problemas resueltos transformadores
Problemas resueltos transformadoresProblemas resueltos transformadores
Problemas resueltos transformadoresLaurita Cas
 
El transistor como interruptor y amplificador
El transistor como interruptor y amplificadorEl transistor como interruptor y amplificador
El transistor como interruptor y amplificadorSebastian Hermosilla
 
GENERADOR DE CORRIENTE CONTINUA EN DERIVACIÓN
GENERADOR DE CORRIENTE CONTINUA EN DERIVACIÓNGENERADOR DE CORRIENTE CONTINUA EN DERIVACIÓN
GENERADOR DE CORRIENTE CONTINUA EN DERIVACIÓNgerardovg89
 
TRANSFORMADA DE LAPLACE PARA CIRCUITOS RLC
TRANSFORMADA  DE LAPLACE PARA CIRCUITOS RLCTRANSFORMADA  DE LAPLACE PARA CIRCUITOS RLC
TRANSFORMADA DE LAPLACE PARA CIRCUITOS RLCJOe Torres Palomino
 
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de LojaMaquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de LojaUniversidad Nacional de Loja
 
Circuitos recortadores
Circuitos recortadoresCircuitos recortadores
Circuitos recortadoresBernaldo Arnao
 
Problemas y ejercicios del capitulo 9.felipe edison y leonardo
Problemas y ejercicios del capitulo 9.felipe edison y leonardoProblemas y ejercicios del capitulo 9.felipe edison y leonardo
Problemas y ejercicios del capitulo 9.felipe edison y leonardoLuis Felipe Quevedo Avila
 
Clase 8 teorema de norton y thevenin
Clase 8 teorema de norton y theveninClase 8 teorema de norton y thevenin
Clase 8 teorema de norton y theveninTensor
 
Ejercicos fasores
Ejercicos fasoresEjercicos fasores
Ejercicos fasoresVanneGalvis
 
MEDICIÓN DE RESISTENCIA: LEY DE OHM
 MEDICIÓN DE RESISTENCIA: LEY DE OHM MEDICIÓN DE RESISTENCIA: LEY DE OHM
MEDICIÓN DE RESISTENCIA: LEY DE OHMalfredojaimesrojas
 

La actualidad más candente (20)

Problemario circuitos electricos
Problemario circuitos electricosProblemario circuitos electricos
Problemario circuitos electricos
 
Problemas resueltos transformadores
Problemas resueltos transformadoresProblemas resueltos transformadores
Problemas resueltos transformadores
 
8 2 convertidor-analogico_-digital
8 2 convertidor-analogico_-digital8 2 convertidor-analogico_-digital
8 2 convertidor-analogico_-digital
 
El transistor como interruptor y amplificador
El transistor como interruptor y amplificadorEl transistor como interruptor y amplificador
El transistor como interruptor y amplificador
 
GENERADOR DE CORRIENTE CONTINUA EN DERIVACIÓN
GENERADOR DE CORRIENTE CONTINUA EN DERIVACIÓNGENERADOR DE CORRIENTE CONTINUA EN DERIVACIÓN
GENERADOR DE CORRIENTE CONTINUA EN DERIVACIÓN
 
Sesión 6: Teoría Básica de Transistores BJT
Sesión 6: Teoría Básica de Transistores BJTSesión 6: Teoría Básica de Transistores BJT
Sesión 6: Teoría Básica de Transistores BJT
 
Circuitos trifasicos
Circuitos trifasicosCircuitos trifasicos
Circuitos trifasicos
 
Inductancia
InductanciaInductancia
Inductancia
 
Informe 4 digitales
Informe 4 digitalesInforme 4 digitales
Informe 4 digitales
 
TRANSFORMADA DE LAPLACE PARA CIRCUITOS RLC
TRANSFORMADA  DE LAPLACE PARA CIRCUITOS RLCTRANSFORMADA  DE LAPLACE PARA CIRCUITOS RLC
TRANSFORMADA DE LAPLACE PARA CIRCUITOS RLC
 
practica2completa
practica2completapractica2completa
practica2completa
 
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de LojaMaquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
 
Valores eficaces
Valores eficacesValores eficaces
Valores eficaces
 
Circuitos recortadores
Circuitos recortadoresCircuitos recortadores
Circuitos recortadores
 
Temporizador(555 astable timer)
Temporizador(555 astable timer)Temporizador(555 astable timer)
Temporizador(555 astable timer)
 
Problemas y ejercicios del capitulo 9.felipe edison y leonardo
Problemas y ejercicios del capitulo 9.felipe edison y leonardoProblemas y ejercicios del capitulo 9.felipe edison y leonardo
Problemas y ejercicios del capitulo 9.felipe edison y leonardo
 
Clase 8 teorema de norton y thevenin
Clase 8 teorema de norton y theveninClase 8 teorema de norton y thevenin
Clase 8 teorema de norton y thevenin
 
Ejercicos fasores
Ejercicos fasoresEjercicos fasores
Ejercicos fasores
 
Ejercicios circuitos i
Ejercicios circuitos iEjercicios circuitos i
Ejercicios circuitos i
 
MEDICIÓN DE RESISTENCIA: LEY DE OHM
 MEDICIÓN DE RESISTENCIA: LEY DE OHM MEDICIÓN DE RESISTENCIA: LEY DE OHM
MEDICIÓN DE RESISTENCIA: LEY DE OHM
 

Destacado

Analisis de circuitos i
Analisis de circuitos iAnalisis de circuitos i
Analisis de circuitos ieaceved5
 
Trabajo sobres las Leyes de kirchhoff de fisica 2 S1.
Trabajo sobres las Leyes de kirchhoff de fisica 2 S1.Trabajo sobres las Leyes de kirchhoff de fisica 2 S1.
Trabajo sobres las Leyes de kirchhoff de fisica 2 S1.Pacha1314
 
Informe fisica 6 denisse leyes de kirchohoff dvc(1)
Informe fisica 6  denisse leyes de kirchohoff dvc(1)Informe fisica 6  denisse leyes de kirchohoff dvc(1)
Informe fisica 6 denisse leyes de kirchohoff dvc(1)denissita_betza
 
Laboratorio Propiedades Fisicas De La Materia
Laboratorio Propiedades Fisicas De La MateriaLaboratorio Propiedades Fisicas De La Materia
Laboratorio Propiedades Fisicas De La MateriaDamián Solís
 
Practica 6 quimica organica propiedades fisicas
Practica 6 quimica organica propiedades fisicasPractica 6 quimica organica propiedades fisicas
Practica 6 quimica organica propiedades fisicasLuis Morillo
 
Informe de practicas de laboratorio Quimica
Informe de practicas de laboratorio QuimicaInforme de practicas de laboratorio Quimica
Informe de practicas de laboratorio QuimicaHenry Oré
 
Laboratorio propiedades de la materia.
Laboratorio propiedades de la materia.Laboratorio propiedades de la materia.
Laboratorio propiedades de la materia.Diana Cristina Gómez
 
Propiedades físicas y químicas de la materia
Propiedades físicas y químicas de la materiaPropiedades físicas y químicas de la materia
Propiedades físicas y químicas de la materiaRoxana Suárez Campos
 

Destacado (8)

Analisis de circuitos i
Analisis de circuitos iAnalisis de circuitos i
Analisis de circuitos i
 
Trabajo sobres las Leyes de kirchhoff de fisica 2 S1.
Trabajo sobres las Leyes de kirchhoff de fisica 2 S1.Trabajo sobres las Leyes de kirchhoff de fisica 2 S1.
Trabajo sobres las Leyes de kirchhoff de fisica 2 S1.
 
Informe fisica 6 denisse leyes de kirchohoff dvc(1)
Informe fisica 6  denisse leyes de kirchohoff dvc(1)Informe fisica 6  denisse leyes de kirchohoff dvc(1)
Informe fisica 6 denisse leyes de kirchohoff dvc(1)
 
Laboratorio Propiedades Fisicas De La Materia
Laboratorio Propiedades Fisicas De La MateriaLaboratorio Propiedades Fisicas De La Materia
Laboratorio Propiedades Fisicas De La Materia
 
Practica 6 quimica organica propiedades fisicas
Practica 6 quimica organica propiedades fisicasPractica 6 quimica organica propiedades fisicas
Practica 6 quimica organica propiedades fisicas
 
Informe de practicas de laboratorio Quimica
Informe de practicas de laboratorio QuimicaInforme de practicas de laboratorio Quimica
Informe de practicas de laboratorio Quimica
 
Laboratorio propiedades de la materia.
Laboratorio propiedades de la materia.Laboratorio propiedades de la materia.
Laboratorio propiedades de la materia.
 
Propiedades físicas y químicas de la materia
Propiedades físicas y químicas de la materiaPropiedades físicas y químicas de la materia
Propiedades físicas y químicas de la materia
 

Similar a Circuitos 1. Análisis nodos UDistrital

Similar a Circuitos 1. Análisis nodos UDistrital (20)

Laboratorio 5
Laboratorio 5Laboratorio 5
Laboratorio 5
 
Laboratorio 1
Laboratorio 1Laboratorio 1
Laboratorio 1
 
Bloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptx
Bloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptxBloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptx
Bloque I.- Unidad I Taller integrador de Cto, Electricos (1).pptx
 
Práctica 1 voltmetro
Práctica 1 voltmetroPráctica 1 voltmetro
Práctica 1 voltmetro
 
U1 circuitos(1) INSTALACIONES ELECTRICAS DOMICILIARIAS.
U1 circuitos(1) INSTALACIONES ELECTRICAS DOMICILIARIAS.U1 circuitos(1) INSTALACIONES ELECTRICAS DOMICILIARIAS.
U1 circuitos(1) INSTALACIONES ELECTRICAS DOMICILIARIAS.
 
U1 circuitos INSTALACIONES ELECTRICAS DOMICILIARIAS.
U1 circuitos INSTALACIONES ELECTRICAS DOMICILIARIAS.U1 circuitos INSTALACIONES ELECTRICAS DOMICILIARIAS.
U1 circuitos INSTALACIONES ELECTRICAS DOMICILIARIAS.
 
Laboratorio 3
Laboratorio 3Laboratorio 3
Laboratorio 3
 
Practica 8
Practica 8Practica 8
Practica 8
 
lab fisica
lab fisicalab fisica
lab fisica
 
Laboratorio1_FisicaEM (1).docx
Laboratorio1_FisicaEM (1).docxLaboratorio1_FisicaEM (1).docx
Laboratorio1_FisicaEM (1).docx
 
Circuitos y mediciones basicas
Circuitos y mediciones basicasCircuitos y mediciones basicas
Circuitos y mediciones basicas
 
Laboratorio 6
Laboratorio 6Laboratorio 6
Laboratorio 6
 
Circuitoselectricos 140401124757-phpapp02
Circuitoselectricos 140401124757-phpapp02Circuitoselectricos 140401124757-phpapp02
Circuitoselectricos 140401124757-phpapp02
 
Cap2
Cap2Cap2
Cap2
 
Ley ohm
Ley ohmLey ohm
Ley ohm
 
Ley ohm
Ley ohmLey ohm
Ley ohm
 
ELT-2410 circuitos unoknsdlknfnokrno-LAB-1.doc
ELT-2410 circuitos unoknsdlknfnokrno-LAB-1.docELT-2410 circuitos unoknsdlknfnokrno-LAB-1.doc
ELT-2410 circuitos unoknsdlknfnokrno-LAB-1.doc
 
Leyes de kirchhoff
Leyes de kirchhoffLeyes de kirchhoff
Leyes de kirchhoff
 
Laboratorio 2
Laboratorio 2Laboratorio 2
Laboratorio 2
 
Cap4
Cap4Cap4
Cap4
 

Último

La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptxJunkotantik
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptELENA GALLARDO PAÚLS
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtweBROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwealekzHuri
 
Flores Nacionales de América Latina - Botánica
Flores Nacionales de América Latina - BotánicaFlores Nacionales de América Latina - Botánica
Flores Nacionales de América Latina - BotánicaJuan Carlos Fonseca Mata
 
Marketing y servicios 2ºBTP Cocina DGETP
Marketing y servicios 2ºBTP Cocina DGETPMarketing y servicios 2ºBTP Cocina DGETP
Marketing y servicios 2ºBTP Cocina DGETPANEP - DETP
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadAlejandrino Halire Ccahuana
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPELaura Chacón
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Baker Publishing Company
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxjosetrinidadchavez
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 

Último (20)

La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptx
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtweBROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
 
Flores Nacionales de América Latina - Botánica
Flores Nacionales de América Latina - BotánicaFlores Nacionales de América Latina - Botánica
Flores Nacionales de América Latina - Botánica
 
Marketing y servicios 2ºBTP Cocina DGETP
Marketing y servicios 2ºBTP Cocina DGETPMarketing y servicios 2ºBTP Cocina DGETP
Marketing y servicios 2ºBTP Cocina DGETP
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdad
 
Earth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversaryEarth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversary
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPE
 
Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
La Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdfLa Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdf
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 

Circuitos 1. Análisis nodos UDistrital

  • 1. Laboratorio 4. Circuitos 1.<br />Universidad Distrital Francisco José de Caldas<br />Velosa A. Silvia P. - León R. Cesar A.- Bello G. Iván D. <br />Morticia-30@hotmail.com - cesar-leon14@hotmail.com - idbellog@hotmail.com <br />Porras B. Jorge E.<br />Abril de 2010<br />Objetivos<br />Comprobar los conocimientos adquiridos en clase sobre el análisis de nodos en una red, midiendo corrientes y voltajes en cada uno de los circuitos<br />Elementos<br />-Amperimetro<br />-Fuente de voltaje<br />-Multimetro<br />-Resistencias 1kΩ, 10kΩ, 4.7KΩ, 6.8KΩ, 150Ω, 270kΩ. <br />Resumen <br />En este cuarto laboratorio se empezó midiendo el valor real de cada una de las resistencias luego de realizar este paso se procedió a montar el circuito y medir los voltajes de cada una de las resistencias enseguida se tomó las corrientes que fluye por cada uno de los elementos que compone el circuito al terminar el paso anterior se prosiguió a montar el segundo circuito electrónico en el cual solo se necesitaba medir la corriente total que fluía en el circuito electrónico y por ultimo con los valores tomados se realizaron los cálculos necesarios para hallar voltaje. <br />Palabras Clave<br />Multimetro, resistencias, Metrología, código de Colores, Simbología Electrónica, esquemas electrónicos, Protoboard, ley de Ohm, leyes de corrientes de kirchhoff, leyes de voltaje de kirchhoff, mallas, nodos.<br />1. Introducción <br />El objetivo fundamental de este cuarto laboratorio fue verificar correctamente las leyes de corriente y análisis de nodos aprendidos en el aula y llevarlas a priori en el momento de realizar los cálculos de cada uno de los circuitos. También identificar fácilmente los nodos que componen las mallas y a su vez el flujo que pasa por los dispositivos electrónicos en este caso resistencias, es muy importante conocer tanto el flujo de corriente como la cantidad que le llega a un dispositivo electrónico puesto que mas adelante cuando utilicemos compuertas se necesita ser lo suficiente preciso en la parte de los voltajes cuando se necesite un uno lógico o un cero lógico. En los cálculos con los valores ideales y los medidos siempre se nota un desfasamiento aunque puede ser pequeño en algunos puede causar graves consecuencias a un circuito electrónico. <br />2. Contenido <br />Resistencia:<br />-198755182245Se denomina resistencia eléctrica, simbolizada habitualmente como R, a la dificultad u oposición que presenta un cuerpo al paso de una corriente para circular a través de él. En el Sistema Internacional de Unidades, su valor se expresa en ohmios, que se designa con la letra griega omega mayúscula, Ω. Para su medida existen diversos métodos, entre los que se encuentra el uso de un ohmímetro.<br />Esta definición es válida para la corriente continua y para la corriente alterna cuando se trate de elementos resistivos puros, esto es, sin componente inductiva ni capacitiva. De existir estos componentes reactivos, la oposición presentada a la circulación de corriente recibe el nombre de impedancia.<br />Según sea la magnitud de esta oposición, las sustancias se clasifican en conductoras, aislantes y semiconductoras. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo. Imagen que muestra el código de colores de la resistenciasttp://upload.wikimedia.org/wikipedia/commons/thumb/5/56/Res_000.svg/150px-Res_000.svg.png<br />Análisis de nodos circuitos resistivos<br />El método de análisis de nodos es muy utilizado para resolver circuitos resistivos (sólo resistencias) lineales (este método, un poco más ampliado, se aplica a también a circuitos resistivos – reactivos) Resolver en este caso significa obtener los valores que tienen las tensiones en todas las resistencias que haya en el circuito.Conociendo estos valores se pueden obtener otros datos como: corrientes, potencias, etc., en todos los elementos del circuito<br />El análisis de nodos se basa en la ley de corrientes de Kirchhoff:<br />La suma algebraica  de las corrientes quesalen y entran de un nodo es igual a cero.<br />Donde un nodo se define como el lugar en el circuito donde se unen de dos o más ramas.<br />Pasos a seguir son:1- Convertir todas las fuentes de tensión en fuentes de corriente (ver Teorema de Norton)2- Escoger un nodo para que sea el nodo de referencia (usualmente se escoge tierra).3- Etiquetar todos los otros nodos con V1, V2, V3, V4, etc.4- Armar una tabla para formar las ecuaciones de nodos. Hay 3 columnas y el número de filas depende del número de nodos (no se cuenta el nodo de referencia)5- El término de la columna A es la suma de las conductancias que se conectan con en nodo N multiplicado por VN6- los términos de la columna son las conductancias que se conectan al nodo N y a otro nodo X por VX (El nodo de referencia no se incluye como nodo X). Pueden haber varios términos en la columna B. Cada uno de ellos se resta del término de la columna A.7- El término de la columna C, al lado derecho del signo de igual, es la suma algebraica de todas las fuentes de corriente conectadas al nodo N. La fuente es considerada positiva si suministra corriente hacia el nodo (al nodo) y negativa si la corriente sale del nodo8- Una vez elaborada la tabla, se resuelve el sistema de ecuaciones para cada VN. Se puede hacer por el método de sustitución o por el método de determinante. Al final si un valor de V tiene un valor negativo significa que la tensión original supuesto para el era el opuesto. Ejemplo: Obtener los valores de las tensiones V1 y V2 en al gráfico siguiente<br /> Figura # 1 tomada de http://www.unicrom.com/Tut_AnalisisNodos.asp<br />Primero se transforman todas las fuentes de tensión en fuentes de corriente (Teorema de Norton) y se obtiene el primer circuito (Figura # 2). Después se calculan las resistencias equivalentes de las resistencias en paralelo (2 y 4 ohmios en V1) y (2 y 4 ohmios en V2). (Figura # 3).<br />           Figura # 2 tomada de http://www.unicrom.com/Tut_AnalisisNodos.asp                                                   Figura # 3 tomada de http://www.unicrom.com/Tut_AnalisisNodos.asp<br />En el análisis de nodos, es más cómodo utilizar conductancias en vez de resistencias. Se transforma cada una de ellas en su valor de conductancia correspondiente y se obtiene el circuito que sigue:<br /> <br />Tomada de http://www.unicrom.com/Tut_AnalisisNodos.asp<br />Se escoge el nodo inferior (unión de todas las resistencias menos la de 5 ohmios) como nodo de referencia y se etiquetan los otros nodos V1 y V2, como se ve en al figura.<br />Se implementa la tabla de dos filas (2 ecuaciones) pues hay dos nodos sin tomar en cuenta el nodo de referencia.<br />Tomada de http://www.unicrom.com/Tut_AnalisisNodos.asp<br />     <br />Con la tabla generada se procede a la solución de las variables V1 y V2, ya sea por el método de sustitución o con ayuda de determinantes. Los resultados son:V1 = 9.15 voltiosV2 = - 6.5 voltios<br />Potencia que disipa una resistencia<br />Una resistencia disipa en calor una cantidad de potencia cuadráticamente proporcional a la intensidad que la atraviesa y a la caída de tensión que aparece en sus bornes. Esto es , aunque suele ser más cómodo usar la ley de Joule . Observando las dimensiones del cuerpo de la resistencia, las características de conductividad de calor del material que la forma y que la recubre, y el ambiente en el cual está pensado que opere, el fabricante calcula la potencia que es capaz de disipar cada resistencia como componente discreto, sin que el aumento de temperatura provoque su destrucción. Esta temperatura de fallo puede ser muy distinta según los materiales que se estén usando. Esto es, una resistencia de 2 W formada por un material que no soporte mucha temperatura, estará casi fría (y será grande); pero formada por un material metálico, con recubrimiento cerámico, podría alcanzar altas temperaturas (y podrá ser mucho más pequeña).<br />El fabricante dará como dato el valor en vatios que puede disipar cada resistencia en cuestión. Este valor puede estar escrito en el cuerpo del componente o se tiene que deducir de comparar su tamaño con los tamaños estándar y su respectiva potencia. El tamaño de las resistencias comunes, cuerpo cilíndrico con 2 terminales, que aparecen en los aparatos eléctricos domésticos suelen ser de 1/4 W, existiendo otros valores de potencias de comerciales de ½ W, 1 W, 2 W, etc.<br />Leyes de Kirchhoff de circuitos eléctricos<br />Las leyes (o Lemas) de Kirchhoff fueron formuladas por Gustav Robert Kirchhoff en 1845, cuando aún era estudiante. Estas son:<br />La Ley de los nodos o ley de corrientes.<br />La Ley de las quot; mallasquot; o ley de tensiones.<br />Son muy utilizadas en ingeniería eléctrica para obtener los valores de intensidad de corriente y potencial en cada punto de un circuito eléctrico. Surgen de la aplicación de la ley de conservación de la energía.<br />En circuitos complejos, así como en aproximaciones de circuitos dinámicos, se pueden aplicar utilizando un algoritmo sistemático, sencillamente programable en sistemas de cálculo informatizado mediante matrices de un solo núcleo.<br /> El Multimetro:<br />Es el instrumento que utiliza en su funcionamiento los parámetros del amperímetro, el voltímetro y el Ohmimetro. Las funciones son seleccionadas por medio de un conmutador. Por consiguiente todas las medidas de Uso y precaución son iguales y es multifuncional dependiendo el tipo de corriente (C.C o C.A.)<br />El Multimetro Digital (DMM):<br />Es el instrumento que puede medir el amperaje, el voltaje y el Ohmiaje obteniendo resultados numéricos - digitales. Trabaja también con los tipos de corriente<br />El Amperímetro: Es el instrumento que mide la intensidad de la Corriente Eléctrica. Su unidad de medida es el Amperio y sus Submúltiplos, el miliamperio y el micro-amperio. Los usos dependen del tipo de corriente, ósea, que cuando midamos Corriente Continua, se usara el amperímetro de bobina móvil y cuando usemos Corriente Alterna, usaremos el electromagnético.<br />El Voltímetro: Es el instrumento que mide el valor de la tensión. Su unidad básica de medición es el Voltio (V) con sus múltiplos: el Megavoltio (MV) y el Kilovoltio (KV) y sub.-múltiplos como el milivoltio (mV) y el micro voltio. Existen Voltímetros que miden tensiones continuas llamados voltímetros de bobina móvil y de tensiones alternas, los electromagnéticos.<br />Sus características son también parecidas a las del galvanómetro, pero con una resistencia en serie.<br />El Ohmímetro:<br />Es un arreglo de los circuitos del Voltímetro y del Amperímetro, pero con una batería y una resistencia. Dicha resistencia es la que ajusta en cero el instrumento en la escala de los Ohmios cuando se cortocircuitan los terminales. En este caso, el voltímetro marca la caída de voltaje de la batería y si ajustamos la resistencia variable, obtendremos el cero en la escala. Generalmente, estos instrumentos se venden en forma de Multimetro el cual es la combinación del amperímetro, el voltímetro y el Ohmimetro juntos. Los que se venden solos son llamados medidores de aislamiento de resistencia y poseen una escala bastante amplia.<br />Imagen de http://html.rincondelvago.com/000417330.jpg muestra la forma fisica de un multimetro digital<br />Protoboard<br />ProtoBoard o Breadboard: Es en la actualidad las placas de prueba más usadas están compuestas por bloques de plástico perforados y numerosas láminas delgadas -de una aleación de cobre, estaño y fósforo; que unen dichas perforaciones, creando una serie de líneas de conducción paralelas. Las líneas se cortan en la parte central del bloque de plástico para garantizar que dispositivos en circuitos integrados tipo DIP (Dual Inline Packages), puedan ser insertados perpendicularmente a las líneas de conductores. En la cara opuesta se coloca un forro con pegamento, que sirve para sellar y mantener en su lugar a las tiras metálicas. Un computador basado en el Motorola 68000-con varios circuitos TTL montados sobre una arreglo de protoboard. Debido a las características de capacitancia (de 2 a 30 pF por punto de contacto) y resistencia que suelen tener los protoboard están confinados a trabajar a relativamente baja frecuencias - inferiores a los 10 ó 20 MHz dependiendo del tipo y calidad de los componentes electrónicos utilizados.<br />3. Resultados y medidas<br />1) Elaborar el siguiente circuito<br />Grupo 1 de resistencias<br />-243205127635Imagen hecha con electronics workbench<br />Medir cada una de las resistencias para obtener el valor real<br />Grupo 1Val. IdealVal. RealVol.MediR11KΩ981Ω7.64VR210KΩ9,85KΩ4.51VR34.7KΩ4,59KΩ2.64VR46.8KΩ6,65KΩ3.56VR5270KΩ262KΩ2.36VR610KΩ8,7KΩ5.46V<br />2900045166370<br />Grupo 2Val. IdealVal. RealVol.MediR110KΩ9,85KΩ8.61VR2270KΩ262KΩ8.15VR36.8KΩ6,65KΩ7.56VR44.7KΩ4,59KΩ4.59mVR510KΩ6,7KΩ593.2mVR61KΩ981Ω1.04V<br />Medir la corriente AF para los dos grupos de resistencias<br />Grupo 1Grupo 1I AF8.60mAI AF2.04mA<br />Grupo 1A10.4mAA27.60mAA30.45mAA40.45mAA55.8µAA6467µAA75.8µAA80.4mAA9840µA<br />Grupo 2A11.13mAA2874µAA331.14µAA431.14µAA568.18mA A699.92µAA768.18mAA81.13mAA91.06mA<br />Grupo 2 de resistencias<br />4. Conclusiones <br />Ser ordenado es de gran prioridad en análisis de nodos y de mallas puesto que si no se tiene una buena organización algunos valores saldrían mal.<br />Es muy importante conocer el flujo de corriente en un circuito electrónico puesto que mas adelante cuando estemos trabajando compuertas lógicas necesitamos exactitud en los voltajes en cuando a los unos y ceros lógicos, también en el voltaje exacto que una compuerta lógica puede recibir que es de 5 voltios.<br />Aprendimos también que las leyes de Kirchhoff facilitan bastante el cálculo de mallas y nodos en un circuito electrónico y que su desfasamiento simplemente se debe al margen de error de las resistencias que componen el circuito.<br />5. Referencias<br />http://es.wikipedia.org/wiki/Leyes_de_Kirchhoff_de_circuitos_eléctricos<br />http://html.rincondelvago.com/000417330.jpg<br />http://www.electronicafacil.net/tutoriales/Leyes-Kirchoff.php<br />http://es.wikipedia.org/wiki/Resistencia_eléctrica<br />http://www.slideshare.net/Estefa_Arias/mallas-y-nodos-presentation<br />http://www.unicrom.com/Tut_AnalisisNodos.asp<br />Autores: Velosa A. Silvia P. - León R. Cesar A.-Bello G. Iván D. <br />