SlideShare una empresa de Scribd logo
Miguel A. Castro R.
ÍNDICE:
• Clasificación de los organismos en
función de la forma de nutrición
• Fotosíntesis
• Pigmentos fotosintéticos
• Fotosistemas
• Relación entre ambos
fotosistemas
• Generalidades de la fotosíntesis
• Fase luminosa
• Transporte de electrones
• Fotofosforilación no cíclica
• Fotofosforilación cíclica
• Fase oscura: Ciclo de Calvin
• RUBISCO
• Balance energético
• Fotorrespiración
• Plantas C4 y CAM
• Factores que influyen en la
fotosíntesis
• Fotosíntesis anoxigénica
• Microorganismos fotosintéticos
• Fijación fotosintética del N y S
• Importancia biológica de la
fotosíntesis
Miguel A. Castro R.
Los procesos anabólicos consisten
en construir moléculas complejas
a partir de moléculas más
sencillas, con un aporte de
energía
Moléculas
complejas
Moléculas
sencillas
Miguel A. Castro R.
FosfolípidosTriglicéridos
Ácidos
nucleicos
Polisacáridos
de reserva
Proteínas
Polisacáridos
estructurales
Ácidos grasosNucleótidosAminoácidos Monosacáridos
Lípidos
simples
Compuestos
orgánicos
sencillos
NH3
H2O
O2
CO2
ATP
ATP
ATP ATP
ATP
ATP ATP ATP ATP ATP
Miguel A. Castro R.
Dador de
electrones
Fuente de energía
Luz
(fotótrofo)
Sustrato oxidable
(Quimiótrofo)
Orgánico
Heterótrofo
Fotoorganotrofos
Bacterias rojas no
sulfúreas
Quimioorganotrofo
Animales, hongos, protrozoos,
mayoría de bacterias.
Inorgánico
Autótrofo
Fotolitótrofos
Plantas verdes, algas,
bacterias rojas y verdes
del azufre.
Quimiolitótrofo
Bacterias del hidrógeno,
incoloras del azufre,
nitrificantes y férricas.
Clasificación de los organismos en función de la forma de nutrición
Miguel A. Castro R.
Necesidades de los
organismos
Una fuente de carbono:
Heterótrofos
Autótrofos
Una fuente de hidrógeno
Litótrofos
Organotrofos
Un aceptor último de
hidrógenos
Aerobios
Anaerobios
Una fuente primaria de energía
Fotótrofos
Quimiótrofos
Agua y sales minerales
Miguel A. Castro R.
Fotosíntesis: Puntos a tratar
• Pigmentos fotosintéticos y fotosistemas
• Fase luminosa y fotofosforilación
• Fase oscura
• Balance energético
• Factores que afectan a la fotosíntesis
Miguel A. Castro R.
Pigmentos fotosintéticos
Pigmentos
fotosintéticos
Clorofilas
Clorofila a (E. luminosa a E.
química)
Clorofila b (plantas)
Clorofila C (diatomeas y
protozoos)
Carotenos Xantofilas Ficobilinas
En algas rojas (eucariotas ) y algas
verde-azuladas (procariotas)
Contienen un
cromóforo
Miguel A. Castro R.
La radiación solar es solo una pequeña parte del amplio espectro de radiaciones
electromagnéticas emitidas por el Sol. La luz se propaga en forma de fotones o
cuantos de energía. Las sustancias absorben parte de la luz que reciben y emiten
otra parte, lo que se percibe como el color. Si absorben toda la luz son negros.
Menor longitud de
onda
Más energéticas
Mayor longitud de
onda
Menos energéticas
La luz que incide sobre una hoja se compone de una gran variedad de longitudes
de onda, por lo que la presencia de pigmentos con diferente capacidad de
absorción permite que un mayor porcentaje de fotones pueda estimular la
fotosíntesis.
Miguel A. Castro R.
• No toda esa luz es útil para la planta.
• En general la clorofila se especializa en absorber las
longitudes de ondas que forman el violeta, el azul y el rojo.
• El resto es transmitida y reflejada.
Miguel A. Castro R.
Miguel A. Castro R.
La clorofila esta en el interior de los
cloroplastos, en unas membranas
especializadas, los tilacoides, junto a
otros pigmentos.
Los tilacoides, normalmente,
presentan un aspecto de
sacos o vesículas aplanadas.
Clorofila
Miguel A. Castro R.
Clorofila: Estructura
Dos regiones:
1. Anillo de porfirina con Mg
2. Fitol
• Los dobles enlaces facilitan el transporte de electrones.
• La absorción de luz provoca la redistribución electrónica y
la pérdida de un electrón hacia otra molécula (un aceptor
de electrones)
Miguel A. Castro R.
• Cuando una molécula de clorofila absorbe un fotón,
pasa a un estado inestable de mayor energía,
denominado estado excitado, en el que un electrón
periférico se desplaza hacia una posición más externa.
• Si este electrón pasa a otra molécula (fotooxidación),
la energía se habrá transmitido y la molécula de
clorofila permanecerá excitada.
• Para volver a su estado fundamental deberá recibir
otro electrón que ocupe el hueco dejado por el
primero
Movimiento de los electrones
Miguel A. Castro R.
Fotosistemas
Los pigmentos están estrechamente asociados a proteínas y se alojan en la bicapa
lipídica de los tilacoides.
Estos complejos proteína-clorofila se encuentran empaquetados formando unidades
denominadas fotosistemas.
Cada unidad contiene de 200 a 400
moléculas de pigmento que captan la luz y
forman el llamado complejo antena.
Cuando la energía de la luz se absorbe por
uno de los pigmentos de la antena, pasa
de una molécula a otra de pigmento del
fotosistema hasta que alcanza una forma
especial de clorofila a que constituye el
centro de reacción del fotosistema.
Miguel A. Castro R.
Hay dos tipos de fotosistemas:
1. Fotosistema I (PS I)
2. Fotosistema II (PS II)
Miguel A. Castro R.
Fotosistemas
Centro de
reacción
Complejo captador de
luz. Moléculas antena
Fotón
Estructura con numerosas
moléculas de pigmentos (clorofila
a, b, carotenoides)
Atrapan fotones de diferente
longitud de onda.
Contiene dos moléculas de
clorofila a (pigmento diana) y
los electrones que liberan son
enviados a la cadena de
transporte electrónico.
Cuando una molécula se excita transfiere
energía a las cercanas por un proceso de
resonancia y así hasta el centro de
reacción.
Fotosistema I (PSI)
Fotosistema II (PSII)
Localización
Absorción máxima del
centro de reacción
Membranas de tilacoides
no apilados
Grana
700 nm. 2 moléculas
clorofila a P700
680 nm. 2 moléculas de
clorofila a P680
Agrupación de pigmentos
fotosintéticos junto a
proteínas transmembrana.
Miguel A. Castro R.
Miguel A. Castro R.
Miguel A. Castro R.
• En el fotosistema I (PS I) la molécula reactiva de clorofila a se
denomina P700 (máximo de absorción a 700 nm).
• Se localiza, casi exclusivamente, en las lamelas estromales (tilacoides
no apilados) y en la periferia de los grana.
• Se asocia con la reducción del NADP+
Miguel A. Castro R.
• El Fotosistema II (PS II) también contiene una molécula de clorofila a
reactiva, denominada P680, que absorbe preferentemente a 680 nm.
• Acepta electrones del agua y por ello se asocia con el
desprendimiento del oxígeno.
• Se localiza, preferentemente, en los grana.
• Los dos fotosistemas se
encuentran espacialmente
separados en las membranas
tilacoidales.
• Ambos fotosistemas, al ser
excitados por la luz ceden e- a
un aceptor primario, quedando
ellos oxidados (necesitan
recuperar los e- cedidos)
Miguel A. Castro R.
Relación entre ambos fotosistemas
Miguel A. Castro R.
Tipo Proteína y localización
Obtención de
electrones
Trasmisión de electrones
Fotosistema 2
PS II
Complejo P680
Abunda más en
tilacoides de los
grana
Obtiene e- del
agua
- Plastoquinona
- Citocomo bf
- Plastocianina
- Fotosistema I
Plastoquinona
transporta H+
fuera
Fotosistema 1
PS I
Complejo P700
Abunda más en
tilacoides del
estroma
Obtiene e- de la
plastocianina
- Ferredoxina
- NADP
Reduce el NADP
Puede ser cíclico
Miguel A. Castro R.
Generalidades de la fotosíntesis
Tiene dos
fases
Fase luminosa Fase oscura
Membrana de los tilacoides
NADP+  NADPH
Fotofosforilación (ATP)
Estroma
Fijación del CO2
Obtención de biomoléculas
Gasto de ATP y NADPH
Miguel A. Castro R.
Fase luminosa
Ocurren en las membranas de los tilacoides:
1. La clorofila y otras moléculas de pigmento absorben la energía de luz.
2. Aumenta la energía de los electrones en las moléculas de los
pigmentos activándolos (nivel de energía más alto).
3. Los electrones regresan a un nivel de energía más bajo al pasar por
una cadena de transporte de electrones, en forma muy parecida a lo
que ocurre en la respiración celular.
4. En el proceso de liberación de energía de los electrones, se produce
ATP que se utiliza en las reacciones de la fase oscura.
Miguel A. Castro R.
Transporte de electrones
• Los dos fotosistemas se activan simultáneamente con la luz
• Los electrones activados van pasando por una cadena de
moléculas transportadoras.
1. En el caso del PSI llegan hasta el complejo NADP
reductasa
2. En el caso del PSII, llegan hasta el PSI
Durante este paso de electrones, se
va liberando energía, que se
aprovecha para bombear protones
(en el complejo de citocromos) al
lumen tilacoidal, creando en este
espacio un fuerte gradiente de
protones (fuerza protomotriz)
Miguel A. Castro R.
Fot.II
P680
2e-
H2O
PotencialRedox
2H+
2e-
Luz
Fot.II
P680 *
Feof.
PQ
Cit
2 Fotones de luz
PC.
Fot.I
P700
2 Fotones de luz
H+
H+
NADP
reductasa
Fdx
Fot.I
P700*
NADP+
NADPH
2e-
1/2 O2
Miguel A. Castro R.
• Intervienen los dos fotosistemas
• Se reduce el NADP
• Se rompe el H2O: se libera O2.
• Sí se sintetiza ATP
Fotofosforilación no cíclica
Miguel A. Castro R.
Membrana
tilacoidal
Fotofosforilación no cíclica
El ATP se genera de manera similar al proceso de formación en las
mitocondrias.
Estroma
Lumen
tilacoidal
H+
H+H+
H+
H+
H+
ATP
ADP + Pi
Existen complejos ATP sintetasas
semejantes a los de las
mitocondrias.
El flujo de H+ por el complejo
enzimático sirve para catalizar la
formación de ATP
Miguel A. Castro R.
• Sólo interviene el fotosistema I.
• No se reduce el NADP
• No se rompe el H2O: no se libera
O2.
• Sí se sintetiza ATP.
• Se activa cuando hay
desequilibrio entre ATP y
NADPH.
Fotofosforilación cíclica
Miguel A. Castro R.
Fase oscura: Ciclo de Calvin
• El proceso de conoce también como vía
C3
• Supone la reducción del carbono del
CO2 para formar glucosa..
• Se produce tanto haya luz o no.
• Se necesitan 3 moléculas de CO2 para
formar cada fosfogliceraldehido
• La rubisco capta CO2 .
• Luego la Rubisco carboxila al RuBP y
genera ac. Fosfoglicérico (PGA).
• Con el consumo de ATP y NADPH el
PGA se transforma en
fosfogliceraldehido.
• El resto sigue en el ciclo para regenerar
Ribulosa bifosfato.
Miguel A. Castro R.
Fase I:
Fijación del CO2
Fase II:
Reducción (obtención de la
materia orgánica)
Fase III:
Regeneración de la Ribulosa 1-
5 bifosfato
Se pueden establecer tres fases en el ciclo de
Calvin.
Miguel A. Castro R.
Fase I: Fijación del CO2. La rubisco une el CO2 a la RuBP, formando un
intermediario de 6 carbonos inestable que se rompe dando lugar a dos
moléculas de fosfoglicerato (PGA). Al utilizar un método de marcaje radiactivo
se observa la radioactividad en una de las moléculas de PGA
Fase II: Reducción
El PGA se reduce a gliceraldehido-3-fosfato (GAP) consumiéndose el NADPH y
el ATP que se obtuvieron en la fase luminosa. Esta fase es energéticamente la
más costosa.
Fase III: Regeneración de la Ribulosa 1-5 bifosfato.
De cada seis moléculas de GAP que se forman, una se considera el rendimiento
neto de la fotosíntesis. Las otras cinco sufren una serie de transformaciones
consecutivas en las que también se consume ATP, para regenerar la RuBP
Miguel A. Castro R.
http://www.science.smith.edu/departments/Biology/Bio231/calvin.html
http://www.bionova.org.es/animbio/anim/ciclocalvin.swf
http://www.johnkyrk.com/photosynthesis.html
http://www.cix.co.uk/~argus/Dreambio/photosynthesis/photosynth
sis%20animation.htm
Animación sobre la fotosíntesis
Animación sobre el ciclo de calvin
Miguel A. Castro R.
RUBISCO
RuBisCO es la forma abreviada con que se
designa a la ribulosa-1,5-bisfosfato carboxilasa
oxigenasa.
Cataliza dos procesos opuestos:
1. La fijación del CO2 (carboxilasa).
2. La fotorrespiración, en la que actúa como
oxigenasa del mismo sustrato.
• Es un enzima compuesto de 8 subunidades.
• Sólo fija 3 moléculas de CO2 por segundo
(muy lenta comparada con otras enzimas).
• Por esto es tan abundante en los
cloroplastos y puede alcanzar el 15% de sus
proteínas, y de hecho, es la proteína más
abundante en la biosfera.
Miguel A. Castro R.
Balance energético
Para formar una molécula de glucosa (6C) se necesitan fijar 6 CO2 y gastar 18 ATP y
12 NADPH (formados previamente en la fase luminosa)
Miguel A. Castro R.
RuBP: Ribulosa 1-5 bifosfato
GAP: gliceraldehido-3-fosfato
Miguel A. Castro R.
Fotorrespiración
• Es la actuación de la Rubisco como
oxigenasa.
• Se produce cuando la [CO2] es baja y la
de [O2] alta.
• Produce la rotura de la ribulosa (por
oxigenación) en dos moléculas de 2 y 3
carbonos.
• Finalmente se desprende CO2
• Este proceso ocurre durante el día,
captura O2 y desprende CO2 , pero no hay
fosforilación oxidativa
• Es un proceso donde la energía se pierde,
y no se produce ni ATP ni NADH
• En la fotorrespiración, después de varios pasos que implican a los cloroplastos,
peroxisomas y mitocondrias, hay liberación de CO2 y la formación de algunos
aminoácidos
Miguel A. Castro R.
Tomado de http://www.euita.upv.es
Miguel A. Castro R.
Las condiciones que conducen a la fotorrespiración son bastante comunes.
El CO2 no siempre se encuentra disponible para las células fotosintéticas de la planta.
Entra en la hoja por los estomas, que se abren y se cierran, dependiendo, entre otros
factores de la cantidad de agua.
Cuando la planta está sometida a unas condiciones calurosas y secas, debe cerrar sus
estomas para evitar la pérdida de agua. Esto provoca también una disminución del CO2
y permite que el oxígeno producido en la fotosíntesis se acumule.
También, cuando las plantas crecen muy juntas y el aire está muy calmado, el
intercambio de gases entre el aire que rodea la hoja y la atmósfera global puede ser
muy reducido. En estas condiciones, el aire cercano a las hojas de la planta activa
tendrá concentraciones de CO2 demasiado pequeñas para sus actividades
fotosintéticas. Incluso si los estomas están abiertos, el gradiente de concentración
entre el exterior de la hoja y el interior será tan poco importante, que muy poco CO2 se
podrá difundir hacia la hoja. La combinación de concentraciones bajas de CO2 y altas
concentraciones de oxígeno conduce a la fotorrespiración.
Miguel A. Castro R.
Las plantas C4 presentan una
anatomía foliar peculiar, conocida
como anatomía de tipo Kranz o en
corona. En el corte transversal de
estas hojas se observan dos tipos de
células fotosintéticas:
• unas grandes, que rodean a los
haces conductores (a modo de
“corona”) formando una vaina
• Otras que ocupan el mesófilo,
menores y dispuestas por lo
general más o menos radialmente
alrededor de la vaina.
Las plantas C4
Miguel A. Castro R.
Vía C4
1. Es un proceso de fijación del CO2 atmosférico,
captado en las células del mesófilo, pero en
vez de ir al ciclo de Calvin, el CO2 reacciona
con el PEP (Fosfoenolpiruvato).
2. El producto final entre el PEP y el CO2 es el
ácido oxalacético, que luego se convierte en
malato.
3. El malato es llevado a las células de la vaina,
en donde es descarboxilado, produciendo el
CO2 necesario para el ciclo de Calvin, además
de ácido pirúvico.
4. Este último es enviado nuevamente al
mesófilo en donde es transformado por medio
de ATP en fosfoenolpiruvato (PEP), para
quedar nuevamente disponible para el ciclo.
Miguel A. Castro R.
• Las ventajas radican en el hecho de que al tener la Rubisco situada en las células
de la vaina, se le impide reaccionar con O2 en situaciones en las cuales la
concentración de CO2 sea muy baja, por lo cual el CO2 perdido a través de la
fotorrespiración se reduce considerablemente.
• Incluso las moléculas de CO2 expulsadas por la fotorrespiración son reutilizadas a
través del PEP, que las captura en el mesófilo para ingresar en el ciclo de Calvin.
• Las plantas que usan esta vía para la fijación del carbono son denominadas C4,
entre las cuales se distinguen el maíz, la caña de azúcar, la invasora Cynodon
dactylon (Bermuda grass), el sorgo y el amaranto.
• La fijación de CO2 por este sistema tiene un mayor coste energético que en las
plantas de vía C3, pero se compensa por la casí nula fotorrespiración que
presentan.
• Son especialmente eficientes en condiciones de altas temperaturas y baja
humedad relativa (climas tropicales y sutropicales)
Ventajas de las Plantas C4
Miguel A. Castro R.
El Metabolismo Ácido de las Crassulaceae (CAM) es un
tipo de metabolismo que se da en plantas y que se
descubrió en la familia de las Crassulaceae.
El nombre de metabolismo ácido hace referencia a la
acumulación de ácidos orgánicos durante la noche por
las plantas que poseen este mecanismo de fijación de
carbono.
Esta vía metabólica es semejante a la vía C4, sin embargo
en la vía CAM la separación de las dos carboxilaciones no
es espacial, como ocurre en las plantas C4, sino
temporal.
Plantas CAM
Miguel A. Castro R.
• Las plantas CAM tienen dos carboxilaciones
separadas temporalmente:
• La primera se da en la noche cuando tienen los
estomas abiertos. El CO2 atmosférico se incorpora
al fosfoenolpiruvato (PEP) que se transforma en
oxalacetato y este en malato, que se almacena
durante la noche.
NOCHE
• Con la luz, los estomas se cierran (pérdida
de agua) impidiendo la adquisición de CO2.
• El ácido málico sale de la vacuola y se
descarboxila liberando el CO2, que va al
ciclo de Calvin y ácido pirúvico el cual es
devuelto al ciclo produciendo nuevamente
PEP.
DIA
Miguel A. Castro R.
• La concentración elevada en el interior de CO2 evita la fotorrespiración.
• Las plantas CAM suelen ser crasas y relegadas a ambientes secos.
• Su rendimiento total fotosintético es bajo (ya que la absorción de dióxido de
carbono está limitado a la cantidad de ácido málico que se puede almacenar en la
vacuola) por lo que son malas competidoras con las plantas C3 o C4.
• El mecanismo CAM le permite a la planta maximizar la eficiencia en el uso de
agua, por lo tanto, las CAM tienen una ventaja competitiva en ambientes con
poco agua.
Ventajas de las Plantas CAM
Miguel A. Castro R.
Miguel A. Castro R.
Miguel A. Castro R.
Miguel A. Castro R.
Miguel A. Castro R.
Miguel A. Castro R.
Factores que influyen en la fotosíntesis
Concentración de CO2 ambiental
Concentración de O2 ambiental
Humedad
Temperatura
Intensidad luminosa
Tipo de luz
Miguel A. Castro R.
1. Concentración de CO2 ambiental
Por encima de un determinado
valor (el óptimo), el rendimiento
fotosintético se estabiliza.
La concentración de CO2 en la atmósfera no
es optima para la fotosíntesis, en la
practica agrícola se utiliza una adición
artificial de CO2 gaseoso, bajo condiciones
de iluminación constante, para aumentar la
tasa fotosintética y con esta el rendimiento
en la producción de materias biológicas.
Miguel A. Castro R.
Concentración de O2 ambiental
0.5% de O2
20% de O2
AsimilaciónCO2
Intensidad de luz
En similares situaciones de
intensidad luminosa, las
plantas sometidas a una
menor concentración de O2
tienen un rendimiento
fotosintético más alto (evitan
la fotorrespiración)
Miguel A. Castro R.
HumedadAsimilaciónCO2
Humedad
Si disminuye la humedad, se cierran
los estomas, no entra CO2 y
disminuye el rendimento.
Si aumenta la humedad, se abren
los estomas y aumenta el
rendimiento
Humedad
Apertura
estomas
Entrada de
CO2
Rendimiento
fotosintético
Miguel A. Castro R.
Temperatura
El rendimiento óptimo depende del tipo
de planta
La temperatura optima coincide con el
optimo de los enzimas encargados de
la fotosíntesis. A partir de ese valor, el
rendimiento disminuye
AsimilaciónCO2
Temperatura
Miguel A. Castro R.
Intensidad luminosa
En general, a mayor intensidad luminosa,
mayor actividad fotosintética. Pero, cada
especie está adaptada a unos niveles de
iluminación óptima, de intensidad variable.
Si se superan esos niveles, se llega a la
saturación lumínica e, incluso, podrían
deteriorarse los pigmentos fotosintéticos.
El exceso de luz puede
provocar fotoinhibición
Miguel A. Castro R.
Tipo de luz
• La clorofila a y la clorofila b absorben energía lumínica en la
región azul y roja del espectro
• Los carotenos y xantofilas, en la azul
• Las ficocianinas, en la naranja
• Las ficoeritrinas, en la verde.
500 700600400
0
20
40
60
80
100
120
Longitud de onda (nm)
Tasarelativadefotosíntesis
Miguel A. Castro R.
1. Proceso exclusivo de bacterias.
2. No se genera oxígeno
3. Las bacterias no poseen cloroplastos, realizan la
fotosíntesis en los mesosomas
4. Solo tienen un fotosistema.
5. El transporte de electrones es cíclico.
6. Los pigmentos fotosintéticos son bacterioclorofila y
carotenoides.
7. Solo se produce ATP.
8. El poder reductor cuando es necesario se obtiene
por un transporte inverso de electrones (consumo
de energía) y es en forma de NADH, no de NADPH
9. El dador de electrones no es H2O sino otros
compuestos inorgánicos reducidos, por lo que no
liberan O2
Fotosíntesis anoxigénica
Membranas lamelares
de bacterias púrpura
halófilas
Miguel A. Castro R.
Fotofosforilación cíclica
durante la fotosíntesis
anoxigénica
Miguel A. Castro R.
Producción
de O2
Fuente
de H
Fuente de C Clasificación
Algas oxigénica H2O CO2 Fotoautótrofos
Cianobacterias oxigénica H2O CO2 Fotoautótrofos
Bacterias verdes del
S Chlorobiaceae
anoxigénica H2, H2S,
S2O3
2-
CO2, acetato,
butirato
Principalmente fotoautótrofos
Bacterias púrpura
del S
Chromatiaceae
anoxigénica H2, H2S,
S2O3
2-
CO2, acetato,
butirato
Principalmente fotoautótrofos
Bacterias púrpura no
del S
anoxigénica H2,
compuestos
orgánicos
CO2, compuestos
orgánicos
Principalmente fotoorganotrofos, pueden ser
quimioorganotrofos en oscuridad y sin O2
Bacterias verdes
deslizantes
Chloroflexaceae
anoxigénica H2,
compuestos
orgánicos
CO2, compuestos
orgánicos
Principalmente fotoorganotrofos, pueden ser
quimioorganotrofos en oscuridad y sin O2
Heliobacterias Compuestos
orgánicos
Compuestos
orgánicos
Fotoorganotrofos
Microorganismos Fotosintéticos
Miguel A. Castro R.
En la fotosíntesis, además de glucosa, se elaboran otros compuestos, (aminoácidos y
nucleótidos), que contienen grupos amino (-NH) y tiol (-SH).
Tanto en el agua y en el suelo, el N y el S se encuentran en forma de compuestos
oxidados (NO-
3 y SO=
4), que son absorbidos por las plantas y reducidos para ser
incorporados a la materia orgánica.
En ambos casos, el proceso es lineal (no cíclico) y se sirve del NADP.H2 generado en
la fase luminosa de la fotosíntesis.
FIJACIÓN FOTOSINTÉTICA DEL N Y S
La reducción fotosintética del N comprende dos etapas catalizadas por enzimas
específicas:
1) La transformación de nitratos en nitritos y la de éstos en amoníaco.
2) El amoníaco se combina con el ác. alfa-cetoglutárico para formar glutámico.
La reducción fotosintética del S también es un proceso lineal en el que los sulfatos se
reducen a sulfitos y éstos a H2S. Requiere NADP.H2 y ATP.
El H2S se puede incorporar como grupo tiol (-HS) a la cisteína.
Miguel A. Castro R.
Los nitratos son inicialmente reducidos a nitritos y después a amoníaco, a
expensas del poder reductor del NADPH obtenido en la fase luminosa.
A continuación, el amoníaco es incorporado al esqueleto carbonado del
ácido α-cetoglutárico para dar ácido glutámico en una reacción que
consume ATP procedente también de la fase luminosa
Miguel A. Castro R.
Importancia biológica de la fotosíntesis
1. Conversión de materia inorgánica en orgánica.
2. Base de las cadenas tróficas.
3. Conversión de la energía luminosa en energía química
4. Fijación de CO2 (actualmente combate el incremento de efecto
invernadero)
5. Proporciona O2 y en su momento fue el proceso responsable del
cambio de la atmósfera primitiva anaerobia y reductora a la actual.
6. De la fotosíntesis depende también la energía almacenada en
combustibles fósiles como carbón, petróleo y gas natural.
7. El equilibrio necesario entre seres autótrofos y heterótrofos no sería
posible sin la fotosíntesis.
Miguel A. Castro R.
Miguel A. Castro R.

Más contenido relacionado

La actualidad más candente

Función Nitrilos, isonitrilos, nitro y nitroso; nomenclatura, formación y eje...
Función Nitrilos, isonitrilos, nitro y nitroso; nomenclatura, formación y eje...Función Nitrilos, isonitrilos, nitro y nitroso; nomenclatura, formación y eje...
Función Nitrilos, isonitrilos, nitro y nitroso; nomenclatura, formación y eje...
Paúl Narváez
 
Practica 7 (Preparación de un compuesto orgánico: Ácido acetilsalicílico)
Practica 7 (Preparación de un compuesto orgánico: Ácido acetilsalicílico) Practica 7 (Preparación de un compuesto orgánico: Ácido acetilsalicílico)
Practica 7 (Preparación de un compuesto orgánico: Ácido acetilsalicílico) Luis Morillo
 
clorofilas, carotenos, xantofilas, separación de pigmentos
clorofilas, carotenos, xantofilas, separación de pigmentosclorofilas, carotenos, xantofilas, separación de pigmentos
clorofilas, carotenos, xantofilas, separación de pigmentos
Diego Bastidas
 
Acidos carboxílicos
Acidos carboxílicosAcidos carboxílicos
Acidos carboxílicos
Karinaa Andreaa
 
Química orgánica
Química orgánicaQuímica orgánica
Química orgánicaRoy Marlon
 
Cloroplastos
CloroplastosCloroplastos
Cloroplastos
JulianaMogoo
 
Cap 12. amino acid and protein
Cap 12.  amino acid and proteinCap 12.  amino acid and protein
Cap 12. amino acid and protein
Eltsyn Jozsef Uchuypoma
 
Espectroscopia IR - Vibración Molecular
Espectroscopia IR - Vibración MolecularEspectroscopia IR - Vibración Molecular
Espectroscopia IR - Vibración Molecular
José Luis Castro Soto
 
5. mecanismos de unión para la formación de atp
5. mecanismos de unión para la formación de atp5. mecanismos de unión para la formación de atp
5. mecanismos de unión para la formación de atpcastronaileth_31
 
Plantas cam y c4
Plantas cam y c4Plantas cam y c4
Plantas cam y c4
Xime Gal
 
4 la célula
4 la célula4 la célula
4 la célula
29325508
 
Reacciones Generales de Alcoholes, Fenoles y Éteres.
Reacciones Generales de Alcoholes, Fenoles y Éteres.Reacciones Generales de Alcoholes, Fenoles y Éteres.
Reacciones Generales de Alcoholes, Fenoles y Éteres.Angy Leira
 
Sintesis de proteinas Transcripcion
Sintesis de proteinas TranscripcionSintesis de proteinas Transcripcion
Sintesis de proteinas Transcripcion
John Sisalima
 
Efecto de la ósmosis en la papa
Efecto de la ósmosis en la papaEfecto de la ósmosis en la papa
Efecto de la ósmosis en la papa
FlorenciaV1
 
HETEROCICKICOS NITROGENADOS
HETEROCICKICOS  NITROGENADOSHETEROCICKICOS  NITROGENADOS
HETEROCICKICOS NITROGENADOS
Solev Cabrejos
 
Ejercicios interactivos de la nomenclatura de armónicos
Ejercicios interactivos de la nomenclatura de armónicosEjercicios interactivos de la nomenclatura de armónicos
Ejercicios interactivos de la nomenclatura de armónicos
Naren Meneses
 
informe de célula animal y vegetal por Lourdes Lanchimba
informe de célula animal y vegetal por Lourdes Lanchimbainforme de célula animal y vegetal por Lourdes Lanchimba
informe de célula animal y vegetal por Lourdes Lanchimba
LourdesMarisolLanchi
 

La actualidad más candente (20)

Función Nitrilos, isonitrilos, nitro y nitroso; nomenclatura, formación y eje...
Función Nitrilos, isonitrilos, nitro y nitroso; nomenclatura, formación y eje...Función Nitrilos, isonitrilos, nitro y nitroso; nomenclatura, formación y eje...
Función Nitrilos, isonitrilos, nitro y nitroso; nomenclatura, formación y eje...
 
Practica 7 (Preparación de un compuesto orgánico: Ácido acetilsalicílico)
Practica 7 (Preparación de un compuesto orgánico: Ácido acetilsalicílico) Practica 7 (Preparación de un compuesto orgánico: Ácido acetilsalicílico)
Practica 7 (Preparación de un compuesto orgánico: Ácido acetilsalicílico)
 
Respiración aeróbica y anaeróbica
Respiración aeróbica y anaeróbicaRespiración aeróbica y anaeróbica
Respiración aeróbica y anaeróbica
 
clorofilas, carotenos, xantofilas, separación de pigmentos
clorofilas, carotenos, xantofilas, separación de pigmentosclorofilas, carotenos, xantofilas, separación de pigmentos
clorofilas, carotenos, xantofilas, separación de pigmentos
 
Acidos carboxílicos
Acidos carboxílicosAcidos carboxílicos
Acidos carboxílicos
 
Química orgánica
Química orgánicaQuímica orgánica
Química orgánica
 
Laboratorio de alcoholes y fenoles
Laboratorio de alcoholes y fenolesLaboratorio de alcoholes y fenoles
Laboratorio de alcoholes y fenoles
 
Cloroplastos
CloroplastosCloroplastos
Cloroplastos
 
Cap 12. amino acid and protein
Cap 12.  amino acid and proteinCap 12.  amino acid and protein
Cap 12. amino acid and protein
 
Espectroscopia IR - Vibración Molecular
Espectroscopia IR - Vibración MolecularEspectroscopia IR - Vibración Molecular
Espectroscopia IR - Vibración Molecular
 
5. mecanismos de unión para la formación de atp
5. mecanismos de unión para la formación de atp5. mecanismos de unión para la formación de atp
5. mecanismos de unión para la formación de atp
 
Plantas cam y c4
Plantas cam y c4Plantas cam y c4
Plantas cam y c4
 
4 la célula
4 la célula4 la célula
4 la célula
 
Reacciones Generales de Alcoholes, Fenoles y Éteres.
Reacciones Generales de Alcoholes, Fenoles y Éteres.Reacciones Generales de Alcoholes, Fenoles y Éteres.
Reacciones Generales de Alcoholes, Fenoles y Éteres.
 
Sintesis de proteinas Transcripcion
Sintesis de proteinas TranscripcionSintesis de proteinas Transcripcion
Sintesis de proteinas Transcripcion
 
Fotosíntesis CAM
Fotosíntesis CAMFotosíntesis CAM
Fotosíntesis CAM
 
Efecto de la ósmosis en la papa
Efecto de la ósmosis en la papaEfecto de la ósmosis en la papa
Efecto de la ósmosis en la papa
 
HETEROCICKICOS NITROGENADOS
HETEROCICKICOS  NITROGENADOSHETEROCICKICOS  NITROGENADOS
HETEROCICKICOS NITROGENADOS
 
Ejercicios interactivos de la nomenclatura de armónicos
Ejercicios interactivos de la nomenclatura de armónicosEjercicios interactivos de la nomenclatura de armónicos
Ejercicios interactivos de la nomenclatura de armónicos
 
informe de célula animal y vegetal por Lourdes Lanchimba
informe de célula animal y vegetal por Lourdes Lanchimbainforme de célula animal y vegetal por Lourdes Lanchimba
informe de célula animal y vegetal por Lourdes Lanchimba
 

Similar a Anabolismo y Fotosíntesis

Anabolismo la fotosíntesis
Anabolismo la fotosíntesisAnabolismo la fotosíntesis
Anabolismo la fotosíntesis
Eduardo Gómez
 
Anabolismo
AnabolismoAnabolismo
Clase fotosíntesis
Clase fotosíntesis Clase fotosíntesis
Clase fotosíntesis
AndreaSeplveda7
 
fotosintesis-resumen-clases-teoricas-2020.pdf
fotosintesis-resumen-clases-teoricas-2020.pdffotosintesis-resumen-clases-teoricas-2020.pdf
fotosintesis-resumen-clases-teoricas-2020.pdf
SofiFantone1
 
fotosíntesis8.pptx
fotosíntesis8.pptxfotosíntesis8.pptx
fotosíntesis8.pptx
SupuliBae
 
Sanchez miriam - biologia
Sanchez miriam - biologiaSanchez miriam - biologia
Sanchez miriam - biologia
Miriam Sanchez
 
Tema 12 Anabolismo.ppt
Tema 12 Anabolismo.pptTema 12 Anabolismo.ppt
Tema 12 Anabolismo.ppt
RaulRico10
 
Anabolismo
AnabolismoAnabolismo
Anabolismo
Jony MG
 
Fotosintesis
FotosintesisFotosintesis
FotosintesisGigi "G"
 
Cañizares freddy fotosintesis
Cañizares freddy   fotosintesisCañizares freddy   fotosintesis
Cañizares freddy fotosintesis
Freddy Cañizares
 
Ud 11. anabolismo
Ud 11. anabolismoUd 11. anabolismo
Ud 11. anabolismo
martabiogeo
 
Fosintesis2 120522223911-phpapp01
Fosintesis2 120522223911-phpapp01Fosintesis2 120522223911-phpapp01
Fosintesis2 120522223911-phpapp01Miriam1970
 
Fotosintesis
Fotosintesis Fotosintesis
Fotosintesis
Giss Mubor
 
Fosintesis2 120522223911-phpapp01
Fosintesis2 120522223911-phpapp01Fosintesis2 120522223911-phpapp01
Fosintesis2 120522223911-phpapp01Miriam1970
 
Fotosíntesis
FotosíntesisFotosíntesis
Fotosíntesis
Andres Tavizon
 
Cuestionario Plantas C..docx
Cuestionario Plantas C..docxCuestionario Plantas C..docx
Cuestionario Plantas C..docx
CarlosDSarmiento2
 

Similar a Anabolismo y Fotosíntesis (20)

Anabolismo la fotosíntesis
Anabolismo la fotosíntesisAnabolismo la fotosíntesis
Anabolismo la fotosíntesis
 
Anabolismo
AnabolismoAnabolismo
Anabolismo
 
Clase fotosíntesis
Clase fotosíntesis Clase fotosíntesis
Clase fotosíntesis
 
El anabolismo
El anabolismoEl anabolismo
El anabolismo
 
fotosintesis-resumen-clases-teoricas-2020.pdf
fotosintesis-resumen-clases-teoricas-2020.pdffotosintesis-resumen-clases-teoricas-2020.pdf
fotosintesis-resumen-clases-teoricas-2020.pdf
 
fotosíntesis8.pptx
fotosíntesis8.pptxfotosíntesis8.pptx
fotosíntesis8.pptx
 
Sanchez miriam - biologia
Sanchez miriam - biologiaSanchez miriam - biologia
Sanchez miriam - biologia
 
Tema 12 Anabolismo.ppt
Tema 12 Anabolismo.pptTema 12 Anabolismo.ppt
Tema 12 Anabolismo.ppt
 
Anabolismo
AnabolismoAnabolismo
Anabolismo
 
Fotosintesis
FotosintesisFotosintesis
Fotosintesis
 
Cañizares freddy fotosintesis
Cañizares freddy   fotosintesisCañizares freddy   fotosintesis
Cañizares freddy fotosintesis
 
Anabolismo
AnabolismoAnabolismo
Anabolismo
 
Ud 11. anabolismo
Ud 11. anabolismoUd 11. anabolismo
Ud 11. anabolismo
 
Fosintesis2 120522223911-phpapp01
Fosintesis2 120522223911-phpapp01Fosintesis2 120522223911-phpapp01
Fosintesis2 120522223911-phpapp01
 
Fotosintesis
Fotosintesis Fotosintesis
Fotosintesis
 
Fosintesis2 120522223911-phpapp01
Fosintesis2 120522223911-phpapp01Fosintesis2 120522223911-phpapp01
Fosintesis2 120522223911-phpapp01
 
Fotosíntesis
FotosíntesisFotosíntesis
Fotosíntesis
 
Anabolismo
AnabolismoAnabolismo
Anabolismo
 
Tema 13 anabolismo
Tema 13 anabolismoTema 13 anabolismo
Tema 13 anabolismo
 
Cuestionario Plantas C..docx
Cuestionario Plantas C..docxCuestionario Plantas C..docx
Cuestionario Plantas C..docx
 

Más de INSTITUTO TECNOLÓGICO DE SONORA

22 Materiales Compuestos II
22 Materiales Compuestos II22 Materiales Compuestos II
22 Materiales Compuestos II
INSTITUTO TECNOLÓGICO DE SONORA
 
21 Materiales Compuestos I
21 Materiales Compuestos I21 Materiales Compuestos I
21 Materiales Compuestos I
INSTITUTO TECNOLÓGICO DE SONORA
 
20 Vidrios
20 Vidrios20 Vidrios
19 Materiales Cerámicos II
19 Materiales Cerámicos II19 Materiales Cerámicos II
19 Materiales Cerámicos II
INSTITUTO TECNOLÓGICO DE SONORA
 
18 Materiales Cerámicos I
18 Materiales Cerámicos I18 Materiales Cerámicos I
18 Materiales Cerámicos I
INSTITUTO TECNOLÓGICO DE SONORA
 
17 Materiales Poliméricos I
17 Materiales Poliméricos I17 Materiales Poliméricos I
17 Materiales Poliméricos I
INSTITUTO TECNOLÓGICO DE SONORA
 
16 Materiales Poliméricos
16 Materiales Poliméricos16 Materiales Poliméricos
16 Materiales Poliméricos
INSTITUTO TECNOLÓGICO DE SONORA
 
15 Aleaciones NO Ferrosas
15 Aleaciones NO Ferrosas15 Aleaciones NO Ferrosas
15 Aleaciones NO Ferrosas
INSTITUTO TECNOLÓGICO DE SONORA
 
14 Hierros Fundidos
14 Hierros Fundidos14 Hierros Fundidos
13 Tratamientos Superficiales
13 Tratamientos Superficiales13 Tratamientos Superficiales
13 Tratamientos Superficiales
INSTITUTO TECNOLÓGICO DE SONORA
 
12 Ensayo de Jomminy
12 Ensayo de  Jomminy12 Ensayo de  Jomminy
12 Ensayo de Jomminy
INSTITUTO TECNOLÓGICO DE SONORA
 
11 Tratamientos Térmicos
11 Tratamientos Térmicos11 Tratamientos Térmicos
11 Tratamientos Térmicos
INSTITUTO TECNOLÓGICO DE SONORA
 
10 Clasificación de Aceros
10 Clasificación de Aceros10 Clasificación de Aceros
10 Clasificación de Aceros
INSTITUTO TECNOLÓGICO DE SONORA
 
9 Diagrama fe c
9 Diagrama fe c9 Diagrama fe c
8 Diagramas de Fases
8 Diagramas de Fases8 Diagramas de Fases
8 Diagramas de Fases
INSTITUTO TECNOLÓGICO DE SONORA
 
7 Endurecimiento por Deformación
7 Endurecimiento por Deformación7 Endurecimiento por Deformación
7 Endurecimiento por Deformación
INSTITUTO TECNOLÓGICO DE SONORA
 
6 Fallas en Materiales
6 Fallas en Materiales6 Fallas en Materiales
6 Fallas en Materiales
INSTITUTO TECNOLÓGICO DE SONORA
 
5 Solidificación
5 Solidificación5 Solidificación
4 Materiales Metálicos
4 Materiales Metálicos4 Materiales Metálicos
4 Materiales Metálicos
INSTITUTO TECNOLÓGICO DE SONORA
 
3 Estructura Cristalina
3 Estructura Cristalina3 Estructura Cristalina
3 Estructura Cristalina
INSTITUTO TECNOLÓGICO DE SONORA
 

Más de INSTITUTO TECNOLÓGICO DE SONORA (20)

22 Materiales Compuestos II
22 Materiales Compuestos II22 Materiales Compuestos II
22 Materiales Compuestos II
 
21 Materiales Compuestos I
21 Materiales Compuestos I21 Materiales Compuestos I
21 Materiales Compuestos I
 
20 Vidrios
20 Vidrios20 Vidrios
20 Vidrios
 
19 Materiales Cerámicos II
19 Materiales Cerámicos II19 Materiales Cerámicos II
19 Materiales Cerámicos II
 
18 Materiales Cerámicos I
18 Materiales Cerámicos I18 Materiales Cerámicos I
18 Materiales Cerámicos I
 
17 Materiales Poliméricos I
17 Materiales Poliméricos I17 Materiales Poliméricos I
17 Materiales Poliméricos I
 
16 Materiales Poliméricos
16 Materiales Poliméricos16 Materiales Poliméricos
16 Materiales Poliméricos
 
15 Aleaciones NO Ferrosas
15 Aleaciones NO Ferrosas15 Aleaciones NO Ferrosas
15 Aleaciones NO Ferrosas
 
14 Hierros Fundidos
14 Hierros Fundidos14 Hierros Fundidos
14 Hierros Fundidos
 
13 Tratamientos Superficiales
13 Tratamientos Superficiales13 Tratamientos Superficiales
13 Tratamientos Superficiales
 
12 Ensayo de Jomminy
12 Ensayo de  Jomminy12 Ensayo de  Jomminy
12 Ensayo de Jomminy
 
11 Tratamientos Térmicos
11 Tratamientos Térmicos11 Tratamientos Térmicos
11 Tratamientos Térmicos
 
10 Clasificación de Aceros
10 Clasificación de Aceros10 Clasificación de Aceros
10 Clasificación de Aceros
 
9 Diagrama fe c
9 Diagrama fe c9 Diagrama fe c
9 Diagrama fe c
 
8 Diagramas de Fases
8 Diagramas de Fases8 Diagramas de Fases
8 Diagramas de Fases
 
7 Endurecimiento por Deformación
7 Endurecimiento por Deformación7 Endurecimiento por Deformación
7 Endurecimiento por Deformación
 
6 Fallas en Materiales
6 Fallas en Materiales6 Fallas en Materiales
6 Fallas en Materiales
 
5 Solidificación
5 Solidificación5 Solidificación
5 Solidificación
 
4 Materiales Metálicos
4 Materiales Metálicos4 Materiales Metálicos
4 Materiales Metálicos
 
3 Estructura Cristalina
3 Estructura Cristalina3 Estructura Cristalina
3 Estructura Cristalina
 

Último

CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptxCLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
LilianaRivera778668
 
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
rosannatasaycoyactay
 
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIACONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
BetzabePecheSalcedo1
 
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdfAsistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Demetrio Ccesa Rayme
 
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdfAsistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Demetrio Ccesa Rayme
 
El fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docxEl fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docx
Alejandrino Halire Ccahuana
 
Fase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría AnalíticaFase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría Analítica
YasneidyGonzalez
 
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
JAVIER SOLIS NOYOLA
 
Fase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometricoFase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometrico
YasneidyGonzalez
 
Junio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividadesJunio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividades
cintiat3400
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
https://gramadal.wordpress.com/
 
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdfFORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
El Fortí
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
CESAR MIJAEL ESPINOZA SALAZAR
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
Edurne Navarro Bueno
 
Introducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BIIntroducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BI
arleyo2006
 
El Liberalismo económico en la sociedad y en el mundo
El Liberalismo económico en la sociedad y en el mundoEl Liberalismo económico en la sociedad y en el mundo
El Liberalismo económico en la sociedad y en el mundo
SandraBenitez52
 
Conocemos la ermita de Ntra. Sra. del Arrabal
Conocemos la ermita de Ntra. Sra. del ArrabalConocemos la ermita de Ntra. Sra. del Arrabal
Conocemos la ermita de Ntra. Sra. del Arrabal
Profes de Relideleón Apellidos
 
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptxc3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
Martín Ramírez
 
PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.
https://gramadal.wordpress.com/
 
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptxSemana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
LorenaCovarrubias12
 

Último (20)

CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptxCLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
 
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
 
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIACONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
 
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdfAsistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
 
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdfAsistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
 
El fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docxEl fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docx
 
Fase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría AnalíticaFase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría Analítica
 
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
ROMPECABEZAS DE ECUACIONES DE PRIMER GRADO OLIMPIADA DE PARÍS 2024. Por JAVIE...
 
Fase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometricoFase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometrico
 
Junio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividadesJunio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividades
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
 
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdfFORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
 
Introducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BIIntroducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BI
 
El Liberalismo económico en la sociedad y en el mundo
El Liberalismo económico en la sociedad y en el mundoEl Liberalismo económico en la sociedad y en el mundo
El Liberalismo económico en la sociedad y en el mundo
 
Conocemos la ermita de Ntra. Sra. del Arrabal
Conocemos la ermita de Ntra. Sra. del ArrabalConocemos la ermita de Ntra. Sra. del Arrabal
Conocemos la ermita de Ntra. Sra. del Arrabal
 
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptxc3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
 
PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.
 
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptxSemana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
 

Anabolismo y Fotosíntesis

  • 2. ÍNDICE: • Clasificación de los organismos en función de la forma de nutrición • Fotosíntesis • Pigmentos fotosintéticos • Fotosistemas • Relación entre ambos fotosistemas • Generalidades de la fotosíntesis • Fase luminosa • Transporte de electrones • Fotofosforilación no cíclica • Fotofosforilación cíclica • Fase oscura: Ciclo de Calvin • RUBISCO • Balance energético • Fotorrespiración • Plantas C4 y CAM • Factores que influyen en la fotosíntesis • Fotosíntesis anoxigénica • Microorganismos fotosintéticos • Fijación fotosintética del N y S • Importancia biológica de la fotosíntesis Miguel A. Castro R.
  • 3. Los procesos anabólicos consisten en construir moléculas complejas a partir de moléculas más sencillas, con un aporte de energía Moléculas complejas Moléculas sencillas Miguel A. Castro R.
  • 4. FosfolípidosTriglicéridos Ácidos nucleicos Polisacáridos de reserva Proteínas Polisacáridos estructurales Ácidos grasosNucleótidosAminoácidos Monosacáridos Lípidos simples Compuestos orgánicos sencillos NH3 H2O O2 CO2 ATP ATP ATP ATP ATP ATP ATP ATP ATP ATP Miguel A. Castro R.
  • 5. Dador de electrones Fuente de energía Luz (fotótrofo) Sustrato oxidable (Quimiótrofo) Orgánico Heterótrofo Fotoorganotrofos Bacterias rojas no sulfúreas Quimioorganotrofo Animales, hongos, protrozoos, mayoría de bacterias. Inorgánico Autótrofo Fotolitótrofos Plantas verdes, algas, bacterias rojas y verdes del azufre. Quimiolitótrofo Bacterias del hidrógeno, incoloras del azufre, nitrificantes y férricas. Clasificación de los organismos en función de la forma de nutrición Miguel A. Castro R.
  • 6. Necesidades de los organismos Una fuente de carbono: Heterótrofos Autótrofos Una fuente de hidrógeno Litótrofos Organotrofos Un aceptor último de hidrógenos Aerobios Anaerobios Una fuente primaria de energía Fotótrofos Quimiótrofos Agua y sales minerales Miguel A. Castro R.
  • 7. Fotosíntesis: Puntos a tratar • Pigmentos fotosintéticos y fotosistemas • Fase luminosa y fotofosforilación • Fase oscura • Balance energético • Factores que afectan a la fotosíntesis Miguel A. Castro R.
  • 8. Pigmentos fotosintéticos Pigmentos fotosintéticos Clorofilas Clorofila a (E. luminosa a E. química) Clorofila b (plantas) Clorofila C (diatomeas y protozoos) Carotenos Xantofilas Ficobilinas En algas rojas (eucariotas ) y algas verde-azuladas (procariotas) Contienen un cromóforo Miguel A. Castro R.
  • 9. La radiación solar es solo una pequeña parte del amplio espectro de radiaciones electromagnéticas emitidas por el Sol. La luz se propaga en forma de fotones o cuantos de energía. Las sustancias absorben parte de la luz que reciben y emiten otra parte, lo que se percibe como el color. Si absorben toda la luz son negros. Menor longitud de onda Más energéticas Mayor longitud de onda Menos energéticas La luz que incide sobre una hoja se compone de una gran variedad de longitudes de onda, por lo que la presencia de pigmentos con diferente capacidad de absorción permite que un mayor porcentaje de fotones pueda estimular la fotosíntesis. Miguel A. Castro R.
  • 10. • No toda esa luz es útil para la planta. • En general la clorofila se especializa en absorber las longitudes de ondas que forman el violeta, el azul y el rojo. • El resto es transmitida y reflejada. Miguel A. Castro R.
  • 12. La clorofila esta en el interior de los cloroplastos, en unas membranas especializadas, los tilacoides, junto a otros pigmentos. Los tilacoides, normalmente, presentan un aspecto de sacos o vesículas aplanadas. Clorofila Miguel A. Castro R.
  • 13. Clorofila: Estructura Dos regiones: 1. Anillo de porfirina con Mg 2. Fitol • Los dobles enlaces facilitan el transporte de electrones. • La absorción de luz provoca la redistribución electrónica y la pérdida de un electrón hacia otra molécula (un aceptor de electrones) Miguel A. Castro R.
  • 14. • Cuando una molécula de clorofila absorbe un fotón, pasa a un estado inestable de mayor energía, denominado estado excitado, en el que un electrón periférico se desplaza hacia una posición más externa. • Si este electrón pasa a otra molécula (fotooxidación), la energía se habrá transmitido y la molécula de clorofila permanecerá excitada. • Para volver a su estado fundamental deberá recibir otro electrón que ocupe el hueco dejado por el primero Movimiento de los electrones Miguel A. Castro R.
  • 15. Fotosistemas Los pigmentos están estrechamente asociados a proteínas y se alojan en la bicapa lipídica de los tilacoides. Estos complejos proteína-clorofila se encuentran empaquetados formando unidades denominadas fotosistemas. Cada unidad contiene de 200 a 400 moléculas de pigmento que captan la luz y forman el llamado complejo antena. Cuando la energía de la luz se absorbe por uno de los pigmentos de la antena, pasa de una molécula a otra de pigmento del fotosistema hasta que alcanza una forma especial de clorofila a que constituye el centro de reacción del fotosistema. Miguel A. Castro R.
  • 16. Hay dos tipos de fotosistemas: 1. Fotosistema I (PS I) 2. Fotosistema II (PS II) Miguel A. Castro R.
  • 17. Fotosistemas Centro de reacción Complejo captador de luz. Moléculas antena Fotón Estructura con numerosas moléculas de pigmentos (clorofila a, b, carotenoides) Atrapan fotones de diferente longitud de onda. Contiene dos moléculas de clorofila a (pigmento diana) y los electrones que liberan son enviados a la cadena de transporte electrónico. Cuando una molécula se excita transfiere energía a las cercanas por un proceso de resonancia y así hasta el centro de reacción. Fotosistema I (PSI) Fotosistema II (PSII) Localización Absorción máxima del centro de reacción Membranas de tilacoides no apilados Grana 700 nm. 2 moléculas clorofila a P700 680 nm. 2 moléculas de clorofila a P680 Agrupación de pigmentos fotosintéticos junto a proteínas transmembrana. Miguel A. Castro R.
  • 20. • En el fotosistema I (PS I) la molécula reactiva de clorofila a se denomina P700 (máximo de absorción a 700 nm). • Se localiza, casi exclusivamente, en las lamelas estromales (tilacoides no apilados) y en la periferia de los grana. • Se asocia con la reducción del NADP+ Miguel A. Castro R.
  • 21. • El Fotosistema II (PS II) también contiene una molécula de clorofila a reactiva, denominada P680, que absorbe preferentemente a 680 nm. • Acepta electrones del agua y por ello se asocia con el desprendimiento del oxígeno. • Se localiza, preferentemente, en los grana. • Los dos fotosistemas se encuentran espacialmente separados en las membranas tilacoidales. • Ambos fotosistemas, al ser excitados por la luz ceden e- a un aceptor primario, quedando ellos oxidados (necesitan recuperar los e- cedidos) Miguel A. Castro R.
  • 22. Relación entre ambos fotosistemas Miguel A. Castro R.
  • 23. Tipo Proteína y localización Obtención de electrones Trasmisión de electrones Fotosistema 2 PS II Complejo P680 Abunda más en tilacoides de los grana Obtiene e- del agua - Plastoquinona - Citocomo bf - Plastocianina - Fotosistema I Plastoquinona transporta H+ fuera Fotosistema 1 PS I Complejo P700 Abunda más en tilacoides del estroma Obtiene e- de la plastocianina - Ferredoxina - NADP Reduce el NADP Puede ser cíclico Miguel A. Castro R.
  • 24. Generalidades de la fotosíntesis Tiene dos fases Fase luminosa Fase oscura Membrana de los tilacoides NADP+  NADPH Fotofosforilación (ATP) Estroma Fijación del CO2 Obtención de biomoléculas Gasto de ATP y NADPH Miguel A. Castro R.
  • 25. Fase luminosa Ocurren en las membranas de los tilacoides: 1. La clorofila y otras moléculas de pigmento absorben la energía de luz. 2. Aumenta la energía de los electrones en las moléculas de los pigmentos activándolos (nivel de energía más alto). 3. Los electrones regresan a un nivel de energía más bajo al pasar por una cadena de transporte de electrones, en forma muy parecida a lo que ocurre en la respiración celular. 4. En el proceso de liberación de energía de los electrones, se produce ATP que se utiliza en las reacciones de la fase oscura. Miguel A. Castro R.
  • 26. Transporte de electrones • Los dos fotosistemas se activan simultáneamente con la luz • Los electrones activados van pasando por una cadena de moléculas transportadoras. 1. En el caso del PSI llegan hasta el complejo NADP reductasa 2. En el caso del PSII, llegan hasta el PSI Durante este paso de electrones, se va liberando energía, que se aprovecha para bombear protones (en el complejo de citocromos) al lumen tilacoidal, creando en este espacio un fuerte gradiente de protones (fuerza protomotriz) Miguel A. Castro R.
  • 27. Fot.II P680 2e- H2O PotencialRedox 2H+ 2e- Luz Fot.II P680 * Feof. PQ Cit 2 Fotones de luz PC. Fot.I P700 2 Fotones de luz H+ H+ NADP reductasa Fdx Fot.I P700* NADP+ NADPH 2e- 1/2 O2 Miguel A. Castro R.
  • 28. • Intervienen los dos fotosistemas • Se reduce el NADP • Se rompe el H2O: se libera O2. • Sí se sintetiza ATP Fotofosforilación no cíclica Miguel A. Castro R.
  • 29. Membrana tilacoidal Fotofosforilación no cíclica El ATP se genera de manera similar al proceso de formación en las mitocondrias. Estroma Lumen tilacoidal H+ H+H+ H+ H+ H+ ATP ADP + Pi Existen complejos ATP sintetasas semejantes a los de las mitocondrias. El flujo de H+ por el complejo enzimático sirve para catalizar la formación de ATP Miguel A. Castro R.
  • 30. • Sólo interviene el fotosistema I. • No se reduce el NADP • No se rompe el H2O: no se libera O2. • Sí se sintetiza ATP. • Se activa cuando hay desequilibrio entre ATP y NADPH. Fotofosforilación cíclica Miguel A. Castro R.
  • 31. Fase oscura: Ciclo de Calvin • El proceso de conoce también como vía C3 • Supone la reducción del carbono del CO2 para formar glucosa.. • Se produce tanto haya luz o no. • Se necesitan 3 moléculas de CO2 para formar cada fosfogliceraldehido • La rubisco capta CO2 . • Luego la Rubisco carboxila al RuBP y genera ac. Fosfoglicérico (PGA). • Con el consumo de ATP y NADPH el PGA se transforma en fosfogliceraldehido. • El resto sigue en el ciclo para regenerar Ribulosa bifosfato. Miguel A. Castro R.
  • 32. Fase I: Fijación del CO2 Fase II: Reducción (obtención de la materia orgánica) Fase III: Regeneración de la Ribulosa 1- 5 bifosfato Se pueden establecer tres fases en el ciclo de Calvin. Miguel A. Castro R.
  • 33. Fase I: Fijación del CO2. La rubisco une el CO2 a la RuBP, formando un intermediario de 6 carbonos inestable que se rompe dando lugar a dos moléculas de fosfoglicerato (PGA). Al utilizar un método de marcaje radiactivo se observa la radioactividad en una de las moléculas de PGA Fase II: Reducción El PGA se reduce a gliceraldehido-3-fosfato (GAP) consumiéndose el NADPH y el ATP que se obtuvieron en la fase luminosa. Esta fase es energéticamente la más costosa. Fase III: Regeneración de la Ribulosa 1-5 bifosfato. De cada seis moléculas de GAP que se forman, una se considera el rendimiento neto de la fotosíntesis. Las otras cinco sufren una serie de transformaciones consecutivas en las que también se consume ATP, para regenerar la RuBP Miguel A. Castro R.
  • 35. RUBISCO RuBisCO es la forma abreviada con que se designa a la ribulosa-1,5-bisfosfato carboxilasa oxigenasa. Cataliza dos procesos opuestos: 1. La fijación del CO2 (carboxilasa). 2. La fotorrespiración, en la que actúa como oxigenasa del mismo sustrato. • Es un enzima compuesto de 8 subunidades. • Sólo fija 3 moléculas de CO2 por segundo (muy lenta comparada con otras enzimas). • Por esto es tan abundante en los cloroplastos y puede alcanzar el 15% de sus proteínas, y de hecho, es la proteína más abundante en la biosfera. Miguel A. Castro R.
  • 36. Balance energético Para formar una molécula de glucosa (6C) se necesitan fijar 6 CO2 y gastar 18 ATP y 12 NADPH (formados previamente en la fase luminosa) Miguel A. Castro R.
  • 37. RuBP: Ribulosa 1-5 bifosfato GAP: gliceraldehido-3-fosfato Miguel A. Castro R.
  • 38. Fotorrespiración • Es la actuación de la Rubisco como oxigenasa. • Se produce cuando la [CO2] es baja y la de [O2] alta. • Produce la rotura de la ribulosa (por oxigenación) en dos moléculas de 2 y 3 carbonos. • Finalmente se desprende CO2 • Este proceso ocurre durante el día, captura O2 y desprende CO2 , pero no hay fosforilación oxidativa • Es un proceso donde la energía se pierde, y no se produce ni ATP ni NADH • En la fotorrespiración, después de varios pasos que implican a los cloroplastos, peroxisomas y mitocondrias, hay liberación de CO2 y la formación de algunos aminoácidos Miguel A. Castro R.
  • 40. Las condiciones que conducen a la fotorrespiración son bastante comunes. El CO2 no siempre se encuentra disponible para las células fotosintéticas de la planta. Entra en la hoja por los estomas, que se abren y se cierran, dependiendo, entre otros factores de la cantidad de agua. Cuando la planta está sometida a unas condiciones calurosas y secas, debe cerrar sus estomas para evitar la pérdida de agua. Esto provoca también una disminución del CO2 y permite que el oxígeno producido en la fotosíntesis se acumule. También, cuando las plantas crecen muy juntas y el aire está muy calmado, el intercambio de gases entre el aire que rodea la hoja y la atmósfera global puede ser muy reducido. En estas condiciones, el aire cercano a las hojas de la planta activa tendrá concentraciones de CO2 demasiado pequeñas para sus actividades fotosintéticas. Incluso si los estomas están abiertos, el gradiente de concentración entre el exterior de la hoja y el interior será tan poco importante, que muy poco CO2 se podrá difundir hacia la hoja. La combinación de concentraciones bajas de CO2 y altas concentraciones de oxígeno conduce a la fotorrespiración. Miguel A. Castro R.
  • 41. Las plantas C4 presentan una anatomía foliar peculiar, conocida como anatomía de tipo Kranz o en corona. En el corte transversal de estas hojas se observan dos tipos de células fotosintéticas: • unas grandes, que rodean a los haces conductores (a modo de “corona”) formando una vaina • Otras que ocupan el mesófilo, menores y dispuestas por lo general más o menos radialmente alrededor de la vaina. Las plantas C4 Miguel A. Castro R.
  • 42. Vía C4 1. Es un proceso de fijación del CO2 atmosférico, captado en las células del mesófilo, pero en vez de ir al ciclo de Calvin, el CO2 reacciona con el PEP (Fosfoenolpiruvato). 2. El producto final entre el PEP y el CO2 es el ácido oxalacético, que luego se convierte en malato. 3. El malato es llevado a las células de la vaina, en donde es descarboxilado, produciendo el CO2 necesario para el ciclo de Calvin, además de ácido pirúvico. 4. Este último es enviado nuevamente al mesófilo en donde es transformado por medio de ATP en fosfoenolpiruvato (PEP), para quedar nuevamente disponible para el ciclo. Miguel A. Castro R.
  • 43. • Las ventajas radican en el hecho de que al tener la Rubisco situada en las células de la vaina, se le impide reaccionar con O2 en situaciones en las cuales la concentración de CO2 sea muy baja, por lo cual el CO2 perdido a través de la fotorrespiración se reduce considerablemente. • Incluso las moléculas de CO2 expulsadas por la fotorrespiración son reutilizadas a través del PEP, que las captura en el mesófilo para ingresar en el ciclo de Calvin. • Las plantas que usan esta vía para la fijación del carbono son denominadas C4, entre las cuales se distinguen el maíz, la caña de azúcar, la invasora Cynodon dactylon (Bermuda grass), el sorgo y el amaranto. • La fijación de CO2 por este sistema tiene un mayor coste energético que en las plantas de vía C3, pero se compensa por la casí nula fotorrespiración que presentan. • Son especialmente eficientes en condiciones de altas temperaturas y baja humedad relativa (climas tropicales y sutropicales) Ventajas de las Plantas C4 Miguel A. Castro R.
  • 44. El Metabolismo Ácido de las Crassulaceae (CAM) es un tipo de metabolismo que se da en plantas y que se descubrió en la familia de las Crassulaceae. El nombre de metabolismo ácido hace referencia a la acumulación de ácidos orgánicos durante la noche por las plantas que poseen este mecanismo de fijación de carbono. Esta vía metabólica es semejante a la vía C4, sin embargo en la vía CAM la separación de las dos carboxilaciones no es espacial, como ocurre en las plantas C4, sino temporal. Plantas CAM Miguel A. Castro R.
  • 45. • Las plantas CAM tienen dos carboxilaciones separadas temporalmente: • La primera se da en la noche cuando tienen los estomas abiertos. El CO2 atmosférico se incorpora al fosfoenolpiruvato (PEP) que se transforma en oxalacetato y este en malato, que se almacena durante la noche. NOCHE • Con la luz, los estomas se cierran (pérdida de agua) impidiendo la adquisición de CO2. • El ácido málico sale de la vacuola y se descarboxila liberando el CO2, que va al ciclo de Calvin y ácido pirúvico el cual es devuelto al ciclo produciendo nuevamente PEP. DIA Miguel A. Castro R.
  • 46. • La concentración elevada en el interior de CO2 evita la fotorrespiración. • Las plantas CAM suelen ser crasas y relegadas a ambientes secos. • Su rendimiento total fotosintético es bajo (ya que la absorción de dióxido de carbono está limitado a la cantidad de ácido málico que se puede almacenar en la vacuola) por lo que son malas competidoras con las plantas C3 o C4. • El mecanismo CAM le permite a la planta maximizar la eficiencia en el uso de agua, por lo tanto, las CAM tienen una ventaja competitiva en ambientes con poco agua. Ventajas de las Plantas CAM Miguel A. Castro R.
  • 52. Factores que influyen en la fotosíntesis Concentración de CO2 ambiental Concentración de O2 ambiental Humedad Temperatura Intensidad luminosa Tipo de luz Miguel A. Castro R.
  • 53. 1. Concentración de CO2 ambiental Por encima de un determinado valor (el óptimo), el rendimiento fotosintético se estabiliza. La concentración de CO2 en la atmósfera no es optima para la fotosíntesis, en la practica agrícola se utiliza una adición artificial de CO2 gaseoso, bajo condiciones de iluminación constante, para aumentar la tasa fotosintética y con esta el rendimiento en la producción de materias biológicas. Miguel A. Castro R.
  • 54. Concentración de O2 ambiental 0.5% de O2 20% de O2 AsimilaciónCO2 Intensidad de luz En similares situaciones de intensidad luminosa, las plantas sometidas a una menor concentración de O2 tienen un rendimiento fotosintético más alto (evitan la fotorrespiración) Miguel A. Castro R.
  • 55. HumedadAsimilaciónCO2 Humedad Si disminuye la humedad, se cierran los estomas, no entra CO2 y disminuye el rendimento. Si aumenta la humedad, se abren los estomas y aumenta el rendimiento Humedad Apertura estomas Entrada de CO2 Rendimiento fotosintético Miguel A. Castro R.
  • 56. Temperatura El rendimiento óptimo depende del tipo de planta La temperatura optima coincide con el optimo de los enzimas encargados de la fotosíntesis. A partir de ese valor, el rendimiento disminuye AsimilaciónCO2 Temperatura Miguel A. Castro R.
  • 57. Intensidad luminosa En general, a mayor intensidad luminosa, mayor actividad fotosintética. Pero, cada especie está adaptada a unos niveles de iluminación óptima, de intensidad variable. Si se superan esos niveles, se llega a la saturación lumínica e, incluso, podrían deteriorarse los pigmentos fotosintéticos. El exceso de luz puede provocar fotoinhibición Miguel A. Castro R.
  • 58. Tipo de luz • La clorofila a y la clorofila b absorben energía lumínica en la región azul y roja del espectro • Los carotenos y xantofilas, en la azul • Las ficocianinas, en la naranja • Las ficoeritrinas, en la verde. 500 700600400 0 20 40 60 80 100 120 Longitud de onda (nm) Tasarelativadefotosíntesis Miguel A. Castro R.
  • 59. 1. Proceso exclusivo de bacterias. 2. No se genera oxígeno 3. Las bacterias no poseen cloroplastos, realizan la fotosíntesis en los mesosomas 4. Solo tienen un fotosistema. 5. El transporte de electrones es cíclico. 6. Los pigmentos fotosintéticos son bacterioclorofila y carotenoides. 7. Solo se produce ATP. 8. El poder reductor cuando es necesario se obtiene por un transporte inverso de electrones (consumo de energía) y es en forma de NADH, no de NADPH 9. El dador de electrones no es H2O sino otros compuestos inorgánicos reducidos, por lo que no liberan O2 Fotosíntesis anoxigénica Membranas lamelares de bacterias púrpura halófilas Miguel A. Castro R.
  • 60. Fotofosforilación cíclica durante la fotosíntesis anoxigénica Miguel A. Castro R.
  • 61. Producción de O2 Fuente de H Fuente de C Clasificación Algas oxigénica H2O CO2 Fotoautótrofos Cianobacterias oxigénica H2O CO2 Fotoautótrofos Bacterias verdes del S Chlorobiaceae anoxigénica H2, H2S, S2O3 2- CO2, acetato, butirato Principalmente fotoautótrofos Bacterias púrpura del S Chromatiaceae anoxigénica H2, H2S, S2O3 2- CO2, acetato, butirato Principalmente fotoautótrofos Bacterias púrpura no del S anoxigénica H2, compuestos orgánicos CO2, compuestos orgánicos Principalmente fotoorganotrofos, pueden ser quimioorganotrofos en oscuridad y sin O2 Bacterias verdes deslizantes Chloroflexaceae anoxigénica H2, compuestos orgánicos CO2, compuestos orgánicos Principalmente fotoorganotrofos, pueden ser quimioorganotrofos en oscuridad y sin O2 Heliobacterias Compuestos orgánicos Compuestos orgánicos Fotoorganotrofos Microorganismos Fotosintéticos Miguel A. Castro R.
  • 62. En la fotosíntesis, además de glucosa, se elaboran otros compuestos, (aminoácidos y nucleótidos), que contienen grupos amino (-NH) y tiol (-SH). Tanto en el agua y en el suelo, el N y el S se encuentran en forma de compuestos oxidados (NO- 3 y SO= 4), que son absorbidos por las plantas y reducidos para ser incorporados a la materia orgánica. En ambos casos, el proceso es lineal (no cíclico) y se sirve del NADP.H2 generado en la fase luminosa de la fotosíntesis. FIJACIÓN FOTOSINTÉTICA DEL N Y S La reducción fotosintética del N comprende dos etapas catalizadas por enzimas específicas: 1) La transformación de nitratos en nitritos y la de éstos en amoníaco. 2) El amoníaco se combina con el ác. alfa-cetoglutárico para formar glutámico. La reducción fotosintética del S también es un proceso lineal en el que los sulfatos se reducen a sulfitos y éstos a H2S. Requiere NADP.H2 y ATP. El H2S se puede incorporar como grupo tiol (-HS) a la cisteína. Miguel A. Castro R.
  • 63. Los nitratos son inicialmente reducidos a nitritos y después a amoníaco, a expensas del poder reductor del NADPH obtenido en la fase luminosa. A continuación, el amoníaco es incorporado al esqueleto carbonado del ácido α-cetoglutárico para dar ácido glutámico en una reacción que consume ATP procedente también de la fase luminosa Miguel A. Castro R.
  • 64. Importancia biológica de la fotosíntesis 1. Conversión de materia inorgánica en orgánica. 2. Base de las cadenas tróficas. 3. Conversión de la energía luminosa en energía química 4. Fijación de CO2 (actualmente combate el incremento de efecto invernadero) 5. Proporciona O2 y en su momento fue el proceso responsable del cambio de la atmósfera primitiva anaerobia y reductora a la actual. 6. De la fotosíntesis depende también la energía almacenada en combustibles fósiles como carbón, petróleo y gas natural. 7. El equilibrio necesario entre seres autótrofos y heterótrofos no sería posible sin la fotosíntesis. Miguel A. Castro R.