SlideShare una empresa de Scribd logo
1 de 161
Descargar para leer sin conexión
©
2012 Modmex
Internet:https://sites.google.com/site/rmodmex/
Email: agh2kmx@gmail.com
Libro diseñado para distribución electrónica
México ,D.F 2012
ISBN: 978-607-00-6683-2
© Breve introducción al hardware: Quedan prohibidos, dentro de los límites establecidos en la ley y bajo
los apercibimientos legalmente previstos, la reproducción total o parcial de esta obra por cualquier medio
o procedimiento, así como el alquiler o cualquier otra forma de cesión de la obra sin la autorización previa y
por escrito de los titulares del copyright. Diríjase, http://www.modmex.com.mx, (modmex@modmex.com)
Nota Importante.
® En el libro se ha distinguido algunas marca e imágenes comerciales de los términos descriptivos,
siguiendo el estilo que utiliza el fabricante, sin ninguna intención de infringir la marca o logo y solo en
beneficio del propietario de la mismas.
La información contenida en esta obra tiene un fin exclusivamente cultural, educativo y didáctico y por lo
tanto, no está previsto su aprovechamiento a nivel profesional o industrial.
Esta obra es un compendio de varias obras que cumplen los requisitos pedagógicos para la enseñanza
para todo aquel quiera aprender temas informáticos. Su publicación NO tiene fines de lucro, estrictamente
educativo, por lo que se agradece su comprensión, Gracias.
Duda y aclaraciones: editecnologicas@gmail.com
3
ALFONSO GOMEZ HERRERA
A. S. MARINA
PRÓLOGO
El objetivo de este libro es explayar, de manera sencilla, como sea posible, el
entendimiento y los principios básicos los conceptos del Hardware. En todo momento
se trato de dar un antecedente, y así determinar el desarrollo que se ha tenido de los
dispositivos más vigentes, la mejor manera de intuir nuestro presente es conociendo su
origen.
Iniciando por decirnos; ¿qué es el hardware?, podemos definirlo como; el conjunto
de los componentes que integran la parte material de una computadora, es la parte que
permite que el sistema funcione. Todos aquellos elementos físicos, tangibles, que se
pueden intercambiar de un espacio a otro, manipular, etc. Por lo contrario, el software es
el conjunto de instrucciones que dirigen a los componentes.
No es la intención profundizar en los contenidos, siendo estos muy vasto,
cualquier que fuere, es una referencia de consulta rauda e inmediata, e inicio a un estudio
más detallado y profundo por parte del lector interesado.
La obra es básicamente un compendio de trabajos realizados a sapiencia en cada
tema, reemprendiendo las parte medulares, para que el lector pueda tener un punto de
vista objetivo de; ¿qué es?, ¿para qué sirve?, y ¿cómo funciona? los elemento llamado
hardware. El tratamiento de la obra fue con la intención en su entendimiento para
personas que aun con no contar con muchos conocimientos en electrónica, electricidad o
computación, e informática; elucidar en muchos casos los fundamentos técnicos.
La primer parte, son las partes básicas del gabinete o carcasa, así como el mismo,
sabemos que el desarrollo tecnológico es muy ágil en esta área, sin embargo esta obra por
partir de lo más primordial servirá de consulta de manera constante.
Se han tocado algunos periféricos (parte 1,2) en desuso o caducos, considerando
que es importante conocerlos, siendo esta manera, la forma de percibir los periféricos
actuales, como ya se menciono.
Este libro tiene el fin de incentivar la cultura de la lectura, así como un estimulante
a la investigación, la técnica y el pesquis científico.
Se da mil gracias a toda persona que se interese, y no por leer intrínsecamente
esta obra, (se agradece) también a todos los que hacen posible, la divulgación científica,
técnica y la lectura.
Alfonso Gómez Herrera
Contenido
1.- INTRODUCCIÓN.........................................8
1.1 Hardware característico..................................8
1.2 Clasificación del Hardware.............................8
1.3 Definición........................................................9
1.4 Evolución de los Sistemas Informáticos.........9
1.4.1 Primera etapa: Sistema.Mecánico.................9
1.4.2 Segunda etapa: Sistema Electrónico..........10
1.5 Sus Generaciones..........................................10
2.- GABINETES EN PC.......................................12
2.1 Antecedentes.................................................12
2.2 Tipos..............................................................13
3.-MOTHERBOARD.......................................14
3.1 Las funciones básica del Motherboards........14
3.2 Partes.............................................................15
3.3 Tamaños.........................................................16
3.4 Conectores.....................................................17
3.5 FireWire.........................................................17
3.6 BIOS..............................................................18
3.7 CMOS............................................................18
3.8 EL POST........................................................19
3.8.1 CHIPSET.....................................................19
3.8.2 Northbridge.................................................19
3.8.3 Southbridge.................................................20
4.- CPU (Unidad Central de Proceso).................21
4.1 Antecedente..........................................................21
4.2 Aplicación del CPU.......................................21
4.3 Componenentes internos................................21
4.4 Tipos..............................................................22
4.5 Tipos de sockets o zócalos............................22
5.- LA MEMORIA.............................................25
5.1 Que son las memorias....................................25
5.2 Teoría de Funcionamiento.............................25
5.3 Jerarquía de memoria.....................................26
5.4 Clasificación de memorias.............................27
6.- BUSES..........................................................28
6.1 Función.........................................................28
6.2 Estructuras de interconexión........................29
6.3 Tipos de Buses...............................................29
6.3.1 Bus ISA 8/16..............................................29
6.3.2 Bus Micro Channel (MCA)........................30
6.3.3 Bus EISA...................................................31
6.3.4 VLB (Vesa Local Bus.).............................31
6.3.5 PCI (Peripheral Component Interconnect)........32
6.3.6 AGP (Accelerated Graphics Port)..............33
7.- ENTRADA/SALIDA (E/S).........................34
7.1 Sus funciones................................................34
7.2 Interrupciones (IRQ).....................................35
7.3 Dispositivos de entrada.................................36
2da
PARTE..........................................................38
PERIFERICOS 1
...............................................38
8.- TECLADOS...........................................39
8.1 Antecedente.............................................39
8.2 Funcionamiento.......................................40
8.3 Tipos........................................................41
9.- JOYSTICK.............................................41
9.1 Antecedentes...........................................41
9.2 Tipos........................................................42
10.- MOUSE.................................................43
10.1 Antecedentes..........................................43
10.2 Tipos o modelos de mouse...................43
10.3 Funcionamiento.....................................44
10.4 Mousepad...............................................45
11.- SCANNER..............................................46
11.1 Origen.....................................................46
11.2 tipos (tipicos para “PC”).........................47
11.3 Funcionamiento.......................................47
11.4 Características de un escáner...................49
12.- MODEM.................................................50
12.1 Historia....................................................50
12.2 tipos.........................................................51
12.3 Funcionamiento.......................................51
12.4 Velocidades (típicas)...............................52
13.-DISCOSDUROS......................................53
13.1Antecedentes............................................53
13.2 Partes principales.....................................54
13.3 Tecnología...............................................55
13.4. Funcionamiento......................................57
13.5 Grabación/lectura del HD.......................59
14.- DISCO FLEXIBLES (En desuso).......61
14.1 Historia....................................................61
14.2 Funcionamiento.......................................62
14.3 Partes	......................................................63
15.- TARJETA DE SONIDO........................64
15.1Antecedentes............................................64
15.2 Conectores de la tarjeta de sonido..........64
15.3 Funcionamiento.......................................65
16.-MONITORES.........................................66
16.1 Pantallas a T.R.C.....................................67
16.2 Pantalla LCD.........................................68
16.3 Comparativa............................................68
16.4 Funcionamiento.......................................69
16.5 Plasma.....................................................70
16.6 Pantalla LED...........................................71
17.- LECTORES OPTICOS.........................72
17.1 Funcionamiento......................................73
17.2 Discos......................................................75
17.3 CD-R	......................................................76
17.4Conexionado............................................77
18.- TARJETAVIDEO..................................78
18.1Antecedentes............................................78
18.2 Partes	.....................................................79
18.3 Funcionamiento.......................................80
18.4 Conexiones..............................................82
19.- IMPRESORAS.......................................83
19.1Antecedentes............................................83
19.2 Características.........................................84
19.3 Impresoras Matriciales............................86
19.4 impresoras de inyección..........................88
19.5.-Impresoras láser	....................................90
PERIFERICOS 2
..............................................93
20.- CINTA BACKUP (Cintas de Respaldo)........94
20.1 Antecedentes...............................................94
20.2 Tecnologías.................................................95
20.3 Funcionamiento..........................................96
21.-UNIDADES ZIP........................................98
21.1 Antecedentes..............................................98
21.2 Características de las Unidades Zip...........99
21.3 Funcionamiento........................................100
22.- SISTEMA MAGNETO OPTICO (MO)........101
22.1 Antecedentes.............................................101
22.2 Funcionamiento........................................101
22.3 Unidades Floptical...................................103
23.- MEMORIAS USB (Flash).......................104
23.1 Antecedentes de la memoria flash............104
23.2 Memorias Electrónicas.............................104
23.3 Funcionamiento........................................106
23.4 Partes de la Memoria................................107
24.- PLOTTER................................................108
24.1 Antecedentes.............................................108
24.2 Caracteríticas............................................108
24.3 Tipos.........................................................109
25.- BLUETOOTH..........................................111
25.1 Antecedentes.............................................111
25.2 Versiones...................................................112
26.- REDES......................................................114
26.1 Antecedentes.............................................115
26.2 Partes........................................................115
26.3 Características...........................................116
26.4 Topologías.................................................117
27.- ROUTER- HUB- SWITCH....................118
27.1 Antecedentes.............................................119
27.2 Características...........................................120
27.3 Conexiones a redes...................................121
27.4 El RJ45.....................................................122
28.-PANTALLAS TÁCTIL O TOUCHSCREEN....123
28.1 Antecedentes.............................................123
28.2Tecnología.................................................124
29.- LÁPIZ ÓPTICO.....................................127
29.1 Antecedentes.............................................127
30.- TABLETA DIGITALIZADORA............130
30.1 Antecedentes.............................................130
30.2Tipos..........................................................131
30.3 Partes	........................................................131
30.4 Características...........................................132
31.- PROTECTOR DE PANTALLA.............133
31.1 El efecto de un filtro.................................134
31.2 Características de los filtros......................135
32.- CÁMARA DE RED (WEBCAM)..........136
32.1 Antecedentes.............................................136
32.2 Funcionamiento........................................136
32.3 Características...........................................137
33.-DIADEMA CON MICRÓFONO............138
33.1 El Micrófono.............................................138
33.2 Antecedentes del Micrófono.....................138
33.3 Clasificación Micrófono..........................139
33.4 Características...........................................144
33.5Bocinas......................................................147
33.5.1Partes......................................................147
33.6 Características técnicas.............................150
33.7 Auriculares................................................154
34.- REGULADORES DE VOLTAJE..........156
34.1Funcionamiento.........................................156
34.2 UPS (Uninterrupted Power System).........158
BIBLIOGRAFÍA............................................160
Al parecer lo que realmente
importa es la pantalla
o por lo menos eso
parece, ya que la mayoría
esta interesada en
los resultados en pantalla,
en vez del trabajo que cuesta
llegar a ello.
Peter Norton
8
BREVE INTRODUCCION AL HARDWARE
1.- INTRODUCCIÓN
E
l Hardware: En un ordenador, computadora, o Sistema Informático, es el término en
inglés que hace indicación a cualquier componente físico, que trabaja o interactúa de
algún modo con el sistema. No sólo incluye elementos internos como el disco duro,
etc. sino que también hace referencia al cableado, circuitos, gabinete, etc. E incluso se hace
alusión a elementos externos (periféricos) la impresora, el mouse, el teclado, el monitor, etc.
El hardware evoluciona rápidamente junto con el software, algunos dispositivos des-
aparecen y otros aparecen, sin embargo la esencia desde su primera aparición en 1981
permanece.
1.1 Hardware característico.
Su chasis, gabinete o carcasa.
La placa madre, motherboard o tarjeta principal: Que contiene: CPU, (ventilador;
“cooler”), RAM, BIOS, BUSES, USB, etc.
Fuente de alimentación.
Controladores de almacenamiento: IDE, SATA, SCSI.
Controlador de video.
Controladores del bus de la computadora (paralelo, serial, USB, FireWire), para
conectarla a periféricos.
Almacenamiento: disco duro, CD-ROM, unidades ZIP, driver u otros.
Tarjeta de sonido.
Redes: módem y tarjeta de red.
Etc.
Hardware externo: (llamado periféricos)
Teclado, Mouse, TrackBall, Joystick, Gamepad, Escáner, webcam, Micrófono, Bocina,
Monitor (LCD, o CRT), Impresora, etc.
1.2 Clasificación del Hardware.
Clasificación por la ubicación del hardware:
Periféricos (componentes externos): dispositivos externos a la computadora.
Componentes internos: dispositivos que son internos al gabinete.
Puertos: conectan los periféricos con los componentes internos
Clasificación por el flujo de información del hardware
Periféricos de salida: monitor, impresora, etc.
Periféricos de entrada: teclado, mouse, etc.
Periféricos/dispositivos de almacenamiento: disco duro, memorias, etc.
Periféricos de comunicación: módem, puertos, etc.
Dispositivos de procesamiento: CPU, microprocesador, placa madre, etc.
9
ALFONSO GOMEZ HERRERA
1.3 Definición:
	 La Real Academia Española define al hardware como el conjunto de los
componentes que conforman la parte material (física) de una computadora, a diferencia del
software que refiere a los componentes lógicos (intangibles). Sin embargo, el concepto suele
ser entendido de manera más amplia y se utiliza para denominar a todos los componentes
físicos de una tecnología.
1.4 Evolución de los Sistemas Informáticos:
1.4.1 Primera etapa: Sistema Mecánico.
Los primeros pasos mecánicos para la realización de cálculos se remontan del año 30,000
A.C. con la utilización de rayas en huesos o palos. Fue mejorado con la creación del Ábaco.
La idea de crear máquinas para resolver problemas matemáticos data hasta el siglo 17,
cuando los matemáticos de la época diseñaban e implementaban calculadoras capaces de
realizar las cuatro funciones elementales. Matemáticos como Wilhelm Schickard, Blaise
Pascal y Gottfried Leibnitz.
El inicio de esta época está marcado por la creación del alemán Wilhelm Schickard,
profesor de la Universidad de Tübingen y astrónomo, quien diseñó la primera calculadora
que se encargaba de sumar y restar en 1623. El modelo fue destruido en un incendio, fue
considerado como la primera calculadora mecánica.
El primer dispositivo de cómputo de propósito múltiple, que podía realizar más de una
tarea predefinida, fue la Máquina diferencial de Charles Babbage, cuyo desarrollo comenzó
en 1822 y nunca fue completado por Babbage, pero que su hijo, Henry Prevost Babbage,
continuó de manera intermitente de 1880 a 1910.
Una máquina con características más ambiciosas fue la Máquina Analítica, que fuera
concebida en 1834 y terminada de diseñar en 1842 y tuviera el mismo término que la
máquina diferencial. Charles Babbage era un hombre que estaba adelantado a su época.
Muchos historiadores piensan que la mayor razón por la cual nunca pudo completar
estos proyectos fue el hecho de que la tecnología del momento no era lo suficientemente
confiable.
Sin menoscabo de que ninguna de sus máquinas llegase a ser completada, Babbage y sus
colegas, especialmente Ada Augusta, Condesa de Lovelace, reconoció varias técnicas de
programación, incluyendo los ciclos condicionales, repetidos y variables de indización.
Una máquina inspirada por el diseño de Babbage fue la creada por George Scheutz, quien
después de estudiar los trabajos de Babbage sobre la Máquina diferencial comenzó a
trabajar en 1833 junto con su hijo Edvard Scheutz en una versión reducida. Ya en1853
con la construcción de una máquina que podía procesar números de 15 dígitos y calcular
diferencias de cuarto nivel. Esta máquina ganó una medalla de oro en la Exhibición de
París en 1855, y luego fue vendida al observatorio Dudley en Albany, Nueva York, donde
fue utilizado para calcular la órbita de Marte.
10
BREVE INTRODUCCION AL HARDWARE
1.4.2 Segunda etapa: Sistema Electrónico.
Fue1932  Vannevar Bush construyo en el Instituto Tecnológico de Massachussets (MIT)
una calculadora electromecánica conocida como el analizador diferencial, pero era de
propósito específico y no tenía capacidad de programación.
Igualmente en 1944 se construyo en la Universidad de Harvard la computadora MARK
I, diseñada por un equipo encabezado por Howard H. Aiken.  No obstante no era de
propósito general y su funcionamiento estaba basado en relevadores.
Un equipo dirigido por los Doctores John Mauchly y John Ecker de la Universidad
de Pennsylvania, termino en 1947 la ENIAC (Electronic Numerical Integrator And
Computer) que puede ser considerada como la primera computadora digital, electrónica
de la historia.
Esta máquina era enorme media 10 x 16 metros, ocupaba el sótano de una Universidad,
pesaba 30 tonelada, tenia 17,468 tubos  de vació y 60000 relevadores, consumía 140
Kw y requería un sistema de aire acondicionado industrial.  Pero era capaz de efectuar
alrededor de 5000 sumas o 2800 multiplicaciones en un segundo, calculo el valor de la
constate Π. Como entre otras cosas iba a reemplazar a un grupo de matemáticas que hacia
cómputos numéricos para una oficina especializada, recibió el nombre de “computadora”.
El proyecto concluyo 2 años después cuando se integro al equipo John Von Neuman
(1903-1957), quien es considerado el padre de las computadoras.
El nuevo equipo diseño la EDVAC (Electronic Discrete Variable Automatic Computer),
tenía cerca de 40,000 bulbos y usaban un tipo de memoria basado en tubos de mercurio
donde circulaban señales eléctricas sujetas a retardos.
	
La nueva idea fundamental resulta muy sencilla, pero de vital importancia: permitir que
en la memoria coexistan datos con instrucciones, para que entonces la computadora
pueda ser programada de manera “suave” y no por medio de alambres que eléctricamente
interconectaban varias secciones de control, como la ENIAC.
1.5 Sus Generaciones.
En la evolución de las máquinas por su tratamiento automático de la información marcan
la diferencia entre las denominadas generaciones. Las generaciones habidas hasta la
actualidad han sido:
11
ALFONSO GOMEZ HERRERA
1ª generación: (1946-1955) Computadoras basados en válvula1
de vacío que se
	 programaron en lenguaje máquina
2ª generación: (1953-1964) Computadoras de transistores2
. Evolucionan los modos de
	 direccionamiento. Genera los lenguajes de alto nivel.
3ª generación: (1964-1974) Computadoras basados en circuitos integrados3
y con la
	 posibilidad de trabajar en Tiempo compartido.
4ª generación: (1974- ) Computadoras Que integran toda la CPU en un solo circuito
	 integrado (Microprocesadores). Comienzan a proliferar las redes de
	 computadoras.
	 1
La primer válvulas eléctricas, fue el diodo de John
Ambrose Fleming descubrió en 1904 que al colocar dentro de una
bombilla incandescente un electrodo algo alejado del filamento se
establecía una corriente entre el filamento y ese electrodo, esto fue
basándose a los estudio de Edison.
Dos años después de la invención del diodo de vacío, el físico
estadounidense Lee De Forest le agregó una rejilla para regular entre
ánodo y cátodo la tensión, inventando el tríodo, así continuando sus
avances.
	2
Los transistores, desarrollados en 1947 por los físicos W.
Shockley, J. Bardeen y W. Brattain – potenciarían el desarrollo de los
sistemas infomáticos. Y todo a bajos voltajes, sin necesidad de disipar
energía (como era el caso del filamento), en dimensiones reducidas y
sin partes móviles o incandescentes que pudieran romperse.
	 3
El creador del primer circuito integrado, fue el ingeniero
electrónico estadounidense Jack Kilby, en el año 1959, pocos
meses después de ser contratado por Texas Instruments. Se trataba
de un dispositivo que integraba seis transistores sobre una misma
base semiconductora (se le llamada “chip”; brizna) para formar un
oscilador de rotación de fase. A los 77 años, en el año 2000, Kilby
fue galardonado con el Premio Nobel de Física por su contribución al
desarrollo de la tecnología de la información.
12
BREVE INTRODUCCION AL HARDWARE
2.- GABINETES EN PC
La apariencia de la computadora es una caja metálica con diversos botones e ndicadores:
2.1 Antecedentes:
Para entender la estructura actual de los gabinetes, torres, cajas, chasis o carcasa; es la
estructura que contiene todas las partes de nuestro sistema informático, es necesario
recordar primeramente las primera computadoras como estructuras gigantes, o sea las
macro computadoras, fue en 1972 que la empresa Intel fabrico el primer microprocesador
siendo el 4004, dando pie a las primeras computadoras para el hogar, las primeras
minicomputadoras (el concepto de PC de IBM fue hasta 1981), estas maquinas eran
sencillas, comprendían únicamente el teclado, dentro del contenía todos los circuitos, el
monitor era nuestra televisión. (Casos como la Commodore, Tandy, etc., exceptoApple que
vendía su propio monitor). En la tercera generación de la evolución, con la intervención
de la Amiga 1000 en 1985, y antes, la famosa caja “gris” de IBM, se inauguraron las
cajas de escritorio (Desktop). Este nuevo tipo de diseño duraría mucho tiempo ya que
se encontraría en la mayoría de los equipos hasta 1992-1993. Se presenta como una caja
separada del teclado por un cable así como del monitor. Concebida para reposar sobre el
escritorio y colocar la pantalla sobre ella.
La siguiente evolución, se hizo ha mediado de los años 90s; se trató de colocar
la caja en modo vertical: la se llamo torre. Esto permitió aumentar el tamaño interno
considerablemente y colocar los dispositivos de lectura perpendiculares a la carcasa
aprovechando más el espacio para su colocación. Alrededor de los años 1990 las cajas
solían tener toda una forma rectangular y normalmente de color beige. En 1998 Apple
apostó por gabinetes con diseños y colores más estéticos incluso llegando a reducir
su tamaño. Desde entonces las compañías fabrican carcasas que tienen una vistas más
agradables. Desde 2007 las cajas más vendidas eran de un color negro o gris metalizado.
En la actualidad con el advenimiento del movimiento llamado “Modding” los gabinetes
son de todo tipo y características.
13
ALFONSO GOMEZ HERRERA
Slim-case
Desktop
Mini-Tower
Medium-tower
Server
Full-Tower
2.2 Tipos.
Es muy similar al Desktop, pero este, es de menores dimensiones
para ocupar menos espacio en el escritorio, normalmente es de 2 a 5
bahías de 3½ y una a 2 de 5¼. Típicamente se utiliza para terminal
en una red. (A)
Quizás es el gabinete más popular, tiene una disposición horizontal y
buen espacio para una expansión, normalmente contiene 2 a 3 bahías
de 3 ½ y 2 a 5 de5¼ (B)
Es el gabinete de gran popularidad, es económico, tiene perfil
vertical. El monitor se coloca a un lado, es bastante bueno para una
posible expansión. (C)
Es de media popularidad buena combinación de tamaño y precio
tiene un arreglo comúnmente de 3 bahías de 5¼ y 3 a 4 de 3 ½,
gran libertada de expansión con Bahías libres (D)
Son utilizados en aplicaciones donde la expansión es un factor
prioritario. Como plataforma multimedia. Tiene arreglo como 7 a 9
bahías de 5¼ y una de 3 ½ dado su tamaño va colocado en el piso
(E)
Es el gabinete más grande con arreglos de 10 o más bahías de 5¼,
Como su nombre lo indica sirve como Servidor para una red tipo Lan
(F)
Nota: El tamaño del gabinete va en proporción a la potencia. De las fuentes
de alimentación, pensando en una posible expansión y consumo de energía
de los circuitos nuevos anexados. Los factores ven de 150 Vatios a 600
Vatios en Server.
14
BREVE INTRODUCCION AL HARDWARE
3.-MOTHERBOARD
La placa base, también conocida como placa madre o tarjeta madre (inglés; motherboard
o mainboard) es un complejo de circuito impreso (PCB)*, que es la parte central
principal de la computadora. Es una plataforma que ofrece conexiones eléctricas a
través del cual otros componentes se comunican, y también alberga la unidad de
procesamiento central (CPU), generalmente referidas como el cerebro de la computadora
Antes de la invención de los microprocesadores, las computadoras se construyeron
en mainframes con componentes que estaban conectados por un plano posterior
que tenía ranuras innumerables para la conexión de cables. En los diseños antiguos,
los cables son necesarios para conectar los pines del conector de tarjeta pero
pronto se convirtió en una cosa del pasado con la invención de los PCB. La CPU,
la memoria y otros periféricos se alojaron todos en esta placa de circuito impreso.
Circuito alambrado Circuito Impreso
3.1 Las funciones básica del Motherboards
1.	Distribuir alimentación a los circuitos.
2.	Proveer los datos por los bus de información para las señales de control e información.
3.	Ofrece varios sockets o puertos para conectar componentes externos.
4.	Proveen puertos de expansión para añadir circuitos.
*Printed circuit board: placa de circuito impreso, es utilizada para apoyar mecánicamente y conectar
eléctricamente componentes electrónicos usando vías conductoras, pistas de señales grabadas de
cobre, hojas laminadas sobre un no conductor. También se conoce como placa de cableado impreso
(PWB).
El ingeniero austriaco Paul Eisler inventó el circuito impreso mientras trabajaba en Inglaterra
alrededor de 1936. Alrededor de 1943, los EE.UU. comenzó a usar la tecnología en gran escala para
hacer espoletas de proximidad para su uso en la Segunda Guerra Mundial. Después de la guerra, en
1948, los EE.UU. publicó la invención para el uso comercial. Circuitos impresos no se convirtió en un
lugar común en la electrónica de consumo hasta mediados de 1950.
15
ALFONSO GOMEZ HERRERA
3.2 Partes
• BIOS (Basic Input Output System) Es un programa que contiene, un conjunto de
instrucciones básicas que permiten el arranque del Motherboard. 
• CHIPSET- Es el conjunto del Northbridge y del Southbridge los cuales ayudan al CPU
en su desempeño.
• CPU SOCKET- Es el lugar en donde se conecta el Procesador.
• MEMORY SLOT- Es el lugar donde se conectan las memorias.
• PCI PORTS-Peripheral Component Interconnect. Puerto
• AGP PORT- Puerto exclusivo para tarjetas de video.
• Conectores IDE o ATA, son los puertos que me permiten conectar discos duros y
ópticos mediante un cable cinta.
• FlOPPY (Desuso)
• AMR-(Audio Modem Riser) está integrado en algunos Motherboards.
• POWER SUPPLY CONNECTOR, Donde conectamos la corriente que viene del Power
Supply. 
• BATERÍA- Se encarga de proveer carga para mantener información vital del BIOS.
• CONECTORES PS2-IBM Personal System 2- conectores del Mouse y del teclado.
• PARALELL PORT 25 PINS – Puerto de conexión paralelo de 25 pines.  Conectamos
Impresoras, Scanners, etc.
• PUERTO SERIAL 9 PINE- Conectamos Impresoras y otros equipos.
• PUERTO VGA 15 PIN- Video Graphic Adapter, salida para el monitor.
• USB CONNECTORS-Universal Serial Bus, conectamos todo tipo de periféricos.
• ETHERNET CONNECTOR- Conectamos el plug RJ-45 para conectarnos a switches,
hubs, routers e impresoras.
• CONECTORES AUDIO OUT, AUDIO IN, IN/OUT DE 1/8- salidas y entradas para
equipos de audio.
• FIREWIRE IEEE 1394-conector rápido para video y otros.
16
BREVE INTRODUCCION AL HARDWARE
3.3 Tamaños
•	 XT (8.5 × 11” or 216 × 279 mm)
•	 AT (12 × 11”–13” o 305 × 279–330 mm)
•	 Baby-AT (8.5” × 10”–13” o 216 mm × 254-330 mm)
•	 ATX (Intel 1996; 12” × 9.6” o 305 mm × 244 mm)
•	 EATX (12” × 13” o 305mm × 330 mm)
•	 Mini-ATX (11.2” × 8.2” o 284 mm × 208 mm)
•	 microATX (1996; 9.6” × 9.6” o 244 mm × 244 mm)
•	 LPX (9” × 11”–13” o 229 mm × 279–330 mm)
•	 Mini-LPX (8”–9” × 10”–11” o 203–229 mm × 254–279 mm)
•	 NLX (Intel 1999; 8”–9” × 10”-13.6” o 203–229 mm × 254–345 mm)
•	 FlexATX (Intel 1999; 9.6” × 9.6” o 244 × 244 mm max.)
•	 Mini-ITX (VIA Technologies 2003; 6.7” × 6.7” o 170 mm × 170 mm max.; 100W max.)
•	 Nano-ITX (VIA Technologies 2004; 120 mm × 120 mm max.)
•	 BTX (Intel 2004; 12.8” × 10.5” o 325 mm × 267 mm max.)
•	 MicroBTX (Intel 2004; 10.4” × 10.5” o 264 mm × 267 mm max.)
•	 PicoBTX (Intel 2004; 8.0” × 10.5” o 203 mm × 267 mm max.)
•	 WTX (Intel 1998; 14” × 16.75” o 355.6 mm × 425.4 mm)
•	 ETX y PC/104, utilizados en sistemas especiales.
17
ALFONSO GOMEZ HERRERA
3.4 Conectores
1) Conectores PS/2 para mouse y teclado: incorporan un icono para distinguir su uso.
2) Puerto paralelo: utilizado por la impresora. Actualmente reemplazado por USB.
3) Conectores de sonido: las tarjetas madre modernas incluyen una placa de sonido con
todas sus conexiones.
4) Puerto serie: utilizado para mouse y conexiones de baja velocidad entre PCS.
5) Puerto USB: puerto de alta velocidad empleado por muchos dispositivos externos,
como los escáneres o las cámaras digitales.
6) Puerto FireWire*: puerto de alta velocidad empleado por muchos dispositivos
externos. No todas las tarjetas madre cuentan con una conexión de este tipo.
7) Red: generalmente las tarjetas madre de última generación incorporan una placa de red
y la conexión correspondiente.
3.5 FireWire
AppleinventóelFireWireamediadosdelos90S
yloconvirtióenelestándarmultiplataforma
IEEE 1394, siendo el primer fabricante de computadoras que incluyó FireWire en toda
sus de productos. FireWire es una tecnología para la entrada/salida de datos en serie a
alta velocidad y la conexión de dispositivos digitales con un ancho de banda 30 veces
superior al conocido estándar de periféricos USB 1.1, el FireWiere 400 se ha convertido en
el estándar más respetado para la transferencia de datos a alta velocidad. Ahora Apple ha
duplicado la velocidad de transferencia con su implementación del estándar IEEE 1394b
FireWire 800. Se ha convertido en la interfaz preferida de los sectores de audio y vídeo
digital, reúne numerosas ventajas, entre las que se encuentran la elevada velocidad, la
flexibilidad de la conexión y la capacidad de conectar un máximo de 63 dispositivos.
18
BREVE INTRODUCCION AL HARDWARE
3.6 BIOS
El acrónimo BIOS (Basic Input/Output System) fue inventado por Gary Kildall el creador
del sistema operativo CP/M en 1975, siendo el nombre de un archivo del sistema. Las
máquinas con CP/M usualmente tenían una ROM muy simple que hacía que la unidad de
diskette leyera datos desde su primera posición de memoria donde se encontraba la primera
instrucción del archivo BIOS que se encargaba de configurar el sistema o programa.
La BIOS (Sistema básico de entrada/salida) es una memoria ROM, EPROM o FLASH-
RAM la cual contiene las rutinas de más bajo nivel que hace posible que la computadora
pueda arrancar, controlando el teclado, el disco y la disquetera permite pasar el control al
sistema operativo.
 
Además, la BIOS se afirma en otra
memoria, la CMOS, que almacena todos
los datos propios de la configuración
de la computadora, como pueden ser
los discos rígidos instalados, número
de cabezas, cilindros, número y tipo
de disqueteras, la fecha, hora, etc., .
así como otros parámetros necesarios
para el correcto funcionamiento de la
computadora.
 
Esta memoria está siendo alimentada
constantemente por un acumulador
(pila), de manera que, una vez apagada la
computadora no se pierdan todos esos datos y parámetros previamente establecidos que la
computadora necesita para funcionar y poder iniciar.
Actualmente todas las placas base suelen venir con una pila tipo “moneda”, la cual tiene
una duración de unos 4 ó 5 años aproximadamente, y es muy fácil de reemplazar.Antes, las
placas base la traían un soldada a la misma, en realidad eran tres pilas en serie embutidas
en un plástico cobertor. Esto dificultaba muchísimo el cambio para usuarios inexpertos,
además de otros problemas como que la pila tuviera pérdidas y se sulfataran junto con la
placa.
Existen muchos fabricantes de BIOS, pero el mercado está dominado prácticamente por:
Award, AMI y Phoenix, y lo más seguro es que nuestro computadora tenga una BIOS de
uno de estos fabricantes
3.7 CMOS
LaCMOS(ComplementaryMetalOxideSemiconductor
– Semiconductor Complementario de Oxido de Metal)
es una porción de 64 bytes encargada de almacenar
los valores y ajustes de la BIOS (ajustes de usuario).
Podemos almacenar datos como; la fecha y la hora, los
parámetros del disco duro, la secuencia de arranque o la
configuración de los puertos, etc.
19
ALFONSO GOMEZ HERRERA
 
La BIOS es una memoria no volátil (ROM) y que sus datos están guardados y son
inalterables, en cambio, la CMOS es una memoria de tipo RAM y los datos que se guardan
se pueden alterar pero también se borrarán en caso de existir algún corte de energía. Para
prevenir que se de esta situación, es decir, que se borren los datos definidos por el usuario,
se hace uso de una pila que alimentará esta memoria siempre que nuestra PC no esté en
funcionamiento.
Para poder entar al Setup del BIOS, generalmente suele ser la tecla delete, pero varía
según el fabricante de la misma, pudiendo ser la tecla Esc, F1, F2, Alt+Esc, Alt +F1, etc.
pero lo normal es que también nos aparezca un mensaje que nos avise de qué tecla es la
que nos permitirá entrar al menú mencionado.
3.8 EL POST
El POST es el acrónimo en inglés de Power On Self Test (Auto prueba de encendido). Es
un proceso de verificación e inicialización de los componentes de entrada y salida en un
sistema de cómputo que se encarga de configurar y diagnosticar el estado del hardware.
Existen 3 métodos de Post. 1.- Pitidos al iniciar
			 2.-Expedicion de código en pantalla
			 3.-Leyenda en pantalla.
3.8.1 CHIPSET
Es el enlace principal del CPU con todo el sistema. Es el conjunto de chips encargados de
controlar las funciones de la placa base, así como de interconectar los demás elementos
de la misma.  Hay varios fabricantes de chipset, siendo los principales INTEL, VIA y
SiS.  También NVidia.
Los principales elementos del chipset son:
3.8.2 Northbridge
Aparecido junto con las placasATX (las placasAT carecían de este chip), debe su nombre a
la colocación inicial del mismo, en la parte norte (superior) de la placa base. Es el chip más
importante, encargado de controlar y comunicar el microprocesador, la comunicación con
la tarjeta gráfica AGP y la memoria RAM, estando a su vez conectado con el SouthBridge.
AMD ha desarrollado en sus procesadores una función que controla la memoria
directamente desde el éste, descargando de este trabajo al NorthBridge y aumentando
significativamente el rendimiento de la memoria. Actualmente tienen un bus de datos de 64
bit y unas frecuencias de entre 400 Mhz y 1333 Mhz. Dado este alto rendimiento, generan
una alta temperatura, por lo que suelen tener un disipador y en muchos casos un ventilador.
20
BREVE INTRODUCCION AL HARDWARE
3.8.3 Southbridge
Es el encargado de conectar y controlar los dispositivos de Entrada/Salida, tales como los
slot PCI, teclado, mouse, discos duros, lectores de DVD, lectores de tarjetas, puertos USB,
etc. Se conecta con el microprocesador a través de NorthBridge.
VIA ha desarrollado en colaboración con AMD interfaces mejorados de transmisión de
datos entre el SouthBridge y el NorthBridge, como el HYPER TRANSPORT, que son
interfaces de alto rendimiento, de entre 200 Mhz y 1400 Mhz  (el bus PCI trabaja entre 33
Mhz y 66 Mhz), con bus DDR, lo que permite una doble tasa de transferencia de datos, es
decir, transferir datos por dos canales simultáneamente por cada ciclo de reloj, evitando
con ello el cuello de botella que se forma en este tipo de comunicaciones, y en colaboración
con INTEL el sistema V-Link, que permite la transmisión de datos entre el SouthBridge y
el NorthBridge a 1333 Mhz.
21
ALFONSO GOMEZ HERRERA
4.- CPU (Unidad Central de Proceso).
4.1 Antecedente:
El primer CPU en un solo chip (Intel 4004) fue el
inventado en noviembre de 1971, un procesador de
4-bit para una calculadora. Se procesaron los datos de
4 bits, pero sus instrucciones eran 8 bits de longitud.
En 1972, Instrumentos Texas, seguido el Intel
4004/4040 estrechamente con el TMS 4-bit 1000, que
fue el primer microprocesador para incluir suficiente
memoria RAM, y espacio para una ROM de programa,
para permitir al equipo funcionar sin múltiples chips de soporte externos. También
ofreció una innovadora función para agregar instrucciones a la medida a la CPU.
4.2 Aplicación del CPU.
Es un circuito miniatura que interpreta y ejecuta instrucciones. Este se ocupa del control y el
proceso de datos en los sistemas. Habitualmente, el CPU es un microprocesador fabricado
en un chip, un único trozo de silicio que contiene millones de componentes electrónicos
(transistores). Está formado por una unidad aritmético-lógica que realiza cálculos y
comparaciones, y toma decisiones lógicas (establece SI, NO, mediante las reglas del álgebra
de Boole); por una serie de registros donde se almacena información temporalmente, y por
una unidad de control que interpreta y ejecuta las instrucciones. Para aceptar órdenes del
usuario, acceder a los datos y presentar los resultados, la CPU se comunica a través de un
conjunto de circuitos o conexiones llamados bus.
4.3 Componenentes internos.
•	Unidad de control: Controla el funcionamiento del CPU y por tanto del sistema.
•	Unidad aritmético-lógica (ALU): Encargada de llevar a cabo las funciones de
procesamiento de datos de la computadora.
•	Registros: Proporcionan almacenamiento interno a la CPU.
•	Interconexiones CPU: Son mecanismos que proporcionan comunicación entre la
unidad de control, la ALU y los registros.
22
BREVE INTRODUCCION AL HARDWARE
4.4 Tipos
1-RISC (Reduced-Instruction-Set Computing). Los microprocesadores RISC se basan en
la idea de que la mayoría de las instrucciones para realizar procesos en el computador son
relativamente simples por lo que se minimiza el número de instrucciones y su complejidad
a la hora de diseñar el CPU. Algunos ejemplos de arquitectura RISC son el SPARC de Sun
Microsystem’s, el microprocesador Alpha diseñado por la antigua Digital, y los Motorola
88000 y PowerPC. Estos procesadores se suelen emplear en aplicaciones industriales y
profesionales por su gran rendimiento y confianza.
2.-CISC complex-instruction-set computing), al contrario, tienen una gran cantidad de
instrucciones y por tanto son muy rápidos procesando código complejo. Los CPU´s CISC
más extendidas son las de la familia 80x86 de Intel cuyo último micro es el Pentium
II. Últimamente han aparecido otras compañías como Cirix y AMD que fabrican
procesadores con el juego de instrucciones 80x86 y a un precio sensiblemente inferior
al de los microprocesadores de Intel. Además, tanto Intel con MMX como AMD con su
especificación 3D-Now! están apostando por extender el conjunto de instrucciones de la
CPU para que trabaje más eficientemente con tratamiento de imágenes y aplicaciones en
3 dimensiones.
4.5 Tipos de sockets o zócalos
Tipos de Sockets:
Lo diferentes tipos son:  (y no se conectan igual a todas las placas.)
Socket con un mecanismo ZIF (Zero insertion force), en ellas el procesador se inserta y se
retira sin necesidad de ejercer alguna presión sobre el al levantarse la palanca, que hay a
lado se liberara el microprocesador.
SlotA/Slot1/Solt2 existieron durante una generación importante de PC (1991-2000 aprox.)
reemplazando los socket donde se conectan respectivamente los primeros procesadores
Athlon de AMD, los procesadores Pentium II,III los Xenón de Intel dedicados a servidores
de red. En las placas más antiguas el micro estaba soldado de forma que no podía
actualizarse.
23
ALFONSO GOMEZ HERRERA
24
BREVE INTRODUCCION AL HARDWARE
1.-Dual in line*
2.-286*
3.-386
4.-SOCKET 6  
5.-SOCKETS 3 
6.-SOCKET2 
7.-SOCKET 1  
8.-SOCKETS 486 
9.-SOCKET NEXT/GEN 
10.-SOCKET 7  
11.-SOCKETS 5 
12.-SOCKTES 4   
13.-SOCKET 370S
14.-SOCKET 370        
15.-SLOT A
16.-SLOT 2   
17.-SLOT 1      
18.-SCOKET 8
19.-SOCKET 479
20.-SOCKET 603/604
21.-SOCKET 478   
22.-423
23.-A/462  
24.-PAC611    
25.-PACA 18 
26.-SOCKET S1 
27.-SOCKET M2 
28.-SOCKET F
29.-SOCKETT 771 
30.-940  
31.-SOCKET 754  
32.-SOCKET AM2
33.-SOCKET 939
3.-SOCKET 775 o T
Siglas:
LIF: Low Insertion Force (sin palanca)
PGA: Pin grid array
SECC: Single Edge Contract Cartridge
SEPP: Single Edge Processor Package
SPGA: Staggered Pin Grid Array
VID VRM: Voltage ID Voltage Regulator
Module (el voltaje del CPU se puede
variar en la BIOS)
VLIF: Very Low Insertion Force
ZIF: Zero Insertion Force (con palanca)
*podría venir soldado en el PCB
25
ALFONSO GOMEZ HERRERA
5.- LA MEMORIA
5.1 Que son las memorias.
La memoria es el recurso que determina el tamaño y el número de programas que pueden
ejecutarse al mismo tiempo, así como también la cantidad de datos que pueden procesarse
instantáneamente.
La memoria contiene casilleros electrónicos, donde cada casilla contiene un byte de datos
o instrucción. Cada casilla tiene una dirección separada y puede manipularse de manera
independiente. Como resultado, de la computadora puede descomponer los programas en
instrucciones para ejecución y los registros* de datos en campos para procesamiento.
Estas permiten almacenar y recuperar la información. En un sentido más amplio, puede
referirse también a sistemas externos de almacenamiento, como las unidades de disco o
de cinta, etc.
5.2 Teoría de Funcionamiento.
La memoria es circuito integrado que puede almacenar información digital. Se pueden
leer y escribir datos de tipo binario, “0” y “1”, en cantidades muy grandes, organizados
normalmente en grupos de 8bit, que llamamos bytes. Para lograr escribir y guardar datos
tipo binarios, se utilizan un transistor y un capacitor acoplados para crear una celda de
memoria, la cual puede guardar un bit de información un “0” o un “1”. El transistor
funciona como un interruptor que permite al circuito de control leer la carga del capacitor
o cambiar su estado. Un capacitor es como una pequeña cubeta que permite almacenar
electrones. Para guardar un “1” en la celda de memoria, la cubeta se llena con electrones.
Para guardar un “0”, se vacía.
El principio es un transistor y dispositivos discretos, este conjunto conforma las llamadas
compuertas, esta conforman los llamados flip flop.
*Los registros están en la parte superior en la operación, es la manera más rápida que tiene
el sistema de almacenar datos. Los registros se miden generalmente por el número de bits
que almacenan; por ejemplo, un “registro de 8 bits” o un “registro de 32 bits”.
26
BREVE INTRODUCCION AL HARDWARE
5.3 Jerarquía de memoria
	
•	Registros de procesador: Estos registros interaccionan continuamente con la CPU
(porque forman parte de ella). Los registros tienen un tiempo de acceso muy pequeño
y una capacidad mínima, normalmente igual a la palabra del procesador (1 a 8 bytes).
•	Registros intermedios: Constituyen un paso intermedio entre el procesador y la
memoria, tienen un tiempo de acceso muy breve y muy poca capacidad.
•	Memorias caché: Son memorias de pequeña capacidad. Normalmente una pequeña
fracción de la memoria principal, y pequeño tiempo de acceso. Este nivel de memoria
se coloca entre la CPU y la memoria central. Hace algunos años este nivel era exclusivo
de las computadoras grandes pero actualmente todas las computadoras lo incorporan.
Dentro de la memoria caché puede haber, a su vez, dos niveles denominados caché on
chip, memoria caché dentro del circuito integrado, y caché on board, memoria caché
en la placa de circuito impreso pero fuera del circuito integrado, evidentemente, por
razones físicas, la primera es mucho más rápida que la segunda. Existe también una
técnica, denominada Arquitectura Harvard, en cierto modo contrapuesto a la idea de
J.Von Newmann, que utiliza memorias caché separadas para código y datos. Esto tiene
algunas ventajas como se verá en este capítulo.
•	Memoria central o principal: En este nivel residen los programas y los datos.
El CPU lee y escribe datos en él aunque con menos frecuencia que en los niveles
anteriores. Tiene un tiempo de Acceso relativamente rápido y gran capacidad.
•	Extensiones de memoria central: Son memorias de la misma naturaleza que la memoria
central que amplían su capacidad de forma modular. El tiempo de similar, a lo sumo un
poco mayor, al de la memoria central y su capacidad puede ser algunas veces mayor.
•	Memorias de masas o auxiliares: Son memorias que residen en dispositivos externos
a la computadora, en ellas se archivan programas y datos para su uso posterior.
También se usan estas memorias para apoyo de la memoria central en caso de que ésta
sea insuficiente (memoria virtual). Estas memorias suelen tener gran capacidad pero
pueden llegar a tener un tiempo de acceso muy lento. Dentro de ellas también se pueden
establecer varios niveles de jerarquía.
27
ALFONSO GOMEZ HERRERA
5.4 Clasificación de memorias
Las memorias se clasifican, por la tecnología empleada y, además según la forma en que se
puede modificar su contenido, A este respecto, las memorias se clasifican en dos grandes
grupos:
1) Memorias RAM: Son memorias en las que se puede leer y escribir, si bien su
nombre (Random access memory). Por su tecnología pueden ser de ferritas (origen) o
electrónicas, Dentro de éstas últimas hay memorias estáticas (SRAM, static RAM), cuya
célula de memoria está basada en un biestable, y memorias dinámicas (DRAM, dinamic
RAM, en las que la célula de memoria es un pequeño condensador cuya carga representa
la información almacenada. Las memorias dinámicas necesitan circuitos adicionales de
refresco ya que los condensadores tienen muy poca capacidad y, a través de las fugas, la
información puede perderse, por otra parte, son de lectura destructiva.
2) Memorias ROM (Read 0nly Memory): Son memorias en las que sólo se
puede leer. Pueden ser:
•	 ROM programadas por máscara, cuya información se graba en fábrica y no se puede
modificar.
•	 PROM, o ROM programable una sola vez.
•	 EPROM (erasable PROM) o RPROM (reprogramable ROM), cuyo contenido puede
borrarse mediante rayos ultravioletas para regrabarlas.
•	 EAROM (electrically alterable ROM) o EEROM (electrically erasable ROM), que
son memorias que están en la frontera entre las RAM y las ROM ya que su contenido
puede regrabarse por
medios eléctricos, estas se
diferencian de las RAM
en que no son volátiles.
En ocasiones a este tipo
de memorias también se
las denomina NVRAM
(no volátil RAM).
•	 Memoria FLASH,
denominada así por la
velocidad con la que
puede reprogramarse,
utilizan tecnología de
borrado eléctrico al igual
que las EEPROM. Las
memorias flash pueden
borrarse enteras en unos
cuantos segundos, mucho
más rápido que las
EPROM.
28
BREVE INTRODUCCION AL HARDWARE
6.- BUSES
6.1 Función.
Se denomina bus, en informática, al conjunto de conexiones físicas (cables, placa de
circuito impreso, etc.) que pueden compartirse con múltiples componentes de hardware
para que se comuniquen entre sí.
El propósito de los buses es reducir el número de rutas necesarias para la comunicación
entre los distintos componentes, al realizar las comunicaciones a través de un solo canal
de datos.
Un bus es en esencia una ruta compartida que conecta diferentes partes del sistema, como
el microprocesador, la controladora de unidad de disco, la memoria y los puertos de
entrada/salida (E/S), para permitir la transmisión de información.
En el bus se encuentran dos pistas separadas, el bus de datos y el bus de direcciones. La
CPU escribe la dirección de la posición deseada de la memoria en el bus de direcciones
accediendo a la memoria, teniendo cada una de las líneas carácter binario. Es decir solo
pueden representar “0” o “1” y de esta manera forman conjuntamente el número de la
posición dentro de la memoria (la dirección). Cuantas más líneas haya disponibles, mayor
es la dirección máxima y mayor es la memoria a la cual puede dirigirse de esta forma. En
el bus de direcciones original había ya 20 direcciones, ya que con 20 bits se puede dirigir a
una memoria de 1 MB y esto era exactamente lo que correspondía al CPU.
Esto que en le teoría parece tan fácil es bastante más complicado en la práctica, ya que
aparte de los bus de datos y de direcciones existen también casi dos docenas más de líneas
de señal en la comunicación entre el CPU y la memoria, a las cuales también se acude.
Todas las tarjetas del bus escuchan, y se tendrá que encontrar en primer lugar una tarjeta que
mediante el envío de una señal adecuada indique al CPU que es responsable de la dirección
que se ha introducido. Las demás tarjetas se despreocupan del resto de la comunicación y
quedan a la espera del próximo ciclo de transporte de datos que quizás les incumba a ellas.
29
ALFONSO GOMEZ HERRERA
PROCESADOR Bus de
direcciones (bits)
Bus de datos
(bits)
8086 20 16
8088 20 8
80186 20 16
80188 20 8
80286 24 16
80386 SX 32 16
80386 DX 32 32
80486 DX 32 32
80486 SX 32 32
Pentium 32 64
Pentium PRO 32 64
6.2 Estructuras de interconexión
Existen dos organizaciones físicas de operaciones E/S que tienen que ver con los buses
que son:
•	 Bus único
•	 Bus dedicado
La primera gran diferencia entre estos dos tipos de estructuras es que el bus único no
permite un controlador DMA (todo se controla desde la CPU), mientras que el bus
dedicado sí que soporta este controlador.
El bus dedicado trata a la memoria de manera distinta que a los periféricos (utiliza un
bus especial) al contrario que el bus único que los considera a ambos como posiciones de
memoria (incluso equipara las operaciones E/S con las de lectura/escritura en memoria).
Este bus especial que utiliza el bus dedicado tiene 4 componentes fundamentales:
Datos: Intercambio de información entre la CPU y los periféricos.
Control: Lleva información referente al estado de los periféricos (petición de
interrupciones).
Direcciones: Identifica el periférico referido.
Sincronización: Temporiza las señales de reloj.
La mayor ventaja del bus único es su simplicidad de estructura que le hace ser más
económico, pero no permite que se realice a la vez transferencia de información
entre la memoria y el procesador y entre los periféricos y el procesador. Por otro
lado el bus dedicado es mucho más flexible y permite transferencias simultáneas.
Por contra su estructura es más compleja y por tanto sus costes son mayores.
6.3 Tipos de Buses.
6.3.1 Bus ISA 8/16:
Cuando en 1980 IBM fabricó su primer PC, este contaba con un bus de expansión
conocido como XT que funcionaba a la misma velocidad que los procesadores Intel 8086
y 8088 (4.77 Mhz). El ancho de banda de este bus (8 bits) con el procesador 8088 formaba
un par perfecto, pero la ampliación del bus de datos en el 8086 a 16 bits dejo en entredicho
este tipo de bus, por ende la capacidad del sistema es severamente limitado.
30
BREVE INTRODUCCION AL HARDWARE
ISA 8
ISA 16
Presente en las viejas
computadoras XT y AT,
pero aún conservado en
algunas motherboards
más modernas, que
usan principalmente
un bus PCI como bus
principal del sistema,
en 1 o 2 instancias para
permitir la integración
de viejas placas ISA.
Es un bus de 8/16 bits y
con un ancho de banda
máximo de 16 Mbytes/
seg. Tensiones de
alimentación presentes
+5V,-5V,+12V y -12V.
6.3.2 Bus Micro Channel (MCA).
Vistas las limitaciones que tenía el diseño del bus ISA en IBM se trabajó en un nueva
tecnología de bus que comercializó con su gama de computadoras PS/2. El diseño MCA
(Micro Channel Arquitecture) permitía una ruta de datos de 32 bits, más ancha, y una
velocidad de reloj ligeramente más elevada de 10 Mhz, con una velocidad de transferencia
máxima de 20 Mbps frente a los 8 Mbps del bus ISA.
Pero lo que es más importante el novedoso diseño de bus de IBM incluyó un circuito de
control especial a cargo del bus, que le permitía operar independientemente de la velocidad
e incluso del tipo del microprocesador del sistema.
31
ALFONSO GOMEZ HERRERA
6.3.3 Bus EISA.
EISA apareció con los equipos AT como un primer paso de avance hacia transferencia
de datos a más alta velocidad y con un ancho de bus mayor, en competencia con
el bus MCA lanzado por IBM en sus equipos para los mismos objetivos. Físicamente
es difícil de distinguir de un conector ISA, pero sus características y gestión son
diferentes. Ancho de bus: 32 bits Ancho de banda máximo teórico de 33 Mbytes/seg si
bien en la práctica no superaban los 20 Mb/seg. Tensiones presentes +5V, -5V,+12V y
-12V. Soporta, siendo backward compatible, la inserción de placas ISA de 8 y 16 bits.
Un PC con bus VL dispone para ello de un bus ISA y de las correspondientes ranuras
(slots) para tarjetas de ampliación. Además, en un PC con bus VL puede haber, sin
embargo, una, dos o incluso tres ranuras de expansión, para la colocación de tarjetas
concebidas para el bus VL, casi siempre gráficos. Solamente estos slots están conectados
con la CPU a través de un bus VL, de tal manera que las otras ranuras permanecen
sin ser molestadas y las tarjetas ISA pueden hacer su servicio sin inconvenientes.
El VL es una expansión homogeneizada de bus local, que funciona a 32 bits, pero que
puede realizar operaciones a 16 bits. VESA presentó la primera versión del estándar
VL-BUS en agosto de 1992. La aceptación por parte del mercado fue inmediata.
Fiel a sus orígenes, el VL-BUS se acerca mucho al diseño del procesador 80486.
De hecho presenta las mismas necesidades de señal de dicho chip, exceptuando
unas cuantas menos estrictas destinadas a mantener la compatibilidad con los 386.
La especificación VL-Bus como tal, no establece límites, ni superiores ni inferiores,
en la velocidad del reloj, pero una mayor cantidad de conectores supone una mayor
capacitancia, lo que hace que la fiabilidad disminuya a la par que aumenta la frecuencia.
6.3.4 VLB (Vesa Local Bus.).
En la práctica, el VL-BUS no puede superar los 66 Mhz. Por este motivo, la especifica-
ción VL-BUS original recomienda que los diseñadores no empleen más de tres
dispositivos de bus local en sistemas que operan a velocidades superiores a los 33 Mhz.
A velocidades de bus superiores, el total disminuye: a 40 Mhz solo se pueden incorporar
dos dispositivos; y a 50 Mhz un único dispositivo que ha de integrarse en la placa.
32
BREVE INTRODUCCION AL HARDWARE
En la práctica, la mejor combinación de rendimiento y
funciones aparece a 33 Mhz.
Tras la presentación del procesador Pentium a 64 bits, VESA
comenzó a trabajar en un nuevo estándar (VL-Bus versión 2.0).
La nueva especificación define un interface de 64 bits pero que
mantienen toda compatibilidad con la actual especificación
VL-BUS. La nueva especificación 2.0 redefine además la
cantidad máxima de ranuras VL-BUYS que se permiten en un
sistema sencillo. Ahora consta de hasta tres ranuras a 40 Mhz y
dos a 50 Mhz, siempre que el sistema utilice un diseño de baja
capacitancia
6.3.5 PCI (Peripheral Component Interconnect)
Sin ser las más populares de los buses, bien muchas
motherboards empiezan a traer un creciente número de ranuras
de otros tipos como PCI-e (PCI Express) y PCI-X (se debe aquí
evitar la tentación de pensar que la X ha sido usada como una
abreviación de “express”...pues realmente el PCI-X tiene poco
o nada que ver con un PCI-e y la posibilidad de confusión del
PCI-X son las ranuras PCI de 64 bits.
El mismo se presenta en dos formatos, de acuerdo al ancho de bus que soportan: PCI de 32
bits y PCI de 64 bits como los presentes en algunos servidores y equipos Mac como el G4
y posteriores. En general una placa PCI de 32 bits suele poder usarse sin problemas en una
ranura PCI de 64 bits si tanto placa como ranura han sido correctamente implementadas de
acuerdo a las especificaciones. Este bus tiene un ancho de 32 bits o de 64 bits de acuerdo
a la versión que se trate y normalmente el más difundido es el de 32 bits, el cual puede
alcanzar un ancho de banda máximo de 133 Mbytes/seg para PCI 2.1 o anteriores, 533
Mbytes/seg para PCI 2.2 y posteriores (en los buses de 64 bits estos anchos de banda
máximo pasan al doble o sea 266 Mbytes y 1 Gb/seg)
A su vez hay varias variantes en cuanto a las tensiones presentes, estando siempre los +12
V y los -12V, en la gran mayoría están presentes los +5 V si bien dicha tensión desaparece
definitivamente en las implementaciones PCI 2.3 y PCI 3.0. Y a partir de las versiones PCI
2.2 y siguientes estará también en forma forzosa presente la tensión de 3,3 V
33
ALFONSO GOMEZ HERRERA
6.3.6 AGP (Accelerated Graphics Port)
Estetipoderanuraesunaranuraespecializada
para tarjetas de video tipo AGP. La misma
tiene un ancho de bus de 32 bits y puede
tener un ancho de banda para la transmisión
de datos que va desde los 133 Mb/seg para
los primeros modelos hasta los 2 Gb/seg en
las últimas versiones. Si bien esta ranura fue
bastante popular durante un período en que
las controladoras de video se ausentaron en
las ranuras PCI para tener ranuras específicas
y especializadas al procesamiento de video,
hoy en día está siendo abandonada por los
principales fabricantes de placas de video y placas aceleradoras de video, los cuales se están
volcando al bus PCI-X.
Normalmente por su conformación física es difícil el confundirla y dada la variedad
de posibilidades solo presentamos una representación esquemática de las principales
alternativas:
34
BREVE INTRODUCCION AL HARDWARE
7.- ENTRADA/SALIDA (E/S).
7.1 Sus funciones:
Funciones que debe realizar un sistema para elaborar labores de Output/input:
1.	Direccionamiento o selección del dispositivo que debe llevar a cabo la operación de
E/S.
2.	Transferencia de los datos entre el procesador y el dispositivo, bidireccionalmente.
3.	Sincronización y coordinación de las operaciones.
Esta última función es necesaria debido a la deferencia de velocidades entre los
dispositivos y la CPU y a la independencia que debe existir entre los periféricos y la CPU,
por diferencia de los relojes internos
Se define una transferencia elemental de información como la transmisión de una sola
unidad de información entre el procesador y el periférico o viceversa. Para efectuar una
transferencia elemental de información son:
•	 Establecimiento de una comunicación física entre el procesador y el periférico para la
transmisión de la unidad de información.
•	 Control de los periféricos, en que se incluyen operaciones como prueba y modificación
del estado del periférico. Para realizar estas funciones la CPU gestionará las líneas de
control necesarias.
Una operación de E/S es el conjunto de acciones necesarias para la transferencia de un
conjunto de datos (o sea, una transferencia completa de información).
Para la realización de una operación de E/S se deben efectuar las siguientes funciones:
•	 Recuento de las unidades de información transferidas (bytes) para reconocer el fin de
operación.
•	 Sincronización de velocidad entre la CPU y el periférico.
•	 Detección de errores (como corrección) mediante la utilización de los códigos
necesarios (bits de paridad, códigos de redundancia cíclica “CRC”, etc.)
•	 Almacenamiento temporal de la información. Es más eficiente utilizar un buffer
temporal específico para las operaciones de E/S que utilizan el área de datos del
programa.
•	 Conversión de códigos, conversión serie/paralelo, etc.
Puertos:
Paralelos
Seriales
35
ALFONSO GOMEZ HERRERA
7.2 Interrupciones (IRQ)
(Interrupt ReQuest - solicitud de interrupción). Canales utilizados para gestionar
dispositivos periféricos. Las IRQ son las líneas de interrupción que utilizan
los dispositivos para avisar al microprocesador que necesitan su atención.
(En los antiguos XT  eran 8 canales, en computadoras AT y superiores son 16.)
Antes de la existencia de los dispositivos plug and play, los usuarios tenían que configurar
los valores IRQ de los dispositivos manualmente cuando agregaban un dispositivo nuevo
al sistema.Acontinuación se listan los números IRQ y para qué eran usados generalmente.
Un sistema informático debe disponer de los elementos suficientes para que el programador
tenga un control total para la ejecución de su programa. La llegada de una interrupción
provoca que la CPU suspenda la ejecución de un programa e inicie la de otro (rutina
de servicio de interrupción). Como las interrupciones pueden producirse en cualquier
momento, es muy probable que se altere la secuencia de sucesos que el programador había
previsto inicialmente. Es por ello que las interrupciones deber controlarse cuidadosamente.
De esta forma, podemos resumir todas las etapas seguidas ante una interrupción en un
sistema dotado de Vectorización. Estos pasos son los siguientes:
•	 El dispositivo envía la solicitud de interrupción mediante la línea INTR.
•	 El procesador termina la ejecución de la instrucción en curso y analiza la línea de
petición de interrupción, INTR. Si esta línea no está activada continuará normalmente
con la ejecución de la siguiente instrucción, en caso contrario se pasa a la etapa
siguiente.
•	 El CPU reconoce la interrupción, para informar al dispositivo de ello, activa la línea
de reconocimiento de interrupción, INTA.
•	 El dispositivo que reciba la señal INTA envía el código de interrupción por el bus
de datos.
•	 El CPU calcula la dirección de memoria donde se encuentra la rutina de servicio de
interrupción (vector de interrupción).
•	 El estado del procesador, y en particular el contador de programa, se salva en la pila
de la misma forma que en una llamada a procedimiento.
•	 La dirección de la rutina de servicio de interrupción se carga en el contador de
programa, con lo que se pasa el control a la citada rutina.
•	 La ejecución continúa hasta que el procesador encuentre la instrucción de retorno
de interrupción.
•	 Cuando se encuentre la instrucción de retorno de interrupción se restaura el estado
del procesador, en especial el contador de programa, y se devuelve el control al
programa interrumpido.
Normalmente la primera instrucción de la rutina de servicio tendrá como fin desactivar las
interrupciones para impedir el anidamiento, por otra parte, antes de devolver el control al
programa interrumpido se volverán a habilitar si es necesario.
36
BREVE INTRODUCCION AL HARDWARE
Números IRQ
•IRQ 0: Cronómetro del sistema. Este interruptor está reservado para el timer del sistema
	 y jamás está disponible para otros dispositivos.
•IRQ 1: Controlador del teclado.
•IRQ 2: Interrupciones en cascada para las interrupciones IRQ del 8 al 15.
•IRQ 3: Segundo Puerto Serie (COM2). A menudo es también para el cuarto puerto serie
	 (COM4).
•IRQ 4: Primer Puerto Serie (COM1). También es utilizado por defecto para el COM3.
•IRQ 5: Tarjeta de sonido.
•IRQ 6: Controlador de disquetera.
•IRQ 7: Puerto Paralelo LPT1 para impresoras o cualquier otro dispositivo que utiliza
	 puerto paralelo.
•IRQ 8: Reloj del Sistema.
•IRQ 9, 10, 11: Interrupción disponible para periféricos extras.
•IRQ 12: Mouse PS/2 o Placa de Red o similares.
•IRQ 13: Coprocesador/Unidad de punto flotante
•IRQ 14: Canal IDE Primario. En sistemas que no se utiliza dispositivos IDE, este canal 	
	 se utiliza para otros periféricos
•IRQ 15: Canal IDE Secundario
7.3 Dispositivos de entrada
Un dispositivo de entrada o salida (E/S), puede ser cualquier tipo de unidad funcional
o subsistema que forma parte del conjunto integral del sistema informático. En todos
los casos, envían señales o procesar información para establecer distintos tipos de
comunicación interna y externa. El término entrada y salida o input / output (del inglés)
también refiere a la ejecución de acciones u operaciones a través de dichos dispositivos.
La mayoría de estos dispositivos permiten tanto la entrada como la salida de datos.
37
ALFONSO GOMEZ HERRERA
Como ejemplo:
Algunos dispositivos de entrada y salida
Entrada:
Teclado
Mouse
Joystick
Lápiz óptico
Micrófono
Webcam
Escáner
Escáner de código de barras
Salida:
Monitor
Altavoz
Auriculares
Impresora
Plotter
Proyector
Entrada/salida (mixtos):
Unidades de almacenamiento
CD
DVD
Módem
Memory cards
USB
Router
Dispositivos hápticos (táctil)
Disco Duro Externo
38
BREVE INTRODUCCION AL HARDWARE
2da
PARTE
PERIFERICOS 1
39
ALFONSO GOMEZ HERRERA
8.- TECLADOS
Un teclado es un periférico de entrada, que convierte la acción mecánica de pulsar una tecla
a pulsos eléctricos codificados que permiten identificarla. Las teclas que lo constituyen
sirven para entrar caracteres alfanuméricos y comandos a una computadora. En un teclado
se puede distinguir a cuatro subconjuntos de teclas:
*TECLADO ALFANUMERICO: con las teclas dispuestas como en una máquina de escribir.
*TECLADO NUMERICO: (Ubicado a la derecha) con teclas dispuestas como
		 en una calculadora.
*TECLADO DE FUNCIONES: (Desde F1 a F12) son teclas cuya función depende del
		 programa en ejecución.
*TECLADO DE CURSOR: Para ir con el cursor de un lugar a otro en un texto. El cursor
		 se mueve según el sentido de las flechas de las teclas, ir al
		 comienzo de un párrafo (“HOME”), avanzar/retroceder una
		 pagina (“PAGE UP/PAGE DOWN”), eliminar caracteres
		 (“delete”), etc.
8.1 Antecedente.
En 1872 cuando se lanza la primera máquina de escribir ampliamente conocida, diseñada
por Cristopher Latham Sholes en Milwakee, Estados Unidos, con la ayuda de dos amigos
inventores, con el teclado tipo QWERTY, llamado así, debido al orden del las letras.
El otro modelo que existió fue en 1932 un capitán de submarinos e inventor llamado Dvorak
diseñó una disposición del teclado que permite escribir más rápidamente. En ese teclado
las vocales están en el centro a la izquierda y las consonantes más usadas a la derecha. Esto
hace que la escritura en ese teclado sea más simple y descansada.
Aunque fue bien recibido por los expertos y se reconocieron las ventajas del teclado
Dvorak, la difusión del teclado QWERTY ha hecho casi imposible el cambio.
40
BREVE INTRODUCCION AL HARDWARE
8.2 Funcionamiento.
Aunque existen muchos tipos de teclados, en términos generales este sería su
funcionamiento:
Enuntecladoseveránlosconductores
horizontales construidos, soportados
y aislados en una hoja de plástico,
y los verticales en otra hoja similar
que esta sobre la primera.
De lado interno de cada de hoja,
en cada camino existe una serie de
círculos conductores formando parte
del mismo, que no están aislados.
Entre dichas dos hojas los conductores y cuerpo de la tecla se interpone una tercer capa de
material elástico, que provee un truncado elástico para cada tecla, el cual haría de resorte.
Debajo de cada tecla, se enfrentan, un círculo de un camino horizontal con otro de un
camino vertical. Al pulsar una tecla se vence el cono que está debajo de ella. A través de
este eje de la tecla presiona uno sobre otros círculos conductores, poniéndolos en contacto.
Al soltar la tecla los círculos quedan separados y aislados.
Formando parte de la caja del teclado, aparece un de circuito integrado (micro controlador)
con funciones de codificador-buffer, el cual constituye la electrónica del periférico teclado.
La función de este integrado es explorar y censar el teclado, para detectar si una tecla fue
expulsada o soltada, en ambos casos un código que la identifica, y lo enviara a un puerto
que se encuentra en la interfaz al denominada controladora del teclado, ubicado en un C.I
de la tarjeta principal.
41
ALFONSO GOMEZ HERRERA
El circuito integrado presenta un buffer RAM para almacenar hasta 10 códigos identifica
las teclas oprimidas y/o soltadas.
8.3 Tipos
1.	 Teclado de 83 teclas para PC / XT
2.	 Teclado de 84 teclas para PC /AT
3.	 Teclado extendido 101/102 extendido
9.- JOYSTICK
Joystick o Palanca de juegos, dispositivo señalador muy variado,
mayoritariamente para juegos y simuladores,. Un joystick,
o palanca de juegos tiene normalmente una base de plástico
redonda o rectangular, a la que está acoplada una palanca
vertical. Los botones de control se localizan sobre la base y
algunas veces en la parte superior de la palanca, que puede
moverse en todas direcciones para controlar el movimiento de
un objeto en la pantalla. Los botones activan diversos elementos
de software, generalmente produciendo un efecto en la pantalla.
9.1 Antecedentes.
El nombre joystick parece se debe al piloto francés Robert Esnault-Pelterie. También se
atribuye a los pilotos Robert Loraine y James Henry Joyce. El joystick en sí mismo estaba
presente en los primeros aviones, aunque su origen mecánico sigue siendo incierto.
El primer joystick eléctrico de dos ejes probablemente fue inventado en 1944 en Alemania.
Se desarrolló para controlar la bomba guiada Henschel Hs 293. El joystick constaba de
interruptores encendido/apagado en lugar de sensores analógicos, por lo que se le podría
considerar el primer joystick digital.
La señal se transmitía al misil mediante un cable fino.
Los primeros joystick de máquina recreativa de salón, o máquina árcade, eran joysticks
digitales porque el estándar de conexión de las placas de circuitos de estas máquinas
mayoritariamente usado, llamado Jamma*, que conecta a los diferentes periféricos de
la carcasa (monitor, botonera, ranura para monedas...) solo detecta pulsaciones abierto/
cerrado, por lo cual los joystick deben ser de este tipo.
*La Japanese Amusement Machine Manufacturers’Association (JAMMA) es una asociación de
comercio con sede en Japón, es también el homónimo de una feria de muestras de Japón y además,
JAMMA es un estándar de cableado para máquinas árcade. Se podría considerar con este nombre al
conjunto de mejoras en los juegos
42
BREVE INTRODUCCION AL HARDWARE
Al evolucionar las funciones recreativas a la par que las computadoras y video-consolas
comenzaron a aparecer controles de tipo analógico.
Las primeras consolas (Pong) usaban potenciómetros pero la video-consola Atari 2600
estableció lo que sería el estándar mayoritariamente usado (con variaciones) de joystick
digital de dos ejes más un botón de fuego, combinado con una pareja de potenciómetros
(para usar con paddles/mouse/trackball).
9.2 Tipos.
1.	Análogos
2.	Digitales
3.	Mixtos
Subtipos
1.	Con fluidos
2.	Tridimensionales
3.	Vibratorios
Un gamepad es para interactuar con un videojuego ya sea para consola
o PC. El gamepad o control de mando permite moverse e interactuar con
los elementos del juego para realizar las diversas acciones necesarias para
cumplir los objetivos.
Un volante de videojuegos (racing wheel), es un controlador de videojuego
específicamente diseñado para su utilización en simuladores y videojuegos
de carreras.
Una pistola de luz (light gun) en un dispositivo apuntador para
computadoras y un dispositivo de control para videojuegos y máquinas
recreativas. Las primeras pistolas de luz aparecieron en los años treinta
(1930), como consecuencia del desarrollo de la sensibilidad a la luz en
las válvulas de vacío. Poco después, esta tecnología se aplicó a los juegos
de disparo, con ejemplos como Seeburg Ray-O-Lite en 1936.
Un paddle (palanca, traducido de forma literal del inglés) es un
controlador de juegos con una rueda giratoria y uno o más botones,
donde dicha rueda es típicamente empleada para controlar el movimiento
del personaje o de un objeto a lo largo de un eje de la pantalla del juego.
43
ALFONSO GOMEZ HERRERA
10.- MOUSE.
El mouse o ratón es un dispositivo apuntador, que permite señalar e ingresar información.
Se le denomina mouse debido a su apariencia. Un mouse regularmente es arrastrado
sobre una superficie plana (MousePad) el movimiento realizado por el mouse es reflejada
dentro del monitor mediante una flecha llamada puntero del mouse. La acción de pulsar y
soltar un botón se denomina clic.
10.1 Antecedentes
Fue diseñado por Douglas Engelbart y Bill English durante los años 60 en el Stanford
Research Institute, un laboratorio de la Universidad de Stanford, en pleno Silicon Valley
en California. Más tarde fue mejorado en los laboratorios de Palo Alto de la compañía
Xerox (conocidos como Xerox PARC). Su invención no fue un hecho fútil ni fortuito, sino
que surgió dentro de un proyecto importante que buscaba aumentar el intelecto humano
mejorando la comunicación entre el hombre y la máquina. Con su aparición, logró también
dar el paso definitivo a la aparición de los primeros entornos o interfaces gráficas de usuario.
10.2 Tipos o modelos de mouse
1. Mouse mecánicos.
Los mouse mecánicos, constan de una bola situada en su parte
inferior para mover dos ruedas que generan pulsos en respuesta al
movimiento de éste sobre la superficie. La bola, al moverse
el mouse, roza unos contactos en forma de rueda que indican el
movimiento del cursor en la pantalla del sistema informático.
44
BREVE INTRODUCCION AL HARDWARE
La circuitería interna cuenta los pulsos generados por la rueda y envía la información a la
computadora, que mediante software procesa e interpreta.
2. Mouse ópticos.
Los mouse ópticos tienen un pequeño haz de luz en lugar de la
bola rodante de los mecánicos. Un sensor óptico situado dentro
del cuerpo del mouse detecta el movimiento del reflejo al
mover el mouse sobre el espejo e indica la posición del cursor
en la pantalla de la computadora.
Los mouse ópticos evitan el frecuente problema de la acumulación de suciedad en el eje de
transmisión, y por sus características ópticas es menos propenso a sufrir un inconveniente
similar. Se considera uno de los más modernos y prácticos actualmente. Puede ofrecer
un límite de 800 ppp, como cantidad de puntos distintos que puede reconocer en 2,54
centímetros (una pulgada), a menor cifra peor actuará el sensor de movimientos. Su
funcionamiento se basa en un sensor óptico que refleja la superficie sobre la que se
encuentra y detectando las variaciones entre sucesivas fotografías, se determina si el
mouse ha cambiado su posición. En superficies pulidas o sobre determinados materiales,
el mouse óptico causa movimiento sobre la pantalla, por eso se hace necesario el uso de
una alfombrilla.
3. Mouse de láser.
Este tipo es más sensible y preciso, haciéndolo aconsejable
especialmente para los diseñadores gráficos y los fanáticos de
los videojuegos. También detecta el movimiento deslizándose
sobre una superficie horizontal, pero el haz de luz de tecnología
óptica se sustituye por un láser (invisible al ojo humano) con
resoluciones a partir de 2000 ppp, lo que se traduce en un aumento
significativo de la precisión y sensibilidad.
3. Trackball.
El concepto de trackball es una idea novedosa que parte del hecho
de mover el puntero, no el dispositivo, por lo que se adapta para
presentar una bola, de tal forma que cuando se coloque la mano
encima se pueda mover mediante el dedo pulgar, sin necesidad de
desplazar nada más ni toda la mano como antes. De esta manera se
reduce el esfuerzo y la necesidad de espacio, además de evitarse un
posible dolor de antebrazo por el movimiento de éste. A algunas
personas, sin embargo, no les es cómodo.
10.3 Funcionamiento
Cuando este se desplaza el movimiento de la bolita que está en su parte inferior se
descompone en dos movimientos según dos ejes perpendiculares entre sí (corresponde a
coordenadas X e Y) que un conversor analógico -digital traduce en pulsos eléctricos.
45
ALFONSO GOMEZ HERRERA
La cantidad de pulsos generados para cada eje representa la distancia recorrida por el
mouse respecto de ese eje representa la
distancia recorrida por respecto de ese
eje, y en relación con la última posición
en que el Mouse estuvo parado.
Dichos pulsos se van contando en
dos contadores, uno para cada eje,
pudiendo ser la cuenta progresiva
o regresiva, según el sentido del
movimiento del Mouse respecto de
dichos ejes. Los circuitos envían por
un cable que va hacia la computadora
el valor de la cuenta de los contadores,
como dos números de 8 bits con bit
(rango de-128 a +127). Según el
protocolo de MICROSOFT, estos números se envían formando parte de bytes, cada uno de
los cuales además se transmite bit de START (inicio) y STOP conforme al protocolo RS
232C para un puerto serial.
Se envían tres bytes cuando se pulsa o libera una tecla del mouse, aunque este no se
mueva. Cuando el puerto recibe el primero de los tres bytes, la plaqueta con la interfaz
buffer, que contiene el circuito de dicho puerto solicita al CPU que interrumpa el programa
en ejecución y pase a ejecutar la subrutina (Mouse driver) que maneja la información del
Mouse.
10.4 Mousepad
La alfombrilla, posa ratón ó mouse, almohadilla de mouse o Mousepad, es la superficie por
la que el usuario de una computadora mueve el mouse de manera análoga al movimiento
del puntero en la pantalla. Tanto Alex Pang como Jack Kelley afirman que el segundo
fabricó la primera alfombrilla para mouse poco después de que Douglas Engelbart, en
1969 y en las oficinas del Stanford Research Institute, inventase el primer mouse.
El mouse de la computadora en aquel tiempo había sido mejorado incorporándole una
bola-rodadora de acero desnudo (sin recubrimiento de goma) (trackball). Estas trackball
eran utilizadas en la industria de la aviación desde los años 1960. Sin embargo, a la bola
de acero se le adhería suciedad, haciendo que el movimiento del puntero resultase inexacto
y lento. En 1979, cuando el mouse comenzó a mejorarse y hacerse más comercial, Xerox
presentó su propio mousepad, diseñado por Armando M. Fernández.
46
BREVE INTRODUCCION AL HARDWARE
11.- SCANNER
Con el arribo del diseño grafico y la edición de documentos conocida como Desktop
Publishing (DTP) surgió una gran variedad de programas para el procesamiento de
imágenes para tal gestión de desarrollo, el llamado scanner o digitalizador de imágenes
que es un lector o explorador óptico convirtiendo las imágenes en algún formato grafico
como: Bmp, Tif, Pcx, Gif, etc.
Posee una fuente de luz interna que se encarga de descomponer las imágenes a pulsos
eléctricos y así poder transferir las imágenes a la pantalla, su funcionamiento es similar
a una video cámara usando el mismo dispositivo llamado CDD (Dispositivo de Carga
Acoplada).
11.1 Origen.
La primera imagen escaneada: Una fotografía de Walden Kirsch de tres meses de edad,
capturado en 1957 en el National Bureau of Standards (ahora el Instituto Nacional de
Estándares y Technoloyg o NIST). La imagen fue creada por Russell Kirsch, el padre del
niño, utilizando un escáner de tambor.
Los primeros escáneres de tambor como fotocopiadoras, la información de la captura con
tubos fotomultiplicadores. Artículos que deben ser exploradas se monta sobre un cilindro
que gira el tambor, y esta se pasa en frente del equipo óptico que capta la imagen. Los
escáneres de tambor se siguen utilizando, ya que permiten la captura de imágenes de muy
alta calidad, hasta 12.000 PPI y se utiliza a menudo en el trabajo de la película. Siendo
caros.
En la década de 90s
pequeños escáneres de mano estaban disponibles. Estos se dibujan a
través de la página por el usuario y por lo general produce una imagen monocroma. Estos
requieren una mano firme y movimiento a una velocidad constante a través de la página.
El escáner de superficie plana, que se convirtió más tarde asequible en 1990, invirtió el
proceso, con el lector óptico situado debajo de una hoja de vidrio, mirando hacia arriba,
y los elementos que se analizarán fueron puestos sobre el cristal. Ellos son capaces de
capturar imágenes en color y la calidad ha mejorado notablemente en la última década.
47
ALFONSO GOMEZ HERRERA
La mayoría de los escáneres de incorporan la capacidad de reconocimiento óptico de
caracteres, u OCR. (Optical character recognition) Esta tecnología fue desarrollada por
primera vez en la década de 1920. Sin embargo, no fue hasta la década de 1950 que la
tecnología comenzó a ser utilizado.
En 1976 Ray Kurzweil presentó el primer dispositivo que puede escanear texto y
convertirlo, haciendo una impresión accesible a los ciegos. Su dispositivo incluye el
escáner de superficie plana en primer lugar.
11.2 tipos (tipicos para “PC”)
Tipos: Scan-man (Manual Difícil de controlar)
Rodillos (limitado por el tamaño)
Cama-plana (El más popular)
11.3 Funcionamiento
Al recibir la orden de escanear, una lámpara se encarga de “barrer” el documento.
La luz reflejada por espejos es enviada a un dispositivo interno llamado capturador que es
un CCD (“Charged Coupled Device”).
Cada una de las líneas que son reflejadas es dividida en puntos (píxeles).
Cada punto es analizado y dividido en los tres colores básicos: rojo, azul y verde.
Se le asigna un valor binario a cada píxel en base a la división anterior.
Se procede a crear el mapa digital y así poder ser enviado a la computadora y ser
visualizado en la pantalla.
Se guarda en forma de archivo de imagen.
48
BREVE INTRODUCCION AL HARDWARE
Resumen:
•	 El escáner se mueve a lo largo del documento, línea por línea
•	 Cada línea se divide en “puntos básicos”, que corresponden a píxeles.
•	 Un capturador analiza el color de cada píxel.
•	 El color de cada píxel se divide en 3 componentes (rojo, verde, azul)
•	 Cada componente de color se mide y se representa mediante un valor.
•	 En el caso de una cuantificación de 8 bits, cada componente tendrá un valor de entre
0 y 225.
La luz de alta intensidad emitida se
refleja en el documento y converge
hacia una serie de capturadores,
mediante un sistema de lentes y
espejos. Los capturadores convierten
las intensidades de luz recibidas en
señales eléctricas, las cuales a su
vez son convertidas en información
digital, gracias a un conversor
analógico-digital.
	
CCD
Existen dos categorías de capturadores:
Los capturadores CMOS (Semiconductor Complementario de Óxido Metálico), o MOS
Complementario). Dichos capturadores se conocen como tecnología CIS (de Sensor
de Imagen por Contacto). Este tipo de dispositivo se vale de una rampa LED (Diodo
Emisor de Luz) para iluminar el documento, y requiere de una distancia muy corta entre
los capturadores y el documento. La tecnología CIS, sin embargo, utiliza mucha menos
energía.
CCD: (charge-coupled device, en español «dispositivo de carga acoplada») es un
circuito integrado que contiene un número determinado de condensadores enlazados o
acoplados. Cada condensador puede transferir su carga eléctrica a uno o a varios de los
condensadores que estén a su lado en el circuito impreso. La alternativa digital a los CCD
son los dispositivos CMOS (complementary metal oxide semiconductor). Los primeros
dispositivos CCD fueron inventados por Willard Boyle y George Smith el 17 de octubre
de 1969 en los Laboratorios Bell, ambos premiados con el Premio Nobel de Física de 2009
precisamente por el CCD.
49
ALFONSO GOMEZ HERRERA
11.4 Características de un escáner:
Resolución: expresada en puntos por pulgada (denominados dpi), la resolución define la
calidad de escaneo. El orden de magnitud de la resolución se encuentra alrededor de los
1200 por 2400 dpi. La resolución horizontal depende mucho de la calidad y del número de
capturadores, mientras que la resolución vertical está íntimamente ligada a la exactitud del
motor principal de entrenamiento.
Sin embargo, es importante distinguir la resolución óptica, la cual representa la resolución
real del escáner, de la resolución interpolada. La interpolación es una técnica que implica
la definición de píxeles intermedios de entre los píxeles reales mediante el cálculo del
promedio de los colores de los píxeles circundantes. Gracias a dicha tecnología se logran
obtener buenos resultados, aunque la resolución interpolada definida de esta manera no
constituye en absoluto un criterio utilizable a la hora de seleccionar escáneres.
Características
•	El formato del documento: según el tamaño, los escáneres pueden procesar documentos
de distintos tamaños: por lo general A4 (21 x 29,7 cm), o con menor frecuencia A3 (29,7
x 42 cm).
•	Velocidad de captura: expresada en páginas por minuto (ppm), la velocidad de captura
representa la capacidad del escáner para procesar un gran número de páginas por minuto.
Dicha velocidad depende del formato del documento y de la resolución elegida para el
escaneo.
•	Interfaz: se trata del conector del escáner. Las principales interfaces son las siguientes:
SCSI. Aunque a finales de los 90s
constituyó la interfaz preferida
Puerto paralelo. Este tipo de conector es lento, y se está utilizando cada vez menos
FireWire. Velocidad conveniente para este tipo de periféricos
USB 2.0. Interfaz estándar recomendada cuando la computadora no posee conexión
FireWire
Características físicas:
•	Tamaño, en términos de las dimensiones físicas del escáner. (Típicos; carta u oficio)
•	Peso.
•	Consumo de energía eléctrica, expresado en Watts (W).
•	Temperaturas de funcionamiento y almacenamiento.
•	Nivel de ruido. Un escáner puede producir bastante ruido, lo cual suele ocasionar
considerables perturbaciones.
•	Accesorios: Aunque generalmente se suministran los drivers y el manual del usuario, se
debe verificar que también se incluyan los cables de conexión.
50
BREVE INTRODUCCION AL HARDWARE
12.- MODEM
La palabra módem deriva de su operación como
MOdulador o DEModulador.
Es un equipo utilizado para la comunicación de
computadoras a través de líneas analógicas de
transmisión de datos. El módem convierte las
señales digitales del emisor en otras analógicas
susceptibles de ser enviadas por teléfono.
Cuando la señal llega a su destino, otro módem se
encarga de reconstruir la señal digital primitiva, de cuyo proceso se encarga la computadora
receptora. En el caso de que ambos puedan estar transmitiendo datos simultáneamente, se
dice que operan en modo full-duplex; si sólo puede transmitir uno de ellos, el modo de
operación se denomina half-duplex.
Para convertir una señal digital en otra analógica, el módem genera una onda portadora y
la modula en función de la señal digital. El tipo de modulación depende de la aplicación y
de la velocidad de transmisión del módem.
12.1 Historia.
La primera codificación que permitió la comunicación de larga distancia fue el código
Morse, el cual fue desarrollado por Samuel F. B. Morse en 1844. Este código está
constituido por puntos y guiones y significó una comunicación más rápida. El intérprete
era muy importante y, por lo tanto, debía poseer un buen conocimiento del código.
Se inventaron muchos códigos, entre ellos, el código Emile Baudot (también conocido
como Baudot o, inglés Murray Code o “Código Murray”).
El 10 de marzo de 1876, el doctor Graham Bell creó el teléfono, un invento revolucionario
que permitió que la información de voz circule a través de líneas metálicas. Vale la pena
mencionar que la Cámara de Representantes decidió que el invento del teléfono se debe a
Antonio Meucci quien, de hecho, había presentado una solicitud de patente en 1871 pero
que no pudo financiar después de 1874.
Estas líneas posibilitaron el desarrollo de los teletipos, equipos que permitían codificar y
decodificar caracteres por medio del código Murray (en ese momento, los caracteres eran
codificados sobre 5 bits, por lo que había sólo 32 caracteres).
En la década de 1960, se adoptó como estándar el código ASCII (siglas en inglés de
American Standard Code for Information Interchange (Código estándar estadounidense
para el intercambio de información)). El mismo permite la codificación de caracteres
mayores a 8 bits, lo que posibilita que haya 256 caracteres.
Alrededor de 1962 y gracias al uso de tecnologías digitales y de modulación, junto con el
desarrollo de los equipos informáticos y las comunicaciones, se desarrolló la transferencia
de datos a través del módem.
51
ALFONSO GOMEZ HERRERA
12.2 tipos
1.	Módem externo: es un dispositivo que viene en su propia carcasa y se conecta
externamente con la computadora. Es fácil de instalar, portátil, se conecta por el puerto
en serie o puertos del tipo USB y dispone de indicadores luminosos para su control.
2.	Módem interno: es una tarjeta de expansión en la que están incluidos todos los elementos
del módem. Se puede conectar mediante tres formatos, que incluyen el Bus ISA, el Bus
PCI y el AMR.
El módem interno está integrado al computador y funciona con la misma energía eléctrica.
Es difícil de instalar y solo cuenta con una salida de carácter externo hacia la línea telefónica.
3.	Módem Digital: necesita una línea telefónica de carácter digital denominada RDSI (Red
Digital de Servicios Integrados) para su funcionamiento. El módem digital brinda la
posibilidad de mantener dos comunicaciones distintas con una sola línea. Posee tiempos
mínimos para establecer una conexión y mayor calidad de la conexión.
4.	Cable módem: es un dispositivo que permite acceso a Internet a gran velocidad vía TV
cable. Este tipo de módem se utiliza generalmente en hogares, tiene dos conexiones,
uno por cable a la conexión de la pared y otro al computador, por medio de interfaces y
cuenta con dos tipos: coaxiales de Fibra Óptica y ADSL.
12.3 Funcionamiento
Un módem es un dispositivo que se utiliza para transmitir información entre varios equipos
(básicamente 2) a través de las líneas telefónicas. Los equipos operan en forma digital y
utilizan el lenguaje binario (una serie de ceros y unos) pero los módems son analógicos.
Las señales digitales pasan de un valor al otro. No existe un término o punto medio, es
todo o nada, o sea, unos o ceros. Por el contrario, las señales analógicas no cambian “por
escalón” sino que abarcan todos los valores, por lo que se puede obtener 0; 0,1; 0,2; 0,3;
1,0 y todos los valores en el medio.
Por ejemplo, un contador de
personas que pasan funciona
de manera digital porque no
existen medias personas. En
cambio, un reloj marca horas,
minutos, segundos e incluso
puntos intermedios. El módem
convierte la información binaria
del equipo en analógica. Luego
envía este nuevo código a través
de la línea telefónica.
Pueden escucharse unos sonidos extraños si el volumen del módem está encendido.
52
BREVE INTRODUCCION AL HARDWARE
El módem convierte la información digital en ondas analógicas y en la dirección contraria,
transforma datos analógicos en digitales. Es por eso que la palabra módem surge del
acrónimo de MOdulador/DEModulador.
El módem: Conexión a través de la línea telefónica
La línea telefónica está diseñada para tal, por eso se necesita un módem para establecer la
comunicación con un equipo remoto por medio de un número telefónico antes de poder
intercambiar la información. El lenguaje que utilizan las computadoras para comunicarse
se denomina protocolo. Los protocolos que más se utilizan son:
El protocolo PPP (Point-to-Point)
El protocolo SLIP (Serial Line Internet Protocol)
12.4 Velocidades (típicas)
Se utilizaron los 300 BPS durante un tiempo considerable. La razón; porque esta velocidad
representa cerca de 30 caracteres por segundo, y esto es más de lo que una persona puede
digitar. Una vez que se comenzaron a transmitir grandes programas e imágenes en las BBS,
los 300 BPS se volvieron intolerables. Las velocidades de los módems entraron entonces
en una serie de pasos (incrementos de velocidad) cada uno o dos años:
300 Bits por segundo -1960 hasta 1983 más o menos.
1200 Bits por segundo -ganó popularidad en 1984 y 1985.
2400 Bites por segundo.
9600 Bits por segundo -aparecieron primero a finales de 1990 y principios de 1991.
19.2 Kbits por segundo.
28.8 Kbits por segundo.
33.6 Kbits por segundo.
56 Kbits por segundo -se convirtió en el estándar en 1998.
ASDL, a una velocidad aproximada a los 10 MBPS -apareciendo en 1999.
Velocidad baudios vs bits:
Hay que diferenciar entre velocidad de señalización y velocidad de transmisión. Esto hace
a la diferencia que existe entre baudios y bits por segundo.
Imaginemos una onda senoidal cuya amplitud puede saltar de valor entre cuatro niveles
distintos. En cada segundo pueden ocurrir 2400 de estos cambios de amplitud, esta
onda presenta una velocidad de señalización de 2400 baudios. Cada uno de estos saltos
de amplitud en dicho segundo, es un baudio. Puesto que se puede cambiar entre cuatro
amplitudes diferentes, se puede convenir que cada una representa dos bits determinados,
con lo cual se tiene una velocidad de transmisión de 2400x2= 4800 bits por segundo.
La detección de cada amplitud (baud) puede hacerse cada 1/2400 de segundo= 0,4
milisegundos. Este tiempo es suficiente para que el módem pueda detectar un baud, e
interpretar los dos bits que codifica.
En pocos años, la velocidad de transmisión por las líneas telefónicas comunes fue
aumentando 100 veces: de 300 a 33.600 bps. Esto se logro, codificando 12 bits por baudio
53
ALFONSO GOMEZ HERRERA
13.-DISCOS DUROS.
Un disco duro es el que almacena y proporciona acceso
relativamente rápido a grandes cantidades de datos
en una superficie cargada electromagnéticamente o
conjunto de superficies. Las computadoras actuales
suelen venir con un disco duro que contiene varios
billones de bytes (gigabytes) de almacenamiento.
Son discos apilados, cada uno de los cuales, tiene
datos registrados electromagnéticamente en círculos
concéntricos o llamadas pista (tracks), en el disco. Dos cabezas, una a cada lado de un disco,
(llamadas 0 y 1) leen o escriben los datos en el disco que gira a alta velocidad. Cada lectura
o escritura requiere que los datos se encuentran, que es una operación llamada “buscar”, en
la actualidad los nuevos discos son estáticos, o sea sin partes físicas mecánicas.
13.1 Antecedentes
La unidad de disco duro fue inventado por algunos ingenieros de IBM que trabajaban a
orden Rey Johnson en IBM en San José, CA, en alrededor de 1952 a 1954. algunas de las
persobas: Rey Johnson, John Lynott, Cronquist Don, Bob Schneider y Stevens Lou.
La primera unidad de disco IBM RAMAC tenido un par de docenas de discos, cada una de
unos 2 metros de diámetro, y una cabeza. La cabeza fue trasladada de disco a disco y de ida
y vuelta en cada disco con un sistema de cables y poleas y motores paso a paso.
La velocidad adicional de tener por lo menos una cabeza por cada superficie del disco, y de
utilizar ambas caras de cada disco, pronto se hizo evidente su modernización.
El estilo de la unidad de disco duro que se utiliza hoy en día comenzó a surgir en la década
de 1980. Probablemente fue Maxtor, con Frank Gibeau, donde el primer gran volumen 5
1/4 “unidades de disco con un actuador giratorio, VCM y un sistema servo se produjeron.
En 1986, Finis Conner dejó Seagate y fundó Conner Peripherals junto con John Squires,
y se construyó el primer gran volumen de 3 1/2 “unidades de disco. El primero de ellos,
40 MB, fue llamado el” 40 Fat “. No sólo que popularizar el nuevo pequeño “factor de
forma”, pero ellos fueron los primeros en tener un “servo incorporado” o “servo sector”
en el volumen.
Mientras tanto, Quantum Corporation había sido la construcción de 8 “y 5 1/4” unidades
de disco desde 1980, ya mediados de 1980 que vio una oportunidad con el factor de forma
de 3 1/2 “ e inventó, un disco en una tarjeta de expansión que se podía conectar a su AT. Y
así es como la interfaz IDE inicio.
Disco Winchester (Primer nombre de los disco duros)
El 3340 fue desarrollado en San Jose bajo el liderazgo de Ken Haughton. Al principio
se enfocaron en dos módulos removibles de 30 megabytes. Debido a esta configuración
30/30, el nombre en código Winchester fue seleccionado del famoso fusil Winchester 30-
30
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas
Introducción al hardware: componentes y funciones básicas

Más contenido relacionado

La actualidad más candente

Ensamblaje de computadoras
Ensamblaje de computadorasEnsamblaje de computadoras
Ensamblaje de computadorasme18186918
 
Pasos para cambiar una memoria ram
Pasos para cambiar una memoria ramPasos para cambiar una memoria ram
Pasos para cambiar una memoria ramequipo012
 
Planificación 7º grado Informática
Planificación 7º grado InformáticaPlanificación 7º grado Informática
Planificación 7º grado InformáticaBeatriz Fernandez
 
Informatica y computacion
Informatica y computacionInformatica y computacion
Informatica y computacionnepor
 
partes internas de una computadora
partes internas de una computadora partes internas de una computadora
partes internas de una computadora esdeguau27
 
Aplicaciones de la informatica
Aplicaciones de la informaticaAplicaciones de la informatica
Aplicaciones de la informaticaJorgelysArias
 
Conclusiones importancia del mantenimiento preventivo y corectivo de equipos ...
Conclusiones importancia del mantenimiento preventivo y corectivo de equipos ...Conclusiones importancia del mantenimiento preventivo y corectivo de equipos ...
Conclusiones importancia del mantenimiento preventivo y corectivo de equipos ...yury alejandra
 
ENSAMBLAJE Y MANTENIMIENTO DE COMPUTADORAS
ENSAMBLAJE Y MANTENIMIENTO DE COMPUTADORASENSAMBLAJE Y MANTENIMIENTO DE COMPUTADORAS
ENSAMBLAJE Y MANTENIMIENTO DE COMPUTADORASDanny Yokokurama
 
Ejercicios de unidades de medidad de la información (5)
Ejercicios de unidades de medidad de la información (5)Ejercicios de unidades de medidad de la información (5)
Ejercicios de unidades de medidad de la información (5)Katherine Hernandez
 
Manejo y uso adecuado de las computadoras
Manejo y uso adecuado de las computadorasManejo y uso adecuado de las computadoras
Manejo y uso adecuado de las computadorasAlex Hernandez
 
Taller arquitectura de los computadores
Taller arquitectura de los computadoresTaller arquitectura de los computadores
Taller arquitectura de los computadoresLic. Oney Begambre
 
Un mapa conceptual de hardware
Un mapa conceptual de hardwareUn mapa conceptual de hardware
Un mapa conceptual de hardwareclaugonzales95
 
Software mapa conceptual
Software mapa conceptualSoftware mapa conceptual
Software mapa conceptualxJoaquinx
 
Mapa mental computadoras
Mapa mental computadorasMapa mental computadoras
Mapa mental computadorasyuossef
 
normas de seguridad ensamble y desensamble
normas de seguridad ensamble y desensamblenormas de seguridad ensamble y desensamble
normas de seguridad ensamble y desensambledeicyarias1
 

La actualidad más candente (20)

Ensamblaje de computadoras
Ensamblaje de computadorasEnsamblaje de computadoras
Ensamblaje de computadoras
 
Pasos para cambiar una memoria ram
Pasos para cambiar una memoria ramPasos para cambiar una memoria ram
Pasos para cambiar una memoria ram
 
Planificación 7º grado Informática
Planificación 7º grado InformáticaPlanificación 7º grado Informática
Planificación 7º grado Informática
 
Presentacion de definicion de computadora
Presentacion de definicion de computadoraPresentacion de definicion de computadora
Presentacion de definicion de computadora
 
Informatica y computacion
Informatica y computacionInformatica y computacion
Informatica y computacion
 
partes internas de una computadora
partes internas de una computadora partes internas de una computadora
partes internas de una computadora
 
Aplicaciones de la informatica
Aplicaciones de la informaticaAplicaciones de la informatica
Aplicaciones de la informatica
 
Propuesta
PropuestaPropuesta
Propuesta
 
Conclusiones importancia del mantenimiento preventivo y corectivo de equipos ...
Conclusiones importancia del mantenimiento preventivo y corectivo de equipos ...Conclusiones importancia del mantenimiento preventivo y corectivo de equipos ...
Conclusiones importancia del mantenimiento preventivo y corectivo de equipos ...
 
ENSAMBLAJE Y MANTENIMIENTO DE COMPUTADORAS
ENSAMBLAJE Y MANTENIMIENTO DE COMPUTADORASENSAMBLAJE Y MANTENIMIENTO DE COMPUTADORAS
ENSAMBLAJE Y MANTENIMIENTO DE COMPUTADORAS
 
Ejercicios de unidades de medidad de la información (5)
Ejercicios de unidades de medidad de la información (5)Ejercicios de unidades de medidad de la información (5)
Ejercicios de unidades de medidad de la información (5)
 
Manejo y uso adecuado de las computadoras
Manejo y uso adecuado de las computadorasManejo y uso adecuado de las computadoras
Manejo y uso adecuado de las computadoras
 
ENSAMBLAJE DE COMPUTADORAS
ENSAMBLAJE DE COMPUTADORASENSAMBLAJE DE COMPUTADORAS
ENSAMBLAJE DE COMPUTADORAS
 
Taller arquitectura de los computadores
Taller arquitectura de los computadoresTaller arquitectura de los computadores
Taller arquitectura de los computadores
 
BATIN __2011.pdf
BATIN __2011.pdfBATIN __2011.pdf
BATIN __2011.pdf
 
Un mapa conceptual de hardware
Un mapa conceptual de hardwareUn mapa conceptual de hardware
Un mapa conceptual de hardware
 
Software mapa conceptual
Software mapa conceptualSoftware mapa conceptual
Software mapa conceptual
 
Mapa mental computadoras
Mapa mental computadorasMapa mental computadoras
Mapa mental computadoras
 
normas de seguridad ensamble y desensamble
normas de seguridad ensamble y desensamblenormas de seguridad ensamble y desensamble
normas de seguridad ensamble y desensamble
 
Desmontaje y limpieza de una pc
Desmontaje y limpieza de una pcDesmontaje y limpieza de una pc
Desmontaje y limpieza de una pc
 

Destacado

SEED - MDI: Workshop on Idea Generation
SEED - MDI: Workshop on Idea GenerationSEED - MDI: Workshop on Idea Generation
SEED - MDI: Workshop on Idea GenerationSEED MDI
 
Reference Form from Mr. Ayad Al-Rafiey
Reference Form from Mr. Ayad Al-RafieyReference Form from Mr. Ayad Al-Rafiey
Reference Form from Mr. Ayad Al-RafieyHayder Issa
 
Konglomerasi Media
Konglomerasi MediaKonglomerasi Media
Konglomerasi Mediarzkamanda
 
mitochondria ..........
 mitochondria .......... mitochondria ..........
mitochondria ..........Sachin Sahu
 
AQIDAH ISLAMIYAH 2 #YukNgaji
AQIDAH ISLAMIYAH 2 #YukNgajiAQIDAH ISLAMIYAH 2 #YukNgaji
AQIDAH ISLAMIYAH 2 #YukNgajiEKO PURNOMO
 
Kecurangan, Pengendalian Internal, dan Kas
Kecurangan, Pengendalian Internal, dan KasKecurangan, Pengendalian Internal, dan Kas
Kecurangan, Pengendalian Internal, dan KasFair Nurfachrizi
 
Recent advances in the pharmacotherapy of asthma
Recent advances in the pharmacotherapy of asthmaRecent advances in the pharmacotherapy of asthma
Recent advances in the pharmacotherapy of asthmaDr. Mohit Kulmi
 

Destacado (14)

SEED - MDI: Workshop on Idea Generation
SEED - MDI: Workshop on Idea GenerationSEED - MDI: Workshop on Idea Generation
SEED - MDI: Workshop on Idea Generation
 
Business Development
Business DevelopmentBusiness Development
Business Development
 
Reference Form from Mr. Ayad Al-Rafiey
Reference Form from Mr. Ayad Al-RafieyReference Form from Mr. Ayad Al-Rafiey
Reference Form from Mr. Ayad Al-Rafiey
 
Shutouts for Penguins
Shutouts for PenguinsShutouts for Penguins
Shutouts for Penguins
 
Cw feb scene
Cw feb sceneCw feb scene
Cw feb scene
 
Lions #1
Lions #1Lions #1
Lions #1
 
Hadlarah islamiyah
Hadlarah islamiyahHadlarah islamiyah
Hadlarah islamiyah
 
Introducción a la Quimica Analitica
Introducción a la Quimica AnaliticaIntroducción a la Quimica Analitica
Introducción a la Quimica Analitica
 
Konglomerasi Media
Konglomerasi MediaKonglomerasi Media
Konglomerasi Media
 
mitochondria ..........
 mitochondria .......... mitochondria ..........
mitochondria ..........
 
AQIDAH ISLAMIYAH 2 #YukNgaji
AQIDAH ISLAMIYAH 2 #YukNgajiAQIDAH ISLAMIYAH 2 #YukNgaji
AQIDAH ISLAMIYAH 2 #YukNgaji
 
Doxophylline and asthma
Doxophylline and asthmaDoxophylline and asthma
Doxophylline and asthma
 
Kecurangan, Pengendalian Internal, dan Kas
Kecurangan, Pengendalian Internal, dan KasKecurangan, Pengendalian Internal, dan Kas
Kecurangan, Pengendalian Internal, dan Kas
 
Recent advances in the pharmacotherapy of asthma
Recent advances in the pharmacotherapy of asthmaRecent advances in the pharmacotherapy of asthma
Recent advances in the pharmacotherapy of asthma
 

Similar a Introducción al hardware: componentes y funciones básicas

Similar a Introducción al hardware: componentes y funciones básicas (20)

Breve introduccion al hardware
Breve introduccion al hardwareBreve introduccion al hardware
Breve introduccion al hardware
 
Proyecyo final de analisis estructurado
Proyecyo final de analisis estructuradoProyecyo final de analisis estructurado
Proyecyo final de analisis estructurado
 
Conociendo la pc 1ro.
Conociendo la pc 1ro.Conociendo la pc 1ro.
Conociendo la pc 1ro.
 
Users reparacion de_notebooks
Users reparacion de_notebooksUsers reparacion de_notebooks
Users reparacion de_notebooks
 
La computadora - WebQuest
La computadora - WebQuestLa computadora - WebQuest
La computadora - WebQuest
 
Guia_AP5_Mantenimiento
Guia_AP5_MantenimientoGuia_AP5_Mantenimiento
Guia_AP5_Mantenimiento
 
Practicas Informatica EPSAvila 2021_22.pdf
Practicas Informatica EPSAvila 2021_22.pdfPracticas Informatica EPSAvila 2021_22.pdf
Practicas Informatica EPSAvila 2021_22.pdf
 
Proyecto final
Proyecto finalProyecto final
Proyecto final
 
Reku
RekuReku
Reku
 
Manual de staad.pro
Manual  de staad.pro Manual  de staad.pro
Manual de staad.pro
 
Procesador de Textos
Procesador de TextosProcesador de Textos
Procesador de Textos
 
Hardware y software
Hardware y softwareHardware y software
Hardware y software
 
Proyecto academia
Proyecto academiaProyecto academia
Proyecto academia
 
Hardware y software 1 ro
Hardware y software 1 roHardware y software 1 ro
Hardware y software 1 ro
 
Manual nuevas tecnologias
Manual nuevas tecnologiasManual nuevas tecnologias
Manual nuevas tecnologias
 
Manual nuevas tecnologias
Manual nuevas tecnologiasManual nuevas tecnologias
Manual nuevas tecnologias
 
Proyecyo final de analisis estructurado
Proyecyo final de analisis estructuradoProyecyo final de analisis estructurado
Proyecyo final de analisis estructurado
 
Hardware
HardwareHardware
Hardware
 
Ple informática básica para primaria
Ple informática básica para primariaPle informática básica para primaria
Ple informática básica para primaria
 
unidades 1 y 2
unidades 1 y 2 unidades 1 y 2
unidades 1 y 2
 

Más de ALFONSO GOMEZ HERRERA (20)

Revista ModMex 36 Revista electrónica, gratuita semestral; dedicada a la dif...
Revista ModMex 36  Revista electrónica, gratuita semestral; dedicada a la dif...Revista ModMex 36  Revista electrónica, gratuita semestral; dedicada a la dif...
Revista ModMex 36 Revista electrónica, gratuita semestral; dedicada a la dif...
 
Revista Pisteyo 21.pdf
Revista Pisteyo 21.pdfRevista Pisteyo 21.pdf
Revista Pisteyo 21.pdf
 
RmodmexPC35.pdf
RmodmexPC35.pdfRmodmexPC35.pdf
RmodmexPC35.pdf
 
Revista Pisteyo 20.pdf
Revista Pisteyo 20.pdfRevista Pisteyo 20.pdf
Revista Pisteyo 20.pdf
 
RmodmexPC34.pdf
RmodmexPC34.pdfRmodmexPC34.pdf
RmodmexPC34.pdf
 
Revista Pisteyo 19.pdf
Revista Pisteyo 19.pdfRevista Pisteyo 19.pdf
Revista Pisteyo 19.pdf
 
RmodmexPC33.pdf
RmodmexPC33.pdfRmodmexPC33.pdf
RmodmexPC33.pdf
 
Revista pisteyo18.pdf
Revista pisteyo18.pdfRevista pisteyo18.pdf
Revista pisteyo18.pdf
 
Rmodmex pc32
Rmodmex pc32Rmodmex pc32
Rmodmex pc32
 
Revista pisteyo 17
Revista pisteyo 17Revista pisteyo 17
Revista pisteyo 17
 
Rmodmex pc31
Rmodmex pc31Rmodmex pc31
Rmodmex pc31
 
Revista pisteyo 16
Revista pisteyo 16Revista pisteyo 16
Revista pisteyo 16
 
Rmodmex pc30
Rmodmex pc30Rmodmex pc30
Rmodmex pc30
 
Revista pisteyo 15
Revista pisteyo 15Revista pisteyo 15
Revista pisteyo 15
 
Rmodmex pc29
Rmodmex pc29Rmodmex pc29
Rmodmex pc29
 
Revista pisteyo 14
Revista pisteyo 14Revista pisteyo 14
Revista pisteyo 14
 
Rmodmex pc28
Rmodmex pc28Rmodmex pc28
Rmodmex pc28
 
Revista pisteyo 13
Revista pisteyo 13Revista pisteyo 13
Revista pisteyo 13
 
Rmodmex pc27
Rmodmex pc27Rmodmex pc27
Rmodmex pc27
 
Revista pisteyo 12
Revista pisteyo 12Revista pisteyo 12
Revista pisteyo 12
 

Último

trabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdftrabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdfIsabellaMontaomurill
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...silviayucra2
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan JosephBRAYANJOSEPHPEREZGOM
 
La era de la educación digital y sus desafios
La era de la educación digital y sus desafiosLa era de la educación digital y sus desafios
La era de la educación digital y sus desafiosFundación YOD YOD
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx241521559
 
KELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento ProtégelesKELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento ProtégelesFundación YOD YOD
 
Cortes-24-de-abril-Tungurahua-3 año 2024
Cortes-24-de-abril-Tungurahua-3 año 2024Cortes-24-de-abril-Tungurahua-3 año 2024
Cortes-24-de-abril-Tungurahua-3 año 2024GiovanniJavierHidalg
 
Plan de aula informatica segundo periodo.docx
Plan de aula informatica segundo periodo.docxPlan de aula informatica segundo periodo.docx
Plan de aula informatica segundo periodo.docxpabonheidy28
 
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE  DE TECNOLOGIA E INFORMATICA PRIMARIACLASE  DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIAWilbisVega
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricKeyla Dolores Méndez
 
9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudianteAndreaHuertas24
 
Hernandez_Hernandez_Practica web de la sesion 12.pptx
Hernandez_Hernandez_Practica web de la sesion 12.pptxHernandez_Hernandez_Practica web de la sesion 12.pptx
Hernandez_Hernandez_Practica web de la sesion 12.pptxJOSEMANUELHERNANDEZH11
 
Redes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfRedes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfsoporteupcology
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)GDGSucre
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveFagnerLisboa3
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíassuserf18419
 

Último (16)

trabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdftrabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdf
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Joseph
 
La era de la educación digital y sus desafios
La era de la educación digital y sus desafiosLa era de la educación digital y sus desafios
La era de la educación digital y sus desafios
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx
 
KELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento ProtégelesKELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento Protégeles
 
Cortes-24-de-abril-Tungurahua-3 año 2024
Cortes-24-de-abril-Tungurahua-3 año 2024Cortes-24-de-abril-Tungurahua-3 año 2024
Cortes-24-de-abril-Tungurahua-3 año 2024
 
Plan de aula informatica segundo periodo.docx
Plan de aula informatica segundo periodo.docxPlan de aula informatica segundo periodo.docx
Plan de aula informatica segundo periodo.docx
 
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE  DE TECNOLOGIA E INFORMATICA PRIMARIACLASE  DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
 
9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante
 
Hernandez_Hernandez_Practica web de la sesion 12.pptx
Hernandez_Hernandez_Practica web de la sesion 12.pptxHernandez_Hernandez_Practica web de la sesion 12.pptx
Hernandez_Hernandez_Practica web de la sesion 12.pptx
 
Redes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfRedes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdf
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnología
 

Introducción al hardware: componentes y funciones básicas

  • 1.
  • 2. © 2012 Modmex Internet:https://sites.google.com/site/rmodmex/ Email: agh2kmx@gmail.com Libro diseñado para distribución electrónica México ,D.F 2012 ISBN: 978-607-00-6683-2 © Breve introducción al hardware: Quedan prohibidos, dentro de los límites establecidos en la ley y bajo los apercibimientos legalmente previstos, la reproducción total o parcial de esta obra por cualquier medio o procedimiento, así como el alquiler o cualquier otra forma de cesión de la obra sin la autorización previa y por escrito de los titulares del copyright. Diríjase, http://www.modmex.com.mx, (modmex@modmex.com) Nota Importante. ® En el libro se ha distinguido algunas marca e imágenes comerciales de los términos descriptivos, siguiendo el estilo que utiliza el fabricante, sin ninguna intención de infringir la marca o logo y solo en beneficio del propietario de la mismas. La información contenida en esta obra tiene un fin exclusivamente cultural, educativo y didáctico y por lo tanto, no está previsto su aprovechamiento a nivel profesional o industrial. Esta obra es un compendio de varias obras que cumplen los requisitos pedagógicos para la enseñanza para todo aquel quiera aprender temas informáticos. Su publicación NO tiene fines de lucro, estrictamente educativo, por lo que se agradece su comprensión, Gracias. Duda y aclaraciones: editecnologicas@gmail.com
  • 4. PRÓLOGO El objetivo de este libro es explayar, de manera sencilla, como sea posible, el entendimiento y los principios básicos los conceptos del Hardware. En todo momento se trato de dar un antecedente, y así determinar el desarrollo que se ha tenido de los dispositivos más vigentes, la mejor manera de intuir nuestro presente es conociendo su origen. Iniciando por decirnos; ¿qué es el hardware?, podemos definirlo como; el conjunto de los componentes que integran la parte material de una computadora, es la parte que permite que el sistema funcione. Todos aquellos elementos físicos, tangibles, que se pueden intercambiar de un espacio a otro, manipular, etc. Por lo contrario, el software es el conjunto de instrucciones que dirigen a los componentes. No es la intención profundizar en los contenidos, siendo estos muy vasto, cualquier que fuere, es una referencia de consulta rauda e inmediata, e inicio a un estudio más detallado y profundo por parte del lector interesado. La obra es básicamente un compendio de trabajos realizados a sapiencia en cada tema, reemprendiendo las parte medulares, para que el lector pueda tener un punto de vista objetivo de; ¿qué es?, ¿para qué sirve?, y ¿cómo funciona? los elemento llamado hardware. El tratamiento de la obra fue con la intención en su entendimiento para personas que aun con no contar con muchos conocimientos en electrónica, electricidad o computación, e informática; elucidar en muchos casos los fundamentos técnicos. La primer parte, son las partes básicas del gabinete o carcasa, así como el mismo, sabemos que el desarrollo tecnológico es muy ágil en esta área, sin embargo esta obra por partir de lo más primordial servirá de consulta de manera constante. Se han tocado algunos periféricos (parte 1,2) en desuso o caducos, considerando que es importante conocerlos, siendo esta manera, la forma de percibir los periféricos actuales, como ya se menciono. Este libro tiene el fin de incentivar la cultura de la lectura, así como un estimulante a la investigación, la técnica y el pesquis científico. Se da mil gracias a toda persona que se interese, y no por leer intrínsecamente esta obra, (se agradece) también a todos los que hacen posible, la divulgación científica, técnica y la lectura. Alfonso Gómez Herrera
  • 5. Contenido 1.- INTRODUCCIÓN.........................................8 1.1 Hardware característico..................................8 1.2 Clasificación del Hardware.............................8 1.3 Definición........................................................9 1.4 Evolución de los Sistemas Informáticos.........9 1.4.1 Primera etapa: Sistema.Mecánico.................9 1.4.2 Segunda etapa: Sistema Electrónico..........10 1.5 Sus Generaciones..........................................10 2.- GABINETES EN PC.......................................12 2.1 Antecedentes.................................................12 2.2 Tipos..............................................................13 3.-MOTHERBOARD.......................................14 3.1 Las funciones básica del Motherboards........14 3.2 Partes.............................................................15 3.3 Tamaños.........................................................16 3.4 Conectores.....................................................17 3.5 FireWire.........................................................17 3.6 BIOS..............................................................18 3.7 CMOS............................................................18 3.8 EL POST........................................................19 3.8.1 CHIPSET.....................................................19 3.8.2 Northbridge.................................................19 3.8.3 Southbridge.................................................20 4.- CPU (Unidad Central de Proceso).................21 4.1 Antecedente..........................................................21 4.2 Aplicación del CPU.......................................21 4.3 Componenentes internos................................21 4.4 Tipos..............................................................22 4.5 Tipos de sockets o zócalos............................22 5.- LA MEMORIA.............................................25 5.1 Que son las memorias....................................25 5.2 Teoría de Funcionamiento.............................25 5.3 Jerarquía de memoria.....................................26 5.4 Clasificación de memorias.............................27 6.- BUSES..........................................................28 6.1 Función.........................................................28 6.2 Estructuras de interconexión........................29 6.3 Tipos de Buses...............................................29 6.3.1 Bus ISA 8/16..............................................29 6.3.2 Bus Micro Channel (MCA)........................30 6.3.3 Bus EISA...................................................31 6.3.4 VLB (Vesa Local Bus.).............................31 6.3.5 PCI (Peripheral Component Interconnect)........32 6.3.6 AGP (Accelerated Graphics Port)..............33 7.- ENTRADA/SALIDA (E/S).........................34 7.1 Sus funciones................................................34 7.2 Interrupciones (IRQ).....................................35 7.3 Dispositivos de entrada.................................36 2da PARTE..........................................................38 PERIFERICOS 1 ...............................................38 8.- TECLADOS...........................................39 8.1 Antecedente.............................................39 8.2 Funcionamiento.......................................40 8.3 Tipos........................................................41 9.- JOYSTICK.............................................41 9.1 Antecedentes...........................................41 9.2 Tipos........................................................42 10.- MOUSE.................................................43 10.1 Antecedentes..........................................43 10.2 Tipos o modelos de mouse...................43 10.3 Funcionamiento.....................................44 10.4 Mousepad...............................................45 11.- SCANNER..............................................46 11.1 Origen.....................................................46 11.2 tipos (tipicos para “PC”).........................47 11.3 Funcionamiento.......................................47 11.4 Características de un escáner...................49 12.- MODEM.................................................50 12.1 Historia....................................................50 12.2 tipos.........................................................51 12.3 Funcionamiento.......................................51 12.4 Velocidades (típicas)...............................52 13.-DISCOSDUROS......................................53 13.1Antecedentes............................................53 13.2 Partes principales.....................................54 13.3 Tecnología...............................................55 13.4. Funcionamiento......................................57 13.5 Grabación/lectura del HD.......................59 14.- DISCO FLEXIBLES (En desuso).......61 14.1 Historia....................................................61 14.2 Funcionamiento.......................................62 14.3 Partes ......................................................63 15.- TARJETA DE SONIDO........................64 15.1Antecedentes............................................64 15.2 Conectores de la tarjeta de sonido..........64 15.3 Funcionamiento.......................................65 16.-MONITORES.........................................66 16.1 Pantallas a T.R.C.....................................67 16.2 Pantalla LCD.........................................68 16.3 Comparativa............................................68 16.4 Funcionamiento.......................................69 16.5 Plasma.....................................................70 16.6 Pantalla LED...........................................71 17.- LECTORES OPTICOS.........................72 17.1 Funcionamiento......................................73 17.2 Discos......................................................75 17.3 CD-R ......................................................76 17.4Conexionado............................................77 18.- TARJETAVIDEO..................................78 18.1Antecedentes............................................78 18.2 Partes .....................................................79 18.3 Funcionamiento.......................................80 18.4 Conexiones..............................................82 19.- IMPRESORAS.......................................83 19.1Antecedentes............................................83 19.2 Características.........................................84 19.3 Impresoras Matriciales............................86 19.4 impresoras de inyección..........................88 19.5.-Impresoras láser ....................................90
  • 6. PERIFERICOS 2 ..............................................93 20.- CINTA BACKUP (Cintas de Respaldo)........94 20.1 Antecedentes...............................................94 20.2 Tecnologías.................................................95 20.3 Funcionamiento..........................................96 21.-UNIDADES ZIP........................................98 21.1 Antecedentes..............................................98 21.2 Características de las Unidades Zip...........99 21.3 Funcionamiento........................................100 22.- SISTEMA MAGNETO OPTICO (MO)........101 22.1 Antecedentes.............................................101 22.2 Funcionamiento........................................101 22.3 Unidades Floptical...................................103 23.- MEMORIAS USB (Flash).......................104 23.1 Antecedentes de la memoria flash............104 23.2 Memorias Electrónicas.............................104 23.3 Funcionamiento........................................106 23.4 Partes de la Memoria................................107 24.- PLOTTER................................................108 24.1 Antecedentes.............................................108 24.2 Caracteríticas............................................108 24.3 Tipos.........................................................109 25.- BLUETOOTH..........................................111 25.1 Antecedentes.............................................111 25.2 Versiones...................................................112 26.- REDES......................................................114 26.1 Antecedentes.............................................115 26.2 Partes........................................................115 26.3 Características...........................................116 26.4 Topologías.................................................117 27.- ROUTER- HUB- SWITCH....................118 27.1 Antecedentes.............................................119 27.2 Características...........................................120 27.3 Conexiones a redes...................................121 27.4 El RJ45.....................................................122 28.-PANTALLAS TÁCTIL O TOUCHSCREEN....123 28.1 Antecedentes.............................................123 28.2Tecnología.................................................124 29.- LÁPIZ ÓPTICO.....................................127 29.1 Antecedentes.............................................127 30.- TABLETA DIGITALIZADORA............130 30.1 Antecedentes.............................................130 30.2Tipos..........................................................131 30.3 Partes ........................................................131 30.4 Características...........................................132 31.- PROTECTOR DE PANTALLA.............133 31.1 El efecto de un filtro.................................134 31.2 Características de los filtros......................135 32.- CÁMARA DE RED (WEBCAM)..........136 32.1 Antecedentes.............................................136 32.2 Funcionamiento........................................136 32.3 Características...........................................137 33.-DIADEMA CON MICRÓFONO............138 33.1 El Micrófono.............................................138 33.2 Antecedentes del Micrófono.....................138 33.3 Clasificación Micrófono..........................139 33.4 Características...........................................144 33.5Bocinas......................................................147 33.5.1Partes......................................................147 33.6 Características técnicas.............................150 33.7 Auriculares................................................154 34.- REGULADORES DE VOLTAJE..........156 34.1Funcionamiento.........................................156 34.2 UPS (Uninterrupted Power System).........158 BIBLIOGRAFÍA............................................160
  • 7. Al parecer lo que realmente importa es la pantalla o por lo menos eso parece, ya que la mayoría esta interesada en los resultados en pantalla, en vez del trabajo que cuesta llegar a ello. Peter Norton
  • 8. 8 BREVE INTRODUCCION AL HARDWARE 1.- INTRODUCCIÓN E l Hardware: En un ordenador, computadora, o Sistema Informático, es el término en inglés que hace indicación a cualquier componente físico, que trabaja o interactúa de algún modo con el sistema. No sólo incluye elementos internos como el disco duro, etc. sino que también hace referencia al cableado, circuitos, gabinete, etc. E incluso se hace alusión a elementos externos (periféricos) la impresora, el mouse, el teclado, el monitor, etc. El hardware evoluciona rápidamente junto con el software, algunos dispositivos des- aparecen y otros aparecen, sin embargo la esencia desde su primera aparición en 1981 permanece. 1.1 Hardware característico. Su chasis, gabinete o carcasa. La placa madre, motherboard o tarjeta principal: Que contiene: CPU, (ventilador; “cooler”), RAM, BIOS, BUSES, USB, etc. Fuente de alimentación. Controladores de almacenamiento: IDE, SATA, SCSI. Controlador de video. Controladores del bus de la computadora (paralelo, serial, USB, FireWire), para conectarla a periféricos. Almacenamiento: disco duro, CD-ROM, unidades ZIP, driver u otros. Tarjeta de sonido. Redes: módem y tarjeta de red. Etc. Hardware externo: (llamado periféricos) Teclado, Mouse, TrackBall, Joystick, Gamepad, Escáner, webcam, Micrófono, Bocina, Monitor (LCD, o CRT), Impresora, etc. 1.2 Clasificación del Hardware. Clasificación por la ubicación del hardware: Periféricos (componentes externos): dispositivos externos a la computadora. Componentes internos: dispositivos que son internos al gabinete. Puertos: conectan los periféricos con los componentes internos Clasificación por el flujo de información del hardware Periféricos de salida: monitor, impresora, etc. Periféricos de entrada: teclado, mouse, etc. Periféricos/dispositivos de almacenamiento: disco duro, memorias, etc. Periféricos de comunicación: módem, puertos, etc. Dispositivos de procesamiento: CPU, microprocesador, placa madre, etc.
  • 9. 9 ALFONSO GOMEZ HERRERA 1.3 Definición: La Real Academia Española define al hardware como el conjunto de los componentes que conforman la parte material (física) de una computadora, a diferencia del software que refiere a los componentes lógicos (intangibles). Sin embargo, el concepto suele ser entendido de manera más amplia y se utiliza para denominar a todos los componentes físicos de una tecnología. 1.4 Evolución de los Sistemas Informáticos: 1.4.1 Primera etapa: Sistema Mecánico. Los primeros pasos mecánicos para la realización de cálculos se remontan del año 30,000 A.C. con la utilización de rayas en huesos o palos. Fue mejorado con la creación del Ábaco. La idea de crear máquinas para resolver problemas matemáticos data hasta el siglo 17, cuando los matemáticos de la época diseñaban e implementaban calculadoras capaces de realizar las cuatro funciones elementales. Matemáticos como Wilhelm Schickard, Blaise Pascal y Gottfried Leibnitz. El inicio de esta época está marcado por la creación del alemán Wilhelm Schickard, profesor de la Universidad de Tübingen y astrónomo, quien diseñó la primera calculadora que se encargaba de sumar y restar en 1623. El modelo fue destruido en un incendio, fue considerado como la primera calculadora mecánica. El primer dispositivo de cómputo de propósito múltiple, que podía realizar más de una tarea predefinida, fue la Máquina diferencial de Charles Babbage, cuyo desarrollo comenzó en 1822 y nunca fue completado por Babbage, pero que su hijo, Henry Prevost Babbage, continuó de manera intermitente de 1880 a 1910. Una máquina con características más ambiciosas fue la Máquina Analítica, que fuera concebida en 1834 y terminada de diseñar en 1842 y tuviera el mismo término que la máquina diferencial. Charles Babbage era un hombre que estaba adelantado a su época. Muchos historiadores piensan que la mayor razón por la cual nunca pudo completar estos proyectos fue el hecho de que la tecnología del momento no era lo suficientemente confiable. Sin menoscabo de que ninguna de sus máquinas llegase a ser completada, Babbage y sus colegas, especialmente Ada Augusta, Condesa de Lovelace, reconoció varias técnicas de programación, incluyendo los ciclos condicionales, repetidos y variables de indización. Una máquina inspirada por el diseño de Babbage fue la creada por George Scheutz, quien después de estudiar los trabajos de Babbage sobre la Máquina diferencial comenzó a trabajar en 1833 junto con su hijo Edvard Scheutz en una versión reducida. Ya en1853 con la construcción de una máquina que podía procesar números de 15 dígitos y calcular diferencias de cuarto nivel. Esta máquina ganó una medalla de oro en la Exhibición de París en 1855, y luego fue vendida al observatorio Dudley en Albany, Nueva York, donde fue utilizado para calcular la órbita de Marte.
  • 10. 10 BREVE INTRODUCCION AL HARDWARE 1.4.2 Segunda etapa: Sistema Electrónico. Fue1932  Vannevar Bush construyo en el Instituto Tecnológico de Massachussets (MIT) una calculadora electromecánica conocida como el analizador diferencial, pero era de propósito específico y no tenía capacidad de programación. Igualmente en 1944 se construyo en la Universidad de Harvard la computadora MARK I, diseñada por un equipo encabezado por Howard H. Aiken.  No obstante no era de propósito general y su funcionamiento estaba basado en relevadores. Un equipo dirigido por los Doctores John Mauchly y John Ecker de la Universidad de Pennsylvania, termino en 1947 la ENIAC (Electronic Numerical Integrator And Computer) que puede ser considerada como la primera computadora digital, electrónica de la historia. Esta máquina era enorme media 10 x 16 metros, ocupaba el sótano de una Universidad, pesaba 30 tonelada, tenia 17,468 tubos  de vació y 60000 relevadores, consumía 140 Kw y requería un sistema de aire acondicionado industrial.  Pero era capaz de efectuar alrededor de 5000 sumas o 2800 multiplicaciones en un segundo, calculo el valor de la constate Π. Como entre otras cosas iba a reemplazar a un grupo de matemáticas que hacia cómputos numéricos para una oficina especializada, recibió el nombre de “computadora”. El proyecto concluyo 2 años después cuando se integro al equipo John Von Neuman (1903-1957), quien es considerado el padre de las computadoras. El nuevo equipo diseño la EDVAC (Electronic Discrete Variable Automatic Computer), tenía cerca de 40,000 bulbos y usaban un tipo de memoria basado en tubos de mercurio donde circulaban señales eléctricas sujetas a retardos. La nueva idea fundamental resulta muy sencilla, pero de vital importancia: permitir que en la memoria coexistan datos con instrucciones, para que entonces la computadora pueda ser programada de manera “suave” y no por medio de alambres que eléctricamente interconectaban varias secciones de control, como la ENIAC. 1.5 Sus Generaciones. En la evolución de las máquinas por su tratamiento automático de la información marcan la diferencia entre las denominadas generaciones. Las generaciones habidas hasta la actualidad han sido:
  • 11. 11 ALFONSO GOMEZ HERRERA 1ª generación: (1946-1955) Computadoras basados en válvula1 de vacío que se programaron en lenguaje máquina 2ª generación: (1953-1964) Computadoras de transistores2 . Evolucionan los modos de direccionamiento. Genera los lenguajes de alto nivel. 3ª generación: (1964-1974) Computadoras basados en circuitos integrados3 y con la posibilidad de trabajar en Tiempo compartido. 4ª generación: (1974- ) Computadoras Que integran toda la CPU en un solo circuito integrado (Microprocesadores). Comienzan a proliferar las redes de computadoras. 1 La primer válvulas eléctricas, fue el diodo de John Ambrose Fleming descubrió en 1904 que al colocar dentro de una bombilla incandescente un electrodo algo alejado del filamento se establecía una corriente entre el filamento y ese electrodo, esto fue basándose a los estudio de Edison. Dos años después de la invención del diodo de vacío, el físico estadounidense Lee De Forest le agregó una rejilla para regular entre ánodo y cátodo la tensión, inventando el tríodo, así continuando sus avances. 2 Los transistores, desarrollados en 1947 por los físicos W. Shockley, J. Bardeen y W. Brattain – potenciarían el desarrollo de los sistemas infomáticos. Y todo a bajos voltajes, sin necesidad de disipar energía (como era el caso del filamento), en dimensiones reducidas y sin partes móviles o incandescentes que pudieran romperse. 3 El creador del primer circuito integrado, fue el ingeniero electrónico estadounidense Jack Kilby, en el año 1959, pocos meses después de ser contratado por Texas Instruments. Se trataba de un dispositivo que integraba seis transistores sobre una misma base semiconductora (se le llamada “chip”; brizna) para formar un oscilador de rotación de fase. A los 77 años, en el año 2000, Kilby fue galardonado con el Premio Nobel de Física por su contribución al desarrollo de la tecnología de la información.
  • 12. 12 BREVE INTRODUCCION AL HARDWARE 2.- GABINETES EN PC La apariencia de la computadora es una caja metálica con diversos botones e ndicadores: 2.1 Antecedentes: Para entender la estructura actual de los gabinetes, torres, cajas, chasis o carcasa; es la estructura que contiene todas las partes de nuestro sistema informático, es necesario recordar primeramente las primera computadoras como estructuras gigantes, o sea las macro computadoras, fue en 1972 que la empresa Intel fabrico el primer microprocesador siendo el 4004, dando pie a las primeras computadoras para el hogar, las primeras minicomputadoras (el concepto de PC de IBM fue hasta 1981), estas maquinas eran sencillas, comprendían únicamente el teclado, dentro del contenía todos los circuitos, el monitor era nuestra televisión. (Casos como la Commodore, Tandy, etc., exceptoApple que vendía su propio monitor). En la tercera generación de la evolución, con la intervención de la Amiga 1000 en 1985, y antes, la famosa caja “gris” de IBM, se inauguraron las cajas de escritorio (Desktop). Este nuevo tipo de diseño duraría mucho tiempo ya que se encontraría en la mayoría de los equipos hasta 1992-1993. Se presenta como una caja separada del teclado por un cable así como del monitor. Concebida para reposar sobre el escritorio y colocar la pantalla sobre ella. La siguiente evolución, se hizo ha mediado de los años 90s; se trató de colocar la caja en modo vertical: la se llamo torre. Esto permitió aumentar el tamaño interno considerablemente y colocar los dispositivos de lectura perpendiculares a la carcasa aprovechando más el espacio para su colocación. Alrededor de los años 1990 las cajas solían tener toda una forma rectangular y normalmente de color beige. En 1998 Apple apostó por gabinetes con diseños y colores más estéticos incluso llegando a reducir su tamaño. Desde entonces las compañías fabrican carcasas que tienen una vistas más agradables. Desde 2007 las cajas más vendidas eran de un color negro o gris metalizado. En la actualidad con el advenimiento del movimiento llamado “Modding” los gabinetes son de todo tipo y características.
  • 13. 13 ALFONSO GOMEZ HERRERA Slim-case Desktop Mini-Tower Medium-tower Server Full-Tower 2.2 Tipos. Es muy similar al Desktop, pero este, es de menores dimensiones para ocupar menos espacio en el escritorio, normalmente es de 2 a 5 bahías de 3½ y una a 2 de 5¼. Típicamente se utiliza para terminal en una red. (A) Quizás es el gabinete más popular, tiene una disposición horizontal y buen espacio para una expansión, normalmente contiene 2 a 3 bahías de 3 ½ y 2 a 5 de5¼ (B) Es el gabinete de gran popularidad, es económico, tiene perfil vertical. El monitor se coloca a un lado, es bastante bueno para una posible expansión. (C) Es de media popularidad buena combinación de tamaño y precio tiene un arreglo comúnmente de 3 bahías de 5¼ y 3 a 4 de 3 ½, gran libertada de expansión con Bahías libres (D) Son utilizados en aplicaciones donde la expansión es un factor prioritario. Como plataforma multimedia. Tiene arreglo como 7 a 9 bahías de 5¼ y una de 3 ½ dado su tamaño va colocado en el piso (E) Es el gabinete más grande con arreglos de 10 o más bahías de 5¼, Como su nombre lo indica sirve como Servidor para una red tipo Lan (F) Nota: El tamaño del gabinete va en proporción a la potencia. De las fuentes de alimentación, pensando en una posible expansión y consumo de energía de los circuitos nuevos anexados. Los factores ven de 150 Vatios a 600 Vatios en Server.
  • 14. 14 BREVE INTRODUCCION AL HARDWARE 3.-MOTHERBOARD La placa base, también conocida como placa madre o tarjeta madre (inglés; motherboard o mainboard) es un complejo de circuito impreso (PCB)*, que es la parte central principal de la computadora. Es una plataforma que ofrece conexiones eléctricas a través del cual otros componentes se comunican, y también alberga la unidad de procesamiento central (CPU), generalmente referidas como el cerebro de la computadora Antes de la invención de los microprocesadores, las computadoras se construyeron en mainframes con componentes que estaban conectados por un plano posterior que tenía ranuras innumerables para la conexión de cables. En los diseños antiguos, los cables son necesarios para conectar los pines del conector de tarjeta pero pronto se convirtió en una cosa del pasado con la invención de los PCB. La CPU, la memoria y otros periféricos se alojaron todos en esta placa de circuito impreso. Circuito alambrado Circuito Impreso 3.1 Las funciones básica del Motherboards 1. Distribuir alimentación a los circuitos. 2. Proveer los datos por los bus de información para las señales de control e información. 3. Ofrece varios sockets o puertos para conectar componentes externos. 4. Proveen puertos de expansión para añadir circuitos. *Printed circuit board: placa de circuito impreso, es utilizada para apoyar mecánicamente y conectar eléctricamente componentes electrónicos usando vías conductoras, pistas de señales grabadas de cobre, hojas laminadas sobre un no conductor. También se conoce como placa de cableado impreso (PWB). El ingeniero austriaco Paul Eisler inventó el circuito impreso mientras trabajaba en Inglaterra alrededor de 1936. Alrededor de 1943, los EE.UU. comenzó a usar la tecnología en gran escala para hacer espoletas de proximidad para su uso en la Segunda Guerra Mundial. Después de la guerra, en 1948, los EE.UU. publicó la invención para el uso comercial. Circuitos impresos no se convirtió en un lugar común en la electrónica de consumo hasta mediados de 1950.
  • 15. 15 ALFONSO GOMEZ HERRERA 3.2 Partes • BIOS (Basic Input Output System) Es un programa que contiene, un conjunto de instrucciones básicas que permiten el arranque del Motherboard.  • CHIPSET- Es el conjunto del Northbridge y del Southbridge los cuales ayudan al CPU en su desempeño. • CPU SOCKET- Es el lugar en donde se conecta el Procesador. • MEMORY SLOT- Es el lugar donde se conectan las memorias. • PCI PORTS-Peripheral Component Interconnect. Puerto • AGP PORT- Puerto exclusivo para tarjetas de video. • Conectores IDE o ATA, son los puertos que me permiten conectar discos duros y ópticos mediante un cable cinta. • FlOPPY (Desuso) • AMR-(Audio Modem Riser) está integrado en algunos Motherboards. • POWER SUPPLY CONNECTOR, Donde conectamos la corriente que viene del Power Supply.  • BATERÍA- Se encarga de proveer carga para mantener información vital del BIOS. • CONECTORES PS2-IBM Personal System 2- conectores del Mouse y del teclado. • PARALELL PORT 25 PINS – Puerto de conexión paralelo de 25 pines.  Conectamos Impresoras, Scanners, etc. • PUERTO SERIAL 9 PINE- Conectamos Impresoras y otros equipos. • PUERTO VGA 15 PIN- Video Graphic Adapter, salida para el monitor. • USB CONNECTORS-Universal Serial Bus, conectamos todo tipo de periféricos. • ETHERNET CONNECTOR- Conectamos el plug RJ-45 para conectarnos a switches, hubs, routers e impresoras. • CONECTORES AUDIO OUT, AUDIO IN, IN/OUT DE 1/8- salidas y entradas para equipos de audio. • FIREWIRE IEEE 1394-conector rápido para video y otros.
  • 16. 16 BREVE INTRODUCCION AL HARDWARE 3.3 Tamaños • XT (8.5 × 11” or 216 × 279 mm) • AT (12 × 11”–13” o 305 × 279–330 mm) • Baby-AT (8.5” × 10”–13” o 216 mm × 254-330 mm) • ATX (Intel 1996; 12” × 9.6” o 305 mm × 244 mm) • EATX (12” × 13” o 305mm × 330 mm) • Mini-ATX (11.2” × 8.2” o 284 mm × 208 mm) • microATX (1996; 9.6” × 9.6” o 244 mm × 244 mm) • LPX (9” × 11”–13” o 229 mm × 279–330 mm) • Mini-LPX (8”–9” × 10”–11” o 203–229 mm × 254–279 mm) • NLX (Intel 1999; 8”–9” × 10”-13.6” o 203–229 mm × 254–345 mm) • FlexATX (Intel 1999; 9.6” × 9.6” o 244 × 244 mm max.) • Mini-ITX (VIA Technologies 2003; 6.7” × 6.7” o 170 mm × 170 mm max.; 100W max.) • Nano-ITX (VIA Technologies 2004; 120 mm × 120 mm max.) • BTX (Intel 2004; 12.8” × 10.5” o 325 mm × 267 mm max.) • MicroBTX (Intel 2004; 10.4” × 10.5” o 264 mm × 267 mm max.) • PicoBTX (Intel 2004; 8.0” × 10.5” o 203 mm × 267 mm max.) • WTX (Intel 1998; 14” × 16.75” o 355.6 mm × 425.4 mm) • ETX y PC/104, utilizados en sistemas especiales.
  • 17. 17 ALFONSO GOMEZ HERRERA 3.4 Conectores 1) Conectores PS/2 para mouse y teclado: incorporan un icono para distinguir su uso. 2) Puerto paralelo: utilizado por la impresora. Actualmente reemplazado por USB. 3) Conectores de sonido: las tarjetas madre modernas incluyen una placa de sonido con todas sus conexiones. 4) Puerto serie: utilizado para mouse y conexiones de baja velocidad entre PCS. 5) Puerto USB: puerto de alta velocidad empleado por muchos dispositivos externos, como los escáneres o las cámaras digitales. 6) Puerto FireWire*: puerto de alta velocidad empleado por muchos dispositivos externos. No todas las tarjetas madre cuentan con una conexión de este tipo. 7) Red: generalmente las tarjetas madre de última generación incorporan una placa de red y la conexión correspondiente. 3.5 FireWire AppleinventóelFireWireamediadosdelos90S yloconvirtióenelestándarmultiplataforma IEEE 1394, siendo el primer fabricante de computadoras que incluyó FireWire en toda sus de productos. FireWire es una tecnología para la entrada/salida de datos en serie a alta velocidad y la conexión de dispositivos digitales con un ancho de banda 30 veces superior al conocido estándar de periféricos USB 1.1, el FireWiere 400 se ha convertido en el estándar más respetado para la transferencia de datos a alta velocidad. Ahora Apple ha duplicado la velocidad de transferencia con su implementación del estándar IEEE 1394b FireWire 800. Se ha convertido en la interfaz preferida de los sectores de audio y vídeo digital, reúne numerosas ventajas, entre las que se encuentran la elevada velocidad, la flexibilidad de la conexión y la capacidad de conectar un máximo de 63 dispositivos.
  • 18. 18 BREVE INTRODUCCION AL HARDWARE 3.6 BIOS El acrónimo BIOS (Basic Input/Output System) fue inventado por Gary Kildall el creador del sistema operativo CP/M en 1975, siendo el nombre de un archivo del sistema. Las máquinas con CP/M usualmente tenían una ROM muy simple que hacía que la unidad de diskette leyera datos desde su primera posición de memoria donde se encontraba la primera instrucción del archivo BIOS que se encargaba de configurar el sistema o programa. La BIOS (Sistema básico de entrada/salida) es una memoria ROM, EPROM o FLASH- RAM la cual contiene las rutinas de más bajo nivel que hace posible que la computadora pueda arrancar, controlando el teclado, el disco y la disquetera permite pasar el control al sistema operativo.   Además, la BIOS se afirma en otra memoria, la CMOS, que almacena todos los datos propios de la configuración de la computadora, como pueden ser los discos rígidos instalados, número de cabezas, cilindros, número y tipo de disqueteras, la fecha, hora, etc., . así como otros parámetros necesarios para el correcto funcionamiento de la computadora.   Esta memoria está siendo alimentada constantemente por un acumulador (pila), de manera que, una vez apagada la computadora no se pierdan todos esos datos y parámetros previamente establecidos que la computadora necesita para funcionar y poder iniciar. Actualmente todas las placas base suelen venir con una pila tipo “moneda”, la cual tiene una duración de unos 4 ó 5 años aproximadamente, y es muy fácil de reemplazar.Antes, las placas base la traían un soldada a la misma, en realidad eran tres pilas en serie embutidas en un plástico cobertor. Esto dificultaba muchísimo el cambio para usuarios inexpertos, además de otros problemas como que la pila tuviera pérdidas y se sulfataran junto con la placa. Existen muchos fabricantes de BIOS, pero el mercado está dominado prácticamente por: Award, AMI y Phoenix, y lo más seguro es que nuestro computadora tenga una BIOS de uno de estos fabricantes 3.7 CMOS LaCMOS(ComplementaryMetalOxideSemiconductor – Semiconductor Complementario de Oxido de Metal) es una porción de 64 bytes encargada de almacenar los valores y ajustes de la BIOS (ajustes de usuario). Podemos almacenar datos como; la fecha y la hora, los parámetros del disco duro, la secuencia de arranque o la configuración de los puertos, etc.
  • 19. 19 ALFONSO GOMEZ HERRERA   La BIOS es una memoria no volátil (ROM) y que sus datos están guardados y son inalterables, en cambio, la CMOS es una memoria de tipo RAM y los datos que se guardan se pueden alterar pero también se borrarán en caso de existir algún corte de energía. Para prevenir que se de esta situación, es decir, que se borren los datos definidos por el usuario, se hace uso de una pila que alimentará esta memoria siempre que nuestra PC no esté en funcionamiento. Para poder entar al Setup del BIOS, generalmente suele ser la tecla delete, pero varía según el fabricante de la misma, pudiendo ser la tecla Esc, F1, F2, Alt+Esc, Alt +F1, etc. pero lo normal es que también nos aparezca un mensaje que nos avise de qué tecla es la que nos permitirá entrar al menú mencionado. 3.8 EL POST El POST es el acrónimo en inglés de Power On Self Test (Auto prueba de encendido). Es un proceso de verificación e inicialización de los componentes de entrada y salida en un sistema de cómputo que se encarga de configurar y diagnosticar el estado del hardware. Existen 3 métodos de Post. 1.- Pitidos al iniciar 2.-Expedicion de código en pantalla 3.-Leyenda en pantalla. 3.8.1 CHIPSET Es el enlace principal del CPU con todo el sistema. Es el conjunto de chips encargados de controlar las funciones de la placa base, así como de interconectar los demás elementos de la misma.  Hay varios fabricantes de chipset, siendo los principales INTEL, VIA y SiS.  También NVidia. Los principales elementos del chipset son: 3.8.2 Northbridge Aparecido junto con las placasATX (las placasAT carecían de este chip), debe su nombre a la colocación inicial del mismo, en la parte norte (superior) de la placa base. Es el chip más importante, encargado de controlar y comunicar el microprocesador, la comunicación con la tarjeta gráfica AGP y la memoria RAM, estando a su vez conectado con el SouthBridge. AMD ha desarrollado en sus procesadores una función que controla la memoria directamente desde el éste, descargando de este trabajo al NorthBridge y aumentando significativamente el rendimiento de la memoria. Actualmente tienen un bus de datos de 64 bit y unas frecuencias de entre 400 Mhz y 1333 Mhz. Dado este alto rendimiento, generan una alta temperatura, por lo que suelen tener un disipador y en muchos casos un ventilador.
  • 20. 20 BREVE INTRODUCCION AL HARDWARE 3.8.3 Southbridge Es el encargado de conectar y controlar los dispositivos de Entrada/Salida, tales como los slot PCI, teclado, mouse, discos duros, lectores de DVD, lectores de tarjetas, puertos USB, etc. Se conecta con el microprocesador a través de NorthBridge. VIA ha desarrollado en colaboración con AMD interfaces mejorados de transmisión de datos entre el SouthBridge y el NorthBridge, como el HYPER TRANSPORT, que son interfaces de alto rendimiento, de entre 200 Mhz y 1400 Mhz  (el bus PCI trabaja entre 33 Mhz y 66 Mhz), con bus DDR, lo que permite una doble tasa de transferencia de datos, es decir, transferir datos por dos canales simultáneamente por cada ciclo de reloj, evitando con ello el cuello de botella que se forma en este tipo de comunicaciones, y en colaboración con INTEL el sistema V-Link, que permite la transmisión de datos entre el SouthBridge y el NorthBridge a 1333 Mhz.
  • 21. 21 ALFONSO GOMEZ HERRERA 4.- CPU (Unidad Central de Proceso). 4.1 Antecedente: El primer CPU en un solo chip (Intel 4004) fue el inventado en noviembre de 1971, un procesador de 4-bit para una calculadora. Se procesaron los datos de 4 bits, pero sus instrucciones eran 8 bits de longitud. En 1972, Instrumentos Texas, seguido el Intel 4004/4040 estrechamente con el TMS 4-bit 1000, que fue el primer microprocesador para incluir suficiente memoria RAM, y espacio para una ROM de programa, para permitir al equipo funcionar sin múltiples chips de soporte externos. También ofreció una innovadora función para agregar instrucciones a la medida a la CPU. 4.2 Aplicación del CPU. Es un circuito miniatura que interpreta y ejecuta instrucciones. Este se ocupa del control y el proceso de datos en los sistemas. Habitualmente, el CPU es un microprocesador fabricado en un chip, un único trozo de silicio que contiene millones de componentes electrónicos (transistores). Está formado por una unidad aritmético-lógica que realiza cálculos y comparaciones, y toma decisiones lógicas (establece SI, NO, mediante las reglas del álgebra de Boole); por una serie de registros donde se almacena información temporalmente, y por una unidad de control que interpreta y ejecuta las instrucciones. Para aceptar órdenes del usuario, acceder a los datos y presentar los resultados, la CPU se comunica a través de un conjunto de circuitos o conexiones llamados bus. 4.3 Componenentes internos. • Unidad de control: Controla el funcionamiento del CPU y por tanto del sistema. • Unidad aritmético-lógica (ALU): Encargada de llevar a cabo las funciones de procesamiento de datos de la computadora. • Registros: Proporcionan almacenamiento interno a la CPU. • Interconexiones CPU: Son mecanismos que proporcionan comunicación entre la unidad de control, la ALU y los registros.
  • 22. 22 BREVE INTRODUCCION AL HARDWARE 4.4 Tipos 1-RISC (Reduced-Instruction-Set Computing). Los microprocesadores RISC se basan en la idea de que la mayoría de las instrucciones para realizar procesos en el computador son relativamente simples por lo que se minimiza el número de instrucciones y su complejidad a la hora de diseñar el CPU. Algunos ejemplos de arquitectura RISC son el SPARC de Sun Microsystem’s, el microprocesador Alpha diseñado por la antigua Digital, y los Motorola 88000 y PowerPC. Estos procesadores se suelen emplear en aplicaciones industriales y profesionales por su gran rendimiento y confianza. 2.-CISC complex-instruction-set computing), al contrario, tienen una gran cantidad de instrucciones y por tanto son muy rápidos procesando código complejo. Los CPU´s CISC más extendidas son las de la familia 80x86 de Intel cuyo último micro es el Pentium II. Últimamente han aparecido otras compañías como Cirix y AMD que fabrican procesadores con el juego de instrucciones 80x86 y a un precio sensiblemente inferior al de los microprocesadores de Intel. Además, tanto Intel con MMX como AMD con su especificación 3D-Now! están apostando por extender el conjunto de instrucciones de la CPU para que trabaje más eficientemente con tratamiento de imágenes y aplicaciones en 3 dimensiones. 4.5 Tipos de sockets o zócalos Tipos de Sockets: Lo diferentes tipos son:  (y no se conectan igual a todas las placas.) Socket con un mecanismo ZIF (Zero insertion force), en ellas el procesador se inserta y se retira sin necesidad de ejercer alguna presión sobre el al levantarse la palanca, que hay a lado se liberara el microprocesador. SlotA/Slot1/Solt2 existieron durante una generación importante de PC (1991-2000 aprox.) reemplazando los socket donde se conectan respectivamente los primeros procesadores Athlon de AMD, los procesadores Pentium II,III los Xenón de Intel dedicados a servidores de red. En las placas más antiguas el micro estaba soldado de forma que no podía actualizarse.
  • 24. 24 BREVE INTRODUCCION AL HARDWARE 1.-Dual in line* 2.-286* 3.-386 4.-SOCKET 6   5.-SOCKETS 3  6.-SOCKET2  7.-SOCKET 1   8.-SOCKETS 486  9.-SOCKET NEXT/GEN  10.-SOCKET 7   11.-SOCKETS 5  12.-SOCKTES 4    13.-SOCKET 370S 14.-SOCKET 370         15.-SLOT A 16.-SLOT 2    17.-SLOT 1       18.-SCOKET 8 19.-SOCKET 479 20.-SOCKET 603/604 21.-SOCKET 478    22.-423 23.-A/462   24.-PAC611     25.-PACA 18  26.-SOCKET S1  27.-SOCKET M2  28.-SOCKET F 29.-SOCKETT 771  30.-940   31.-SOCKET 754   32.-SOCKET AM2 33.-SOCKET 939 3.-SOCKET 775 o T Siglas: LIF: Low Insertion Force (sin palanca) PGA: Pin grid array SECC: Single Edge Contract Cartridge SEPP: Single Edge Processor Package SPGA: Staggered Pin Grid Array VID VRM: Voltage ID Voltage Regulator Module (el voltaje del CPU se puede variar en la BIOS) VLIF: Very Low Insertion Force ZIF: Zero Insertion Force (con palanca) *podría venir soldado en el PCB
  • 25. 25 ALFONSO GOMEZ HERRERA 5.- LA MEMORIA 5.1 Que son las memorias. La memoria es el recurso que determina el tamaño y el número de programas que pueden ejecutarse al mismo tiempo, así como también la cantidad de datos que pueden procesarse instantáneamente. La memoria contiene casilleros electrónicos, donde cada casilla contiene un byte de datos o instrucción. Cada casilla tiene una dirección separada y puede manipularse de manera independiente. Como resultado, de la computadora puede descomponer los programas en instrucciones para ejecución y los registros* de datos en campos para procesamiento. Estas permiten almacenar y recuperar la información. En un sentido más amplio, puede referirse también a sistemas externos de almacenamiento, como las unidades de disco o de cinta, etc. 5.2 Teoría de Funcionamiento. La memoria es circuito integrado que puede almacenar información digital. Se pueden leer y escribir datos de tipo binario, “0” y “1”, en cantidades muy grandes, organizados normalmente en grupos de 8bit, que llamamos bytes. Para lograr escribir y guardar datos tipo binarios, se utilizan un transistor y un capacitor acoplados para crear una celda de memoria, la cual puede guardar un bit de información un “0” o un “1”. El transistor funciona como un interruptor que permite al circuito de control leer la carga del capacitor o cambiar su estado. Un capacitor es como una pequeña cubeta que permite almacenar electrones. Para guardar un “1” en la celda de memoria, la cubeta se llena con electrones. Para guardar un “0”, se vacía. El principio es un transistor y dispositivos discretos, este conjunto conforma las llamadas compuertas, esta conforman los llamados flip flop. *Los registros están en la parte superior en la operación, es la manera más rápida que tiene el sistema de almacenar datos. Los registros se miden generalmente por el número de bits que almacenan; por ejemplo, un “registro de 8 bits” o un “registro de 32 bits”.
  • 26. 26 BREVE INTRODUCCION AL HARDWARE 5.3 Jerarquía de memoria • Registros de procesador: Estos registros interaccionan continuamente con la CPU (porque forman parte de ella). Los registros tienen un tiempo de acceso muy pequeño y una capacidad mínima, normalmente igual a la palabra del procesador (1 a 8 bytes). • Registros intermedios: Constituyen un paso intermedio entre el procesador y la memoria, tienen un tiempo de acceso muy breve y muy poca capacidad. • Memorias caché: Son memorias de pequeña capacidad. Normalmente una pequeña fracción de la memoria principal, y pequeño tiempo de acceso. Este nivel de memoria se coloca entre la CPU y la memoria central. Hace algunos años este nivel era exclusivo de las computadoras grandes pero actualmente todas las computadoras lo incorporan. Dentro de la memoria caché puede haber, a su vez, dos niveles denominados caché on chip, memoria caché dentro del circuito integrado, y caché on board, memoria caché en la placa de circuito impreso pero fuera del circuito integrado, evidentemente, por razones físicas, la primera es mucho más rápida que la segunda. Existe también una técnica, denominada Arquitectura Harvard, en cierto modo contrapuesto a la idea de J.Von Newmann, que utiliza memorias caché separadas para código y datos. Esto tiene algunas ventajas como se verá en este capítulo. • Memoria central o principal: En este nivel residen los programas y los datos. El CPU lee y escribe datos en él aunque con menos frecuencia que en los niveles anteriores. Tiene un tiempo de Acceso relativamente rápido y gran capacidad. • Extensiones de memoria central: Son memorias de la misma naturaleza que la memoria central que amplían su capacidad de forma modular. El tiempo de similar, a lo sumo un poco mayor, al de la memoria central y su capacidad puede ser algunas veces mayor. • Memorias de masas o auxiliares: Son memorias que residen en dispositivos externos a la computadora, en ellas se archivan programas y datos para su uso posterior. También se usan estas memorias para apoyo de la memoria central en caso de que ésta sea insuficiente (memoria virtual). Estas memorias suelen tener gran capacidad pero pueden llegar a tener un tiempo de acceso muy lento. Dentro de ellas también se pueden establecer varios niveles de jerarquía.
  • 27. 27 ALFONSO GOMEZ HERRERA 5.4 Clasificación de memorias Las memorias se clasifican, por la tecnología empleada y, además según la forma en que se puede modificar su contenido, A este respecto, las memorias se clasifican en dos grandes grupos: 1) Memorias RAM: Son memorias en las que se puede leer y escribir, si bien su nombre (Random access memory). Por su tecnología pueden ser de ferritas (origen) o electrónicas, Dentro de éstas últimas hay memorias estáticas (SRAM, static RAM), cuya célula de memoria está basada en un biestable, y memorias dinámicas (DRAM, dinamic RAM, en las que la célula de memoria es un pequeño condensador cuya carga representa la información almacenada. Las memorias dinámicas necesitan circuitos adicionales de refresco ya que los condensadores tienen muy poca capacidad y, a través de las fugas, la información puede perderse, por otra parte, son de lectura destructiva. 2) Memorias ROM (Read 0nly Memory): Son memorias en las que sólo se puede leer. Pueden ser: • ROM programadas por máscara, cuya información se graba en fábrica y no se puede modificar. • PROM, o ROM programable una sola vez. • EPROM (erasable PROM) o RPROM (reprogramable ROM), cuyo contenido puede borrarse mediante rayos ultravioletas para regrabarlas. • EAROM (electrically alterable ROM) o EEROM (electrically erasable ROM), que son memorias que están en la frontera entre las RAM y las ROM ya que su contenido puede regrabarse por medios eléctricos, estas se diferencian de las RAM en que no son volátiles. En ocasiones a este tipo de memorias también se las denomina NVRAM (no volátil RAM). • Memoria FLASH, denominada así por la velocidad con la que puede reprogramarse, utilizan tecnología de borrado eléctrico al igual que las EEPROM. Las memorias flash pueden borrarse enteras en unos cuantos segundos, mucho más rápido que las EPROM.
  • 28. 28 BREVE INTRODUCCION AL HARDWARE 6.- BUSES 6.1 Función. Se denomina bus, en informática, al conjunto de conexiones físicas (cables, placa de circuito impreso, etc.) que pueden compartirse con múltiples componentes de hardware para que se comuniquen entre sí. El propósito de los buses es reducir el número de rutas necesarias para la comunicación entre los distintos componentes, al realizar las comunicaciones a través de un solo canal de datos. Un bus es en esencia una ruta compartida que conecta diferentes partes del sistema, como el microprocesador, la controladora de unidad de disco, la memoria y los puertos de entrada/salida (E/S), para permitir la transmisión de información. En el bus se encuentran dos pistas separadas, el bus de datos y el bus de direcciones. La CPU escribe la dirección de la posición deseada de la memoria en el bus de direcciones accediendo a la memoria, teniendo cada una de las líneas carácter binario. Es decir solo pueden representar “0” o “1” y de esta manera forman conjuntamente el número de la posición dentro de la memoria (la dirección). Cuantas más líneas haya disponibles, mayor es la dirección máxima y mayor es la memoria a la cual puede dirigirse de esta forma. En el bus de direcciones original había ya 20 direcciones, ya que con 20 bits se puede dirigir a una memoria de 1 MB y esto era exactamente lo que correspondía al CPU. Esto que en le teoría parece tan fácil es bastante más complicado en la práctica, ya que aparte de los bus de datos y de direcciones existen también casi dos docenas más de líneas de señal en la comunicación entre el CPU y la memoria, a las cuales también se acude. Todas las tarjetas del bus escuchan, y se tendrá que encontrar en primer lugar una tarjeta que mediante el envío de una señal adecuada indique al CPU que es responsable de la dirección que se ha introducido. Las demás tarjetas se despreocupan del resto de la comunicación y quedan a la espera del próximo ciclo de transporte de datos que quizás les incumba a ellas.
  • 29. 29 ALFONSO GOMEZ HERRERA PROCESADOR Bus de direcciones (bits) Bus de datos (bits) 8086 20 16 8088 20 8 80186 20 16 80188 20 8 80286 24 16 80386 SX 32 16 80386 DX 32 32 80486 DX 32 32 80486 SX 32 32 Pentium 32 64 Pentium PRO 32 64 6.2 Estructuras de interconexión Existen dos organizaciones físicas de operaciones E/S que tienen que ver con los buses que son: • Bus único • Bus dedicado La primera gran diferencia entre estos dos tipos de estructuras es que el bus único no permite un controlador DMA (todo se controla desde la CPU), mientras que el bus dedicado sí que soporta este controlador. El bus dedicado trata a la memoria de manera distinta que a los periféricos (utiliza un bus especial) al contrario que el bus único que los considera a ambos como posiciones de memoria (incluso equipara las operaciones E/S con las de lectura/escritura en memoria). Este bus especial que utiliza el bus dedicado tiene 4 componentes fundamentales: Datos: Intercambio de información entre la CPU y los periféricos. Control: Lleva información referente al estado de los periféricos (petición de interrupciones). Direcciones: Identifica el periférico referido. Sincronización: Temporiza las señales de reloj. La mayor ventaja del bus único es su simplicidad de estructura que le hace ser más económico, pero no permite que se realice a la vez transferencia de información entre la memoria y el procesador y entre los periféricos y el procesador. Por otro lado el bus dedicado es mucho más flexible y permite transferencias simultáneas. Por contra su estructura es más compleja y por tanto sus costes son mayores. 6.3 Tipos de Buses. 6.3.1 Bus ISA 8/16: Cuando en 1980 IBM fabricó su primer PC, este contaba con un bus de expansión conocido como XT que funcionaba a la misma velocidad que los procesadores Intel 8086 y 8088 (4.77 Mhz). El ancho de banda de este bus (8 bits) con el procesador 8088 formaba un par perfecto, pero la ampliación del bus de datos en el 8086 a 16 bits dejo en entredicho este tipo de bus, por ende la capacidad del sistema es severamente limitado.
  • 30. 30 BREVE INTRODUCCION AL HARDWARE ISA 8 ISA 16 Presente en las viejas computadoras XT y AT, pero aún conservado en algunas motherboards más modernas, que usan principalmente un bus PCI como bus principal del sistema, en 1 o 2 instancias para permitir la integración de viejas placas ISA. Es un bus de 8/16 bits y con un ancho de banda máximo de 16 Mbytes/ seg. Tensiones de alimentación presentes +5V,-5V,+12V y -12V. 6.3.2 Bus Micro Channel (MCA). Vistas las limitaciones que tenía el diseño del bus ISA en IBM se trabajó en un nueva tecnología de bus que comercializó con su gama de computadoras PS/2. El diseño MCA (Micro Channel Arquitecture) permitía una ruta de datos de 32 bits, más ancha, y una velocidad de reloj ligeramente más elevada de 10 Mhz, con una velocidad de transferencia máxima de 20 Mbps frente a los 8 Mbps del bus ISA. Pero lo que es más importante el novedoso diseño de bus de IBM incluyó un circuito de control especial a cargo del bus, que le permitía operar independientemente de la velocidad e incluso del tipo del microprocesador del sistema.
  • 31. 31 ALFONSO GOMEZ HERRERA 6.3.3 Bus EISA. EISA apareció con los equipos AT como un primer paso de avance hacia transferencia de datos a más alta velocidad y con un ancho de bus mayor, en competencia con el bus MCA lanzado por IBM en sus equipos para los mismos objetivos. Físicamente es difícil de distinguir de un conector ISA, pero sus características y gestión son diferentes. Ancho de bus: 32 bits Ancho de banda máximo teórico de 33 Mbytes/seg si bien en la práctica no superaban los 20 Mb/seg. Tensiones presentes +5V, -5V,+12V y -12V. Soporta, siendo backward compatible, la inserción de placas ISA de 8 y 16 bits. Un PC con bus VL dispone para ello de un bus ISA y de las correspondientes ranuras (slots) para tarjetas de ampliación. Además, en un PC con bus VL puede haber, sin embargo, una, dos o incluso tres ranuras de expansión, para la colocación de tarjetas concebidas para el bus VL, casi siempre gráficos. Solamente estos slots están conectados con la CPU a través de un bus VL, de tal manera que las otras ranuras permanecen sin ser molestadas y las tarjetas ISA pueden hacer su servicio sin inconvenientes. El VL es una expansión homogeneizada de bus local, que funciona a 32 bits, pero que puede realizar operaciones a 16 bits. VESA presentó la primera versión del estándar VL-BUS en agosto de 1992. La aceptación por parte del mercado fue inmediata. Fiel a sus orígenes, el VL-BUS se acerca mucho al diseño del procesador 80486. De hecho presenta las mismas necesidades de señal de dicho chip, exceptuando unas cuantas menos estrictas destinadas a mantener la compatibilidad con los 386. La especificación VL-Bus como tal, no establece límites, ni superiores ni inferiores, en la velocidad del reloj, pero una mayor cantidad de conectores supone una mayor capacitancia, lo que hace que la fiabilidad disminuya a la par que aumenta la frecuencia. 6.3.4 VLB (Vesa Local Bus.). En la práctica, el VL-BUS no puede superar los 66 Mhz. Por este motivo, la especifica- ción VL-BUS original recomienda que los diseñadores no empleen más de tres dispositivos de bus local en sistemas que operan a velocidades superiores a los 33 Mhz. A velocidades de bus superiores, el total disminuye: a 40 Mhz solo se pueden incorporar dos dispositivos; y a 50 Mhz un único dispositivo que ha de integrarse en la placa.
  • 32. 32 BREVE INTRODUCCION AL HARDWARE En la práctica, la mejor combinación de rendimiento y funciones aparece a 33 Mhz. Tras la presentación del procesador Pentium a 64 bits, VESA comenzó a trabajar en un nuevo estándar (VL-Bus versión 2.0). La nueva especificación define un interface de 64 bits pero que mantienen toda compatibilidad con la actual especificación VL-BUS. La nueva especificación 2.0 redefine además la cantidad máxima de ranuras VL-BUYS que se permiten en un sistema sencillo. Ahora consta de hasta tres ranuras a 40 Mhz y dos a 50 Mhz, siempre que el sistema utilice un diseño de baja capacitancia 6.3.5 PCI (Peripheral Component Interconnect) Sin ser las más populares de los buses, bien muchas motherboards empiezan a traer un creciente número de ranuras de otros tipos como PCI-e (PCI Express) y PCI-X (se debe aquí evitar la tentación de pensar que la X ha sido usada como una abreviación de “express”...pues realmente el PCI-X tiene poco o nada que ver con un PCI-e y la posibilidad de confusión del PCI-X son las ranuras PCI de 64 bits. El mismo se presenta en dos formatos, de acuerdo al ancho de bus que soportan: PCI de 32 bits y PCI de 64 bits como los presentes en algunos servidores y equipos Mac como el G4 y posteriores. En general una placa PCI de 32 bits suele poder usarse sin problemas en una ranura PCI de 64 bits si tanto placa como ranura han sido correctamente implementadas de acuerdo a las especificaciones. Este bus tiene un ancho de 32 bits o de 64 bits de acuerdo a la versión que se trate y normalmente el más difundido es el de 32 bits, el cual puede alcanzar un ancho de banda máximo de 133 Mbytes/seg para PCI 2.1 o anteriores, 533 Mbytes/seg para PCI 2.2 y posteriores (en los buses de 64 bits estos anchos de banda máximo pasan al doble o sea 266 Mbytes y 1 Gb/seg) A su vez hay varias variantes en cuanto a las tensiones presentes, estando siempre los +12 V y los -12V, en la gran mayoría están presentes los +5 V si bien dicha tensión desaparece definitivamente en las implementaciones PCI 2.3 y PCI 3.0. Y a partir de las versiones PCI 2.2 y siguientes estará también en forma forzosa presente la tensión de 3,3 V
  • 33. 33 ALFONSO GOMEZ HERRERA 6.3.6 AGP (Accelerated Graphics Port) Estetipoderanuraesunaranuraespecializada para tarjetas de video tipo AGP. La misma tiene un ancho de bus de 32 bits y puede tener un ancho de banda para la transmisión de datos que va desde los 133 Mb/seg para los primeros modelos hasta los 2 Gb/seg en las últimas versiones. Si bien esta ranura fue bastante popular durante un período en que las controladoras de video se ausentaron en las ranuras PCI para tener ranuras específicas y especializadas al procesamiento de video, hoy en día está siendo abandonada por los principales fabricantes de placas de video y placas aceleradoras de video, los cuales se están volcando al bus PCI-X. Normalmente por su conformación física es difícil el confundirla y dada la variedad de posibilidades solo presentamos una representación esquemática de las principales alternativas:
  • 34. 34 BREVE INTRODUCCION AL HARDWARE 7.- ENTRADA/SALIDA (E/S). 7.1 Sus funciones: Funciones que debe realizar un sistema para elaborar labores de Output/input: 1. Direccionamiento o selección del dispositivo que debe llevar a cabo la operación de E/S. 2. Transferencia de los datos entre el procesador y el dispositivo, bidireccionalmente. 3. Sincronización y coordinación de las operaciones. Esta última función es necesaria debido a la deferencia de velocidades entre los dispositivos y la CPU y a la independencia que debe existir entre los periféricos y la CPU, por diferencia de los relojes internos Se define una transferencia elemental de información como la transmisión de una sola unidad de información entre el procesador y el periférico o viceversa. Para efectuar una transferencia elemental de información son: • Establecimiento de una comunicación física entre el procesador y el periférico para la transmisión de la unidad de información. • Control de los periféricos, en que se incluyen operaciones como prueba y modificación del estado del periférico. Para realizar estas funciones la CPU gestionará las líneas de control necesarias. Una operación de E/S es el conjunto de acciones necesarias para la transferencia de un conjunto de datos (o sea, una transferencia completa de información). Para la realización de una operación de E/S se deben efectuar las siguientes funciones: • Recuento de las unidades de información transferidas (bytes) para reconocer el fin de operación. • Sincronización de velocidad entre la CPU y el periférico. • Detección de errores (como corrección) mediante la utilización de los códigos necesarios (bits de paridad, códigos de redundancia cíclica “CRC”, etc.) • Almacenamiento temporal de la información. Es más eficiente utilizar un buffer temporal específico para las operaciones de E/S que utilizan el área de datos del programa. • Conversión de códigos, conversión serie/paralelo, etc. Puertos: Paralelos Seriales
  • 35. 35 ALFONSO GOMEZ HERRERA 7.2 Interrupciones (IRQ) (Interrupt ReQuest - solicitud de interrupción). Canales utilizados para gestionar dispositivos periféricos. Las IRQ son las líneas de interrupción que utilizan los dispositivos para avisar al microprocesador que necesitan su atención. (En los antiguos XT  eran 8 canales, en computadoras AT y superiores son 16.) Antes de la existencia de los dispositivos plug and play, los usuarios tenían que configurar los valores IRQ de los dispositivos manualmente cuando agregaban un dispositivo nuevo al sistema.Acontinuación se listan los números IRQ y para qué eran usados generalmente. Un sistema informático debe disponer de los elementos suficientes para que el programador tenga un control total para la ejecución de su programa. La llegada de una interrupción provoca que la CPU suspenda la ejecución de un programa e inicie la de otro (rutina de servicio de interrupción). Como las interrupciones pueden producirse en cualquier momento, es muy probable que se altere la secuencia de sucesos que el programador había previsto inicialmente. Es por ello que las interrupciones deber controlarse cuidadosamente. De esta forma, podemos resumir todas las etapas seguidas ante una interrupción en un sistema dotado de Vectorización. Estos pasos son los siguientes: • El dispositivo envía la solicitud de interrupción mediante la línea INTR. • El procesador termina la ejecución de la instrucción en curso y analiza la línea de petición de interrupción, INTR. Si esta línea no está activada continuará normalmente con la ejecución de la siguiente instrucción, en caso contrario se pasa a la etapa siguiente. • El CPU reconoce la interrupción, para informar al dispositivo de ello, activa la línea de reconocimiento de interrupción, INTA. • El dispositivo que reciba la señal INTA envía el código de interrupción por el bus de datos. • El CPU calcula la dirección de memoria donde se encuentra la rutina de servicio de interrupción (vector de interrupción). • El estado del procesador, y en particular el contador de programa, se salva en la pila de la misma forma que en una llamada a procedimiento. • La dirección de la rutina de servicio de interrupción se carga en el contador de programa, con lo que se pasa el control a la citada rutina. • La ejecución continúa hasta que el procesador encuentre la instrucción de retorno de interrupción. • Cuando se encuentre la instrucción de retorno de interrupción se restaura el estado del procesador, en especial el contador de programa, y se devuelve el control al programa interrumpido. Normalmente la primera instrucción de la rutina de servicio tendrá como fin desactivar las interrupciones para impedir el anidamiento, por otra parte, antes de devolver el control al programa interrumpido se volverán a habilitar si es necesario.
  • 36. 36 BREVE INTRODUCCION AL HARDWARE Números IRQ •IRQ 0: Cronómetro del sistema. Este interruptor está reservado para el timer del sistema y jamás está disponible para otros dispositivos. •IRQ 1: Controlador del teclado. •IRQ 2: Interrupciones en cascada para las interrupciones IRQ del 8 al 15. •IRQ 3: Segundo Puerto Serie (COM2). A menudo es también para el cuarto puerto serie (COM4). •IRQ 4: Primer Puerto Serie (COM1). También es utilizado por defecto para el COM3. •IRQ 5: Tarjeta de sonido. •IRQ 6: Controlador de disquetera. •IRQ 7: Puerto Paralelo LPT1 para impresoras o cualquier otro dispositivo que utiliza puerto paralelo. •IRQ 8: Reloj del Sistema. •IRQ 9, 10, 11: Interrupción disponible para periféricos extras. •IRQ 12: Mouse PS/2 o Placa de Red o similares. •IRQ 13: Coprocesador/Unidad de punto flotante •IRQ 14: Canal IDE Primario. En sistemas que no se utiliza dispositivos IDE, este canal se utiliza para otros periféricos •IRQ 15: Canal IDE Secundario 7.3 Dispositivos de entrada Un dispositivo de entrada o salida (E/S), puede ser cualquier tipo de unidad funcional o subsistema que forma parte del conjunto integral del sistema informático. En todos los casos, envían señales o procesar información para establecer distintos tipos de comunicación interna y externa. El término entrada y salida o input / output (del inglés) también refiere a la ejecución de acciones u operaciones a través de dichos dispositivos. La mayoría de estos dispositivos permiten tanto la entrada como la salida de datos.
  • 37. 37 ALFONSO GOMEZ HERRERA Como ejemplo: Algunos dispositivos de entrada y salida Entrada: Teclado Mouse Joystick Lápiz óptico Micrófono Webcam Escáner Escáner de código de barras Salida: Monitor Altavoz Auriculares Impresora Plotter Proyector Entrada/salida (mixtos): Unidades de almacenamiento CD DVD Módem Memory cards USB Router Dispositivos hápticos (táctil) Disco Duro Externo
  • 38. 38 BREVE INTRODUCCION AL HARDWARE 2da PARTE PERIFERICOS 1
  • 39. 39 ALFONSO GOMEZ HERRERA 8.- TECLADOS Un teclado es un periférico de entrada, que convierte la acción mecánica de pulsar una tecla a pulsos eléctricos codificados que permiten identificarla. Las teclas que lo constituyen sirven para entrar caracteres alfanuméricos y comandos a una computadora. En un teclado se puede distinguir a cuatro subconjuntos de teclas: *TECLADO ALFANUMERICO: con las teclas dispuestas como en una máquina de escribir. *TECLADO NUMERICO: (Ubicado a la derecha) con teclas dispuestas como en una calculadora. *TECLADO DE FUNCIONES: (Desde F1 a F12) son teclas cuya función depende del programa en ejecución. *TECLADO DE CURSOR: Para ir con el cursor de un lugar a otro en un texto. El cursor se mueve según el sentido de las flechas de las teclas, ir al comienzo de un párrafo (“HOME”), avanzar/retroceder una pagina (“PAGE UP/PAGE DOWN”), eliminar caracteres (“delete”), etc. 8.1 Antecedente. En 1872 cuando se lanza la primera máquina de escribir ampliamente conocida, diseñada por Cristopher Latham Sholes en Milwakee, Estados Unidos, con la ayuda de dos amigos inventores, con el teclado tipo QWERTY, llamado así, debido al orden del las letras. El otro modelo que existió fue en 1932 un capitán de submarinos e inventor llamado Dvorak diseñó una disposición del teclado que permite escribir más rápidamente. En ese teclado las vocales están en el centro a la izquierda y las consonantes más usadas a la derecha. Esto hace que la escritura en ese teclado sea más simple y descansada. Aunque fue bien recibido por los expertos y se reconocieron las ventajas del teclado Dvorak, la difusión del teclado QWERTY ha hecho casi imposible el cambio.
  • 40. 40 BREVE INTRODUCCION AL HARDWARE 8.2 Funcionamiento. Aunque existen muchos tipos de teclados, en términos generales este sería su funcionamiento: Enuntecladoseveránlosconductores horizontales construidos, soportados y aislados en una hoja de plástico, y los verticales en otra hoja similar que esta sobre la primera. De lado interno de cada de hoja, en cada camino existe una serie de círculos conductores formando parte del mismo, que no están aislados. Entre dichas dos hojas los conductores y cuerpo de la tecla se interpone una tercer capa de material elástico, que provee un truncado elástico para cada tecla, el cual haría de resorte. Debajo de cada tecla, se enfrentan, un círculo de un camino horizontal con otro de un camino vertical. Al pulsar una tecla se vence el cono que está debajo de ella. A través de este eje de la tecla presiona uno sobre otros círculos conductores, poniéndolos en contacto. Al soltar la tecla los círculos quedan separados y aislados. Formando parte de la caja del teclado, aparece un de circuito integrado (micro controlador) con funciones de codificador-buffer, el cual constituye la electrónica del periférico teclado. La función de este integrado es explorar y censar el teclado, para detectar si una tecla fue expulsada o soltada, en ambos casos un código que la identifica, y lo enviara a un puerto que se encuentra en la interfaz al denominada controladora del teclado, ubicado en un C.I de la tarjeta principal.
  • 41. 41 ALFONSO GOMEZ HERRERA El circuito integrado presenta un buffer RAM para almacenar hasta 10 códigos identifica las teclas oprimidas y/o soltadas. 8.3 Tipos 1. Teclado de 83 teclas para PC / XT 2. Teclado de 84 teclas para PC /AT 3. Teclado extendido 101/102 extendido 9.- JOYSTICK Joystick o Palanca de juegos, dispositivo señalador muy variado, mayoritariamente para juegos y simuladores,. Un joystick, o palanca de juegos tiene normalmente una base de plástico redonda o rectangular, a la que está acoplada una palanca vertical. Los botones de control se localizan sobre la base y algunas veces en la parte superior de la palanca, que puede moverse en todas direcciones para controlar el movimiento de un objeto en la pantalla. Los botones activan diversos elementos de software, generalmente produciendo un efecto en la pantalla. 9.1 Antecedentes. El nombre joystick parece se debe al piloto francés Robert Esnault-Pelterie. También se atribuye a los pilotos Robert Loraine y James Henry Joyce. El joystick en sí mismo estaba presente en los primeros aviones, aunque su origen mecánico sigue siendo incierto. El primer joystick eléctrico de dos ejes probablemente fue inventado en 1944 en Alemania. Se desarrolló para controlar la bomba guiada Henschel Hs 293. El joystick constaba de interruptores encendido/apagado en lugar de sensores analógicos, por lo que se le podría considerar el primer joystick digital. La señal se transmitía al misil mediante un cable fino. Los primeros joystick de máquina recreativa de salón, o máquina árcade, eran joysticks digitales porque el estándar de conexión de las placas de circuitos de estas máquinas mayoritariamente usado, llamado Jamma*, que conecta a los diferentes periféricos de la carcasa (monitor, botonera, ranura para monedas...) solo detecta pulsaciones abierto/ cerrado, por lo cual los joystick deben ser de este tipo. *La Japanese Amusement Machine Manufacturers’Association (JAMMA) es una asociación de comercio con sede en Japón, es también el homónimo de una feria de muestras de Japón y además, JAMMA es un estándar de cableado para máquinas árcade. Se podría considerar con este nombre al conjunto de mejoras en los juegos
  • 42. 42 BREVE INTRODUCCION AL HARDWARE Al evolucionar las funciones recreativas a la par que las computadoras y video-consolas comenzaron a aparecer controles de tipo analógico. Las primeras consolas (Pong) usaban potenciómetros pero la video-consola Atari 2600 estableció lo que sería el estándar mayoritariamente usado (con variaciones) de joystick digital de dos ejes más un botón de fuego, combinado con una pareja de potenciómetros (para usar con paddles/mouse/trackball). 9.2 Tipos. 1. Análogos 2. Digitales 3. Mixtos Subtipos 1. Con fluidos 2. Tridimensionales 3. Vibratorios Un gamepad es para interactuar con un videojuego ya sea para consola o PC. El gamepad o control de mando permite moverse e interactuar con los elementos del juego para realizar las diversas acciones necesarias para cumplir los objetivos. Un volante de videojuegos (racing wheel), es un controlador de videojuego específicamente diseñado para su utilización en simuladores y videojuegos de carreras. Una pistola de luz (light gun) en un dispositivo apuntador para computadoras y un dispositivo de control para videojuegos y máquinas recreativas. Las primeras pistolas de luz aparecieron en los años treinta (1930), como consecuencia del desarrollo de la sensibilidad a la luz en las válvulas de vacío. Poco después, esta tecnología se aplicó a los juegos de disparo, con ejemplos como Seeburg Ray-O-Lite en 1936. Un paddle (palanca, traducido de forma literal del inglés) es un controlador de juegos con una rueda giratoria y uno o más botones, donde dicha rueda es típicamente empleada para controlar el movimiento del personaje o de un objeto a lo largo de un eje de la pantalla del juego.
  • 43. 43 ALFONSO GOMEZ HERRERA 10.- MOUSE. El mouse o ratón es un dispositivo apuntador, que permite señalar e ingresar información. Se le denomina mouse debido a su apariencia. Un mouse regularmente es arrastrado sobre una superficie plana (MousePad) el movimiento realizado por el mouse es reflejada dentro del monitor mediante una flecha llamada puntero del mouse. La acción de pulsar y soltar un botón se denomina clic. 10.1 Antecedentes Fue diseñado por Douglas Engelbart y Bill English durante los años 60 en el Stanford Research Institute, un laboratorio de la Universidad de Stanford, en pleno Silicon Valley en California. Más tarde fue mejorado en los laboratorios de Palo Alto de la compañía Xerox (conocidos como Xerox PARC). Su invención no fue un hecho fútil ni fortuito, sino que surgió dentro de un proyecto importante que buscaba aumentar el intelecto humano mejorando la comunicación entre el hombre y la máquina. Con su aparición, logró también dar el paso definitivo a la aparición de los primeros entornos o interfaces gráficas de usuario. 10.2 Tipos o modelos de mouse 1. Mouse mecánicos. Los mouse mecánicos, constan de una bola situada en su parte inferior para mover dos ruedas que generan pulsos en respuesta al movimiento de éste sobre la superficie. La bola, al moverse el mouse, roza unos contactos en forma de rueda que indican el movimiento del cursor en la pantalla del sistema informático.
  • 44. 44 BREVE INTRODUCCION AL HARDWARE La circuitería interna cuenta los pulsos generados por la rueda y envía la información a la computadora, que mediante software procesa e interpreta. 2. Mouse ópticos. Los mouse ópticos tienen un pequeño haz de luz en lugar de la bola rodante de los mecánicos. Un sensor óptico situado dentro del cuerpo del mouse detecta el movimiento del reflejo al mover el mouse sobre el espejo e indica la posición del cursor en la pantalla de la computadora. Los mouse ópticos evitan el frecuente problema de la acumulación de suciedad en el eje de transmisión, y por sus características ópticas es menos propenso a sufrir un inconveniente similar. Se considera uno de los más modernos y prácticos actualmente. Puede ofrecer un límite de 800 ppp, como cantidad de puntos distintos que puede reconocer en 2,54 centímetros (una pulgada), a menor cifra peor actuará el sensor de movimientos. Su funcionamiento se basa en un sensor óptico que refleja la superficie sobre la que se encuentra y detectando las variaciones entre sucesivas fotografías, se determina si el mouse ha cambiado su posición. En superficies pulidas o sobre determinados materiales, el mouse óptico causa movimiento sobre la pantalla, por eso se hace necesario el uso de una alfombrilla. 3. Mouse de láser. Este tipo es más sensible y preciso, haciéndolo aconsejable especialmente para los diseñadores gráficos y los fanáticos de los videojuegos. También detecta el movimiento deslizándose sobre una superficie horizontal, pero el haz de luz de tecnología óptica se sustituye por un láser (invisible al ojo humano) con resoluciones a partir de 2000 ppp, lo que se traduce en un aumento significativo de la precisión y sensibilidad. 3. Trackball. El concepto de trackball es una idea novedosa que parte del hecho de mover el puntero, no el dispositivo, por lo que se adapta para presentar una bola, de tal forma que cuando se coloque la mano encima se pueda mover mediante el dedo pulgar, sin necesidad de desplazar nada más ni toda la mano como antes. De esta manera se reduce el esfuerzo y la necesidad de espacio, además de evitarse un posible dolor de antebrazo por el movimiento de éste. A algunas personas, sin embargo, no les es cómodo. 10.3 Funcionamiento Cuando este se desplaza el movimiento de la bolita que está en su parte inferior se descompone en dos movimientos según dos ejes perpendiculares entre sí (corresponde a coordenadas X e Y) que un conversor analógico -digital traduce en pulsos eléctricos.
  • 45. 45 ALFONSO GOMEZ HERRERA La cantidad de pulsos generados para cada eje representa la distancia recorrida por el mouse respecto de ese eje representa la distancia recorrida por respecto de ese eje, y en relación con la última posición en que el Mouse estuvo parado. Dichos pulsos se van contando en dos contadores, uno para cada eje, pudiendo ser la cuenta progresiva o regresiva, según el sentido del movimiento del Mouse respecto de dichos ejes. Los circuitos envían por un cable que va hacia la computadora el valor de la cuenta de los contadores, como dos números de 8 bits con bit (rango de-128 a +127). Según el protocolo de MICROSOFT, estos números se envían formando parte de bytes, cada uno de los cuales además se transmite bit de START (inicio) y STOP conforme al protocolo RS 232C para un puerto serial. Se envían tres bytes cuando se pulsa o libera una tecla del mouse, aunque este no se mueva. Cuando el puerto recibe el primero de los tres bytes, la plaqueta con la interfaz buffer, que contiene el circuito de dicho puerto solicita al CPU que interrumpa el programa en ejecución y pase a ejecutar la subrutina (Mouse driver) que maneja la información del Mouse. 10.4 Mousepad La alfombrilla, posa ratón ó mouse, almohadilla de mouse o Mousepad, es la superficie por la que el usuario de una computadora mueve el mouse de manera análoga al movimiento del puntero en la pantalla. Tanto Alex Pang como Jack Kelley afirman que el segundo fabricó la primera alfombrilla para mouse poco después de que Douglas Engelbart, en 1969 y en las oficinas del Stanford Research Institute, inventase el primer mouse. El mouse de la computadora en aquel tiempo había sido mejorado incorporándole una bola-rodadora de acero desnudo (sin recubrimiento de goma) (trackball). Estas trackball eran utilizadas en la industria de la aviación desde los años 1960. Sin embargo, a la bola de acero se le adhería suciedad, haciendo que el movimiento del puntero resultase inexacto y lento. En 1979, cuando el mouse comenzó a mejorarse y hacerse más comercial, Xerox presentó su propio mousepad, diseñado por Armando M. Fernández.
  • 46. 46 BREVE INTRODUCCION AL HARDWARE 11.- SCANNER Con el arribo del diseño grafico y la edición de documentos conocida como Desktop Publishing (DTP) surgió una gran variedad de programas para el procesamiento de imágenes para tal gestión de desarrollo, el llamado scanner o digitalizador de imágenes que es un lector o explorador óptico convirtiendo las imágenes en algún formato grafico como: Bmp, Tif, Pcx, Gif, etc. Posee una fuente de luz interna que se encarga de descomponer las imágenes a pulsos eléctricos y así poder transferir las imágenes a la pantalla, su funcionamiento es similar a una video cámara usando el mismo dispositivo llamado CDD (Dispositivo de Carga Acoplada). 11.1 Origen. La primera imagen escaneada: Una fotografía de Walden Kirsch de tres meses de edad, capturado en 1957 en el National Bureau of Standards (ahora el Instituto Nacional de Estándares y Technoloyg o NIST). La imagen fue creada por Russell Kirsch, el padre del niño, utilizando un escáner de tambor. Los primeros escáneres de tambor como fotocopiadoras, la información de la captura con tubos fotomultiplicadores. Artículos que deben ser exploradas se monta sobre un cilindro que gira el tambor, y esta se pasa en frente del equipo óptico que capta la imagen. Los escáneres de tambor se siguen utilizando, ya que permiten la captura de imágenes de muy alta calidad, hasta 12.000 PPI y se utiliza a menudo en el trabajo de la película. Siendo caros. En la década de 90s pequeños escáneres de mano estaban disponibles. Estos se dibujan a través de la página por el usuario y por lo general produce una imagen monocroma. Estos requieren una mano firme y movimiento a una velocidad constante a través de la página. El escáner de superficie plana, que se convirtió más tarde asequible en 1990, invirtió el proceso, con el lector óptico situado debajo de una hoja de vidrio, mirando hacia arriba, y los elementos que se analizarán fueron puestos sobre el cristal. Ellos son capaces de capturar imágenes en color y la calidad ha mejorado notablemente en la última década.
  • 47. 47 ALFONSO GOMEZ HERRERA La mayoría de los escáneres de incorporan la capacidad de reconocimiento óptico de caracteres, u OCR. (Optical character recognition) Esta tecnología fue desarrollada por primera vez en la década de 1920. Sin embargo, no fue hasta la década de 1950 que la tecnología comenzó a ser utilizado. En 1976 Ray Kurzweil presentó el primer dispositivo que puede escanear texto y convertirlo, haciendo una impresión accesible a los ciegos. Su dispositivo incluye el escáner de superficie plana en primer lugar. 11.2 tipos (tipicos para “PC”) Tipos: Scan-man (Manual Difícil de controlar) Rodillos (limitado por el tamaño) Cama-plana (El más popular) 11.3 Funcionamiento Al recibir la orden de escanear, una lámpara se encarga de “barrer” el documento. La luz reflejada por espejos es enviada a un dispositivo interno llamado capturador que es un CCD (“Charged Coupled Device”). Cada una de las líneas que son reflejadas es dividida en puntos (píxeles). Cada punto es analizado y dividido en los tres colores básicos: rojo, azul y verde. Se le asigna un valor binario a cada píxel en base a la división anterior. Se procede a crear el mapa digital y así poder ser enviado a la computadora y ser visualizado en la pantalla. Se guarda en forma de archivo de imagen.
  • 48. 48 BREVE INTRODUCCION AL HARDWARE Resumen: • El escáner se mueve a lo largo del documento, línea por línea • Cada línea se divide en “puntos básicos”, que corresponden a píxeles. • Un capturador analiza el color de cada píxel. • El color de cada píxel se divide en 3 componentes (rojo, verde, azul) • Cada componente de color se mide y se representa mediante un valor. • En el caso de una cuantificación de 8 bits, cada componente tendrá un valor de entre 0 y 225. La luz de alta intensidad emitida se refleja en el documento y converge hacia una serie de capturadores, mediante un sistema de lentes y espejos. Los capturadores convierten las intensidades de luz recibidas en señales eléctricas, las cuales a su vez son convertidas en información digital, gracias a un conversor analógico-digital. CCD Existen dos categorías de capturadores: Los capturadores CMOS (Semiconductor Complementario de Óxido Metálico), o MOS Complementario). Dichos capturadores se conocen como tecnología CIS (de Sensor de Imagen por Contacto). Este tipo de dispositivo se vale de una rampa LED (Diodo Emisor de Luz) para iluminar el documento, y requiere de una distancia muy corta entre los capturadores y el documento. La tecnología CIS, sin embargo, utiliza mucha menos energía. CCD: (charge-coupled device, en español «dispositivo de carga acoplada») es un circuito integrado que contiene un número determinado de condensadores enlazados o acoplados. Cada condensador puede transferir su carga eléctrica a uno o a varios de los condensadores que estén a su lado en el circuito impreso. La alternativa digital a los CCD son los dispositivos CMOS (complementary metal oxide semiconductor). Los primeros dispositivos CCD fueron inventados por Willard Boyle y George Smith el 17 de octubre de 1969 en los Laboratorios Bell, ambos premiados con el Premio Nobel de Física de 2009 precisamente por el CCD.
  • 49. 49 ALFONSO GOMEZ HERRERA 11.4 Características de un escáner: Resolución: expresada en puntos por pulgada (denominados dpi), la resolución define la calidad de escaneo. El orden de magnitud de la resolución se encuentra alrededor de los 1200 por 2400 dpi. La resolución horizontal depende mucho de la calidad y del número de capturadores, mientras que la resolución vertical está íntimamente ligada a la exactitud del motor principal de entrenamiento. Sin embargo, es importante distinguir la resolución óptica, la cual representa la resolución real del escáner, de la resolución interpolada. La interpolación es una técnica que implica la definición de píxeles intermedios de entre los píxeles reales mediante el cálculo del promedio de los colores de los píxeles circundantes. Gracias a dicha tecnología se logran obtener buenos resultados, aunque la resolución interpolada definida de esta manera no constituye en absoluto un criterio utilizable a la hora de seleccionar escáneres. Características • El formato del documento: según el tamaño, los escáneres pueden procesar documentos de distintos tamaños: por lo general A4 (21 x 29,7 cm), o con menor frecuencia A3 (29,7 x 42 cm). • Velocidad de captura: expresada en páginas por minuto (ppm), la velocidad de captura representa la capacidad del escáner para procesar un gran número de páginas por minuto. Dicha velocidad depende del formato del documento y de la resolución elegida para el escaneo. • Interfaz: se trata del conector del escáner. Las principales interfaces son las siguientes: SCSI. Aunque a finales de los 90s constituyó la interfaz preferida Puerto paralelo. Este tipo de conector es lento, y se está utilizando cada vez menos FireWire. Velocidad conveniente para este tipo de periféricos USB 2.0. Interfaz estándar recomendada cuando la computadora no posee conexión FireWire Características físicas: • Tamaño, en términos de las dimensiones físicas del escáner. (Típicos; carta u oficio) • Peso. • Consumo de energía eléctrica, expresado en Watts (W). • Temperaturas de funcionamiento y almacenamiento. • Nivel de ruido. Un escáner puede producir bastante ruido, lo cual suele ocasionar considerables perturbaciones. • Accesorios: Aunque generalmente se suministran los drivers y el manual del usuario, se debe verificar que también se incluyan los cables de conexión.
  • 50. 50 BREVE INTRODUCCION AL HARDWARE 12.- MODEM La palabra módem deriva de su operación como MOdulador o DEModulador. Es un equipo utilizado para la comunicación de computadoras a través de líneas analógicas de transmisión de datos. El módem convierte las señales digitales del emisor en otras analógicas susceptibles de ser enviadas por teléfono. Cuando la señal llega a su destino, otro módem se encarga de reconstruir la señal digital primitiva, de cuyo proceso se encarga la computadora receptora. En el caso de que ambos puedan estar transmitiendo datos simultáneamente, se dice que operan en modo full-duplex; si sólo puede transmitir uno de ellos, el modo de operación se denomina half-duplex. Para convertir una señal digital en otra analógica, el módem genera una onda portadora y la modula en función de la señal digital. El tipo de modulación depende de la aplicación y de la velocidad de transmisión del módem. 12.1 Historia. La primera codificación que permitió la comunicación de larga distancia fue el código Morse, el cual fue desarrollado por Samuel F. B. Morse en 1844. Este código está constituido por puntos y guiones y significó una comunicación más rápida. El intérprete era muy importante y, por lo tanto, debía poseer un buen conocimiento del código. Se inventaron muchos códigos, entre ellos, el código Emile Baudot (también conocido como Baudot o, inglés Murray Code o “Código Murray”). El 10 de marzo de 1876, el doctor Graham Bell creó el teléfono, un invento revolucionario que permitió que la información de voz circule a través de líneas metálicas. Vale la pena mencionar que la Cámara de Representantes decidió que el invento del teléfono se debe a Antonio Meucci quien, de hecho, había presentado una solicitud de patente en 1871 pero que no pudo financiar después de 1874. Estas líneas posibilitaron el desarrollo de los teletipos, equipos que permitían codificar y decodificar caracteres por medio del código Murray (en ese momento, los caracteres eran codificados sobre 5 bits, por lo que había sólo 32 caracteres). En la década de 1960, se adoptó como estándar el código ASCII (siglas en inglés de American Standard Code for Information Interchange (Código estándar estadounidense para el intercambio de información)). El mismo permite la codificación de caracteres mayores a 8 bits, lo que posibilita que haya 256 caracteres. Alrededor de 1962 y gracias al uso de tecnologías digitales y de modulación, junto con el desarrollo de los equipos informáticos y las comunicaciones, se desarrolló la transferencia de datos a través del módem.
  • 51. 51 ALFONSO GOMEZ HERRERA 12.2 tipos 1. Módem externo: es un dispositivo que viene en su propia carcasa y se conecta externamente con la computadora. Es fácil de instalar, portátil, se conecta por el puerto en serie o puertos del tipo USB y dispone de indicadores luminosos para su control. 2. Módem interno: es una tarjeta de expansión en la que están incluidos todos los elementos del módem. Se puede conectar mediante tres formatos, que incluyen el Bus ISA, el Bus PCI y el AMR. El módem interno está integrado al computador y funciona con la misma energía eléctrica. Es difícil de instalar y solo cuenta con una salida de carácter externo hacia la línea telefónica. 3. Módem Digital: necesita una línea telefónica de carácter digital denominada RDSI (Red Digital de Servicios Integrados) para su funcionamiento. El módem digital brinda la posibilidad de mantener dos comunicaciones distintas con una sola línea. Posee tiempos mínimos para establecer una conexión y mayor calidad de la conexión. 4. Cable módem: es un dispositivo que permite acceso a Internet a gran velocidad vía TV cable. Este tipo de módem se utiliza generalmente en hogares, tiene dos conexiones, uno por cable a la conexión de la pared y otro al computador, por medio de interfaces y cuenta con dos tipos: coaxiales de Fibra Óptica y ADSL. 12.3 Funcionamiento Un módem es un dispositivo que se utiliza para transmitir información entre varios equipos (básicamente 2) a través de las líneas telefónicas. Los equipos operan en forma digital y utilizan el lenguaje binario (una serie de ceros y unos) pero los módems son analógicos. Las señales digitales pasan de un valor al otro. No existe un término o punto medio, es todo o nada, o sea, unos o ceros. Por el contrario, las señales analógicas no cambian “por escalón” sino que abarcan todos los valores, por lo que se puede obtener 0; 0,1; 0,2; 0,3; 1,0 y todos los valores en el medio. Por ejemplo, un contador de personas que pasan funciona de manera digital porque no existen medias personas. En cambio, un reloj marca horas, minutos, segundos e incluso puntos intermedios. El módem convierte la información binaria del equipo en analógica. Luego envía este nuevo código a través de la línea telefónica. Pueden escucharse unos sonidos extraños si el volumen del módem está encendido.
  • 52. 52 BREVE INTRODUCCION AL HARDWARE El módem convierte la información digital en ondas analógicas y en la dirección contraria, transforma datos analógicos en digitales. Es por eso que la palabra módem surge del acrónimo de MOdulador/DEModulador. El módem: Conexión a través de la línea telefónica La línea telefónica está diseñada para tal, por eso se necesita un módem para establecer la comunicación con un equipo remoto por medio de un número telefónico antes de poder intercambiar la información. El lenguaje que utilizan las computadoras para comunicarse se denomina protocolo. Los protocolos que más se utilizan son: El protocolo PPP (Point-to-Point) El protocolo SLIP (Serial Line Internet Protocol) 12.4 Velocidades (típicas) Se utilizaron los 300 BPS durante un tiempo considerable. La razón; porque esta velocidad representa cerca de 30 caracteres por segundo, y esto es más de lo que una persona puede digitar. Una vez que se comenzaron a transmitir grandes programas e imágenes en las BBS, los 300 BPS se volvieron intolerables. Las velocidades de los módems entraron entonces en una serie de pasos (incrementos de velocidad) cada uno o dos años: 300 Bits por segundo -1960 hasta 1983 más o menos. 1200 Bits por segundo -ganó popularidad en 1984 y 1985. 2400 Bites por segundo. 9600 Bits por segundo -aparecieron primero a finales de 1990 y principios de 1991. 19.2 Kbits por segundo. 28.8 Kbits por segundo. 33.6 Kbits por segundo. 56 Kbits por segundo -se convirtió en el estándar en 1998. ASDL, a una velocidad aproximada a los 10 MBPS -apareciendo en 1999. Velocidad baudios vs bits: Hay que diferenciar entre velocidad de señalización y velocidad de transmisión. Esto hace a la diferencia que existe entre baudios y bits por segundo. Imaginemos una onda senoidal cuya amplitud puede saltar de valor entre cuatro niveles distintos. En cada segundo pueden ocurrir 2400 de estos cambios de amplitud, esta onda presenta una velocidad de señalización de 2400 baudios. Cada uno de estos saltos de amplitud en dicho segundo, es un baudio. Puesto que se puede cambiar entre cuatro amplitudes diferentes, se puede convenir que cada una representa dos bits determinados, con lo cual se tiene una velocidad de transmisión de 2400x2= 4800 bits por segundo. La detección de cada amplitud (baud) puede hacerse cada 1/2400 de segundo= 0,4 milisegundos. Este tiempo es suficiente para que el módem pueda detectar un baud, e interpretar los dos bits que codifica. En pocos años, la velocidad de transmisión por las líneas telefónicas comunes fue aumentando 100 veces: de 300 a 33.600 bps. Esto se logro, codificando 12 bits por baudio
  • 53. 53 ALFONSO GOMEZ HERRERA 13.-DISCOS DUROS. Un disco duro es el que almacena y proporciona acceso relativamente rápido a grandes cantidades de datos en una superficie cargada electromagnéticamente o conjunto de superficies. Las computadoras actuales suelen venir con un disco duro que contiene varios billones de bytes (gigabytes) de almacenamiento. Son discos apilados, cada uno de los cuales, tiene datos registrados electromagnéticamente en círculos concéntricos o llamadas pista (tracks), en el disco. Dos cabezas, una a cada lado de un disco, (llamadas 0 y 1) leen o escriben los datos en el disco que gira a alta velocidad. Cada lectura o escritura requiere que los datos se encuentran, que es una operación llamada “buscar”, en la actualidad los nuevos discos son estáticos, o sea sin partes físicas mecánicas. 13.1 Antecedentes La unidad de disco duro fue inventado por algunos ingenieros de IBM que trabajaban a orden Rey Johnson en IBM en San José, CA, en alrededor de 1952 a 1954. algunas de las persobas: Rey Johnson, John Lynott, Cronquist Don, Bob Schneider y Stevens Lou. La primera unidad de disco IBM RAMAC tenido un par de docenas de discos, cada una de unos 2 metros de diámetro, y una cabeza. La cabeza fue trasladada de disco a disco y de ida y vuelta en cada disco con un sistema de cables y poleas y motores paso a paso. La velocidad adicional de tener por lo menos una cabeza por cada superficie del disco, y de utilizar ambas caras de cada disco, pronto se hizo evidente su modernización. El estilo de la unidad de disco duro que se utiliza hoy en día comenzó a surgir en la década de 1980. Probablemente fue Maxtor, con Frank Gibeau, donde el primer gran volumen 5 1/4 “unidades de disco con un actuador giratorio, VCM y un sistema servo se produjeron. En 1986, Finis Conner dejó Seagate y fundó Conner Peripherals junto con John Squires, y se construyó el primer gran volumen de 3 1/2 “unidades de disco. El primero de ellos, 40 MB, fue llamado el” 40 Fat “. No sólo que popularizar el nuevo pequeño “factor de forma”, pero ellos fueron los primeros en tener un “servo incorporado” o “servo sector” en el volumen. Mientras tanto, Quantum Corporation había sido la construcción de 8 “y 5 1/4” unidades de disco desde 1980, ya mediados de 1980 que vio una oportunidad con el factor de forma de 3 1/2 “ e inventó, un disco en una tarjeta de expansión que se podía conectar a su AT. Y así es como la interfaz IDE inicio. Disco Winchester (Primer nombre de los disco duros) El 3340 fue desarrollado en San Jose bajo el liderazgo de Ken Haughton. Al principio se enfocaron en dos módulos removibles de 30 megabytes. Debido a esta configuración 30/30, el nombre en código Winchester fue seleccionado del famoso fusil Winchester 30- 30