SlideShare una empresa de Scribd logo
Cuaderno de Actividades: Física II




   2) CAMPO ELÉCTRICO
      Y LEY DE GAUSS




Lic. Percy Víctor Cañote Fajardo     19
Cuaderno de Actividades: Física II


                                    r
2.1) Definición de campo eléctrico, E
          r
El vector E describe las propiedades eléctricas del espacio {medio}.



            r                                 q0       r
                                                       Fe
                                                                           r
                                                                           E
         r Fe                                      P                   P
         E=                                                 →
            q0
                                       q



Donde:


      q0 : Carga de prueba , q0 → +
                                     q0 → 0




Campo eléctrico: Discusión…

              “Las interacciones del campo no son instantáneas”
             “La carga q modifica el medio que la rodea (campo)”


                                                                r
                                                                E




Lic. Percy Víctor Cañote Fajardo                                           20
Cuaderno de Actividades: Física II


Ecuaciones de E
i) q


                    r r
             kqq0 ( r − r ′ )
                r r3                    r
rq             r − r′                kqr       r r            q       P
E ( rr ) =                          = r 3 , si r ′ ≡ 0                    r
                   q0                 r                  r
                                                                          E (qrr )
                                                         r′
                                                                  r
                                                                  r

En general :
             r r
r r kq ( r − r ′ )
Eq ( r ) = r r 3
           r − r′

ii) Distribuciones Discretas, DD

  qi


              qi                P

                                          r
                                          E (qrr )
                                               i



       r r
       ri = r '         r
                        r




                                    r r
r DD r    i =n r
                   r
E ( r ) = ∑ E qi ( r ) ≡ ∑ r r 3 i ( i)
                         i = n kq r − r


          i =1           i =1    r − ri




iii) Distribuciones continuas:
                    continuas:


   j) Volumétrica


Lic. Percy Víctor Cañote Fajardo                                                 21
Cuaderno de Actividades: Física II



                               r r
        rρ           k ρ dv′ ( r − r ′ )
        E ( rr ) = ∫      r r 3 , v : representa el volumen
                   ρ     r − r′

     jj) Superficial

                             r r
       rσ           kσ da′ ( r − r ′ )
       E ( rr ) = ∫     r r 3 , a o s : representa el área
                  σ     r − r′

     jjj) Lineal

                               r r
       rλ           k λ dl ′ ( r − r ′ )
       E ( rr ) = ∫      r r 3 , l : representa la longitud
                  λ     r − r′

“Las distribuciones de carga crean el campo”




Observaciones

        r
j)   u E ≡ N
                   C

        r
    r Fe
jj) E =    : definición operacional
        q0


       r       r        r
       Fe = q0 E ,     Fe : Fuerza " sentida " por q0 .
                       r
                       E : creado por cierta distribución de
jjj)
                            cargas en la posición de q0 .
       r
jv) El E       es usado intensivamente en las ecuaciones.




Lic. Percy Víctor Cañote Fajardo                               22
Cuaderno de Actividades: Física II




2.2) Lineas de fuerza, LF

                ρ( rr )                                 r         r r
                              P      rρ           k ρ ( r ) dv′ ( r − r ′ )
                                     E ( rr ) = ∫         r r3
                                                ρ         r − r′
     r
     r′
                                                   r
                                           ∀ρ , E se obtiene por definicion
                          r
                          r




    → LEY DE GAUSS: ρ de alta simetría .
                                         r
    → Útil sólo para ρ de alta simetría: E “fácil” de calcular.
    → LF / LF=simetría ρ .


Definición de lineas de fuerza
                                                      r     r
Son las trayectorias descritas por las q0 debido a la Fe ≡ qE    (   )   generada por
cierta ρ .
                                                            r
                                                            Fe
              r
          ρ ( r ')                           q0




                                                                              LF


“La forma de las LF esta ligada a cómo se distribuye la q”


Lic. Percy Víctor Cañote Fajardo                                                   23
Cuaderno de Actividades: Física II




LF para diversas distribuciones de carga

                                     i) ρ ≡ q




                        r
                        Fe


                q0                    ii)
                                                q




       q
                             g|q|
                             
ρ : q1 − q2                  g+-
                             g
                             d


Caso especial:

 q1 ≡ q2 ≡ q

q1 → +

q2 → −
d → " pequeña "





Lic. Percy Víctor Cañote Fajardo                    24
Cuaderno de Actividades: Física II



                                                  Dipolo eléctrico:
                                                  Modelo más simple para describir
                                                  sistemas cargados (cuando d se
                                                  aprox. a 0)




                       d

             q             -q



                                     iii) ρ ≡ λ

                               O
                  λ


                                                                     λ




iv) ρ ≡ σ

                           σ                                             σ




 O



v) ρ ≡ ρ 0 ∨ ρ ( r )


Lic. Percy Víctor Cañote Fajardo                                                25
Cuaderno de Actividades: Física II




                   Q = ∫ ρ dv
                                                             Q




Características
      r                                     q0       r
j)    E tg LF                                        E


jj)
      ρ+                              ρ−




jjj) No se cruzan

jv) Distribución de LF:

      k) Densidad LF: Relacionada a la intensidad.

      kk) Uniformidad LF: Relacionada a campos constantes.



¿? Prepare maquetas de LFs




2.3) Ley de Gauss

Lic. Percy Víctor Cañote Fajardo                                 26
Cuaderno de Actividades: Física II



Establece la proporcionalidad entre el flujo eléctrico a través de cierta superficie
cerrada, llamada gausiana y la carga eléctrica encerrada por dicha superficie.




                                     Johann Carl Friedrich
                                     Gauss,
                                     El príncipe de las
                                     matemáticas.




Definición del flujo eléctrico, φE
                                 r



                                                           r
Es la cantidad física escalar que informa acerca de cuanto E atraviesa la
superficie.

                                                      r r      r r
                      r
                      E                  φES ≡ φE ≡ ∫ E.ds ≡ ∫ E.da ,
                                                r

                                                    S        S
                                          r    r
                         r               ds = da : vector de area elemental
                        da
                   da
                                                 r
                                          r → da ≡ da
                             S=A         da     r
                                             → da ⊥ da




Lic. Percy Víctor Cañote Fajardo                                                 27
Cuaderno de Actividades: Física II


Ley de Gauss

                                                                  r r
                                                   φ   r
                                                       E ,SG
                                                               = Ñ .da α
                                                                 ∫E        qNE
                                                                SG


                                                             r r q
                          SG                              Ñ∫
                                                          SG
                                                             E.da ≡ NE
                                                                    ε0


                                                        qNE ≡    ∫ ρ dV
                                                                SG




                                         Para simplificar los cálculos ver que:
                                         r r r
                                         E ⋅ da ≡ E da cosθ




               r r        r r
1º θ ≡ 0 ∨ π → E ⋅ da ≡ ± E da

                                     {         }
    r         r r r           r
2º E ≡ cte → E ⋅ da ≡ E da E sale dela ∫

*SG, Superficie gaussiana {superficie. cerrada}




¿? Investigue por lo menos una biografía del Príncipe de las Matemáticas.


¿? Que otros flujos se usan en la Física.


¿? Será posible matematizar las LF




Lic. Percy Víctor Cañote Fajardo                                                 28
Cuaderno de Actividades: Física II




Ejemplo


            Z        λ

                                                  dl = dz
                                                  dq = λ dz
            r
            r′                                    r          Y
                                                  E
                         r
                         r
X




                                                      r
1º Por la definición de                               E

                        r r
rλ           k λ dl ′ ( r − r ′ )                            r ˆ
                                                             r = rj     ( r − r ′ ) ≡ ( rj − zkˆ ) → r − r ′ ≡
                                                                             r r         ˆ          r r
                                                                                                                 r 2 + z2
E ( rr ) = ∫      r r3
           λ     r − r′                                      r      ˆ
                                                             r ′ = zk



r r
Eλ ( r ) =
              ∞             ˆ    (
                                 ˆ
                    k λ dz rj − zk                    ) =E               ˆ
              ∫                                                   ˆ + Ez k
                                                                  j
                     {r                       }
                                                              y
                                          2 32
             −∞
                             2
                                 +z

              ∞
                                 dz
Ey = kλr ∫                                            = ¿?
              −∞    {r   2
                             +z        }
                                      2 32




                ∞
                                 zdz
Ez = − k λ ∫                                          → 0, por simetria
                    {r                    }
                                              32
              −∞
                         2
                             +z       2




Lic. Percy Víctor Cañote Fajardo                                                                                            29
Cuaderno de Actividades: Física II




2º λ → alta simetría → Gauss


                         λ                         λ

                                               r       r
                                   r
                                                            r
                                                           da   r
                                                                E
             H                             H
                                       r
                                       E



 O




                        SG=SCL+STS+STI




Lic. Percy Víctor Cañote Fajardo                                    30
Cuaderno de Actividades: Física II


  r r                                            qNE
ÑE ⋅ da ≡
∫
SG
                  ∫
                 SCL
                         +    ∫
                             STS
                                   +    ∫
                                       STI
                                             =
                                                 ε0
               6 8
                 7            678
                r r            r r
               da || E        da ⊥ E

                r             q          r
      =    ∫
          SCL
                E da + 0 + 0 = NE , SG : E = cte
                               ε0


        r        r               λH
      = E  ∫ da  = E { 2π rH } =
           SCL                   ε0

          r              λ
        → E =
                       2π rε 0

S1P22)
a) Localice en la figura los puntos donde el campo eléctrico es cero.
b) Trace un dibujo cualitativo que muestre las líneas de fuerza del campo
   resultante.
c) Haga un gráfico cualitativo de E vs. x, dónde E se evalúe en puntos del eje
   X.

Solución:

  Q               q-                   q+    E- P E+             S
                                                                        x
          d1      0          d0                   d          x



                                             k q+            k q−               2q         5q
                         E+ ≡ E− →                     ≡                    →        ≡
                                                 d2        { d0 + d }
                                                                        2
a) Para el punto S:                                                             d2       1   
                                                                                                  2

                                                                                          + d
                                                                                         2   
  1          
2  + d + d 2  ≡ 5d 2
  4          




Lic. Percy Víctor Cañote Fajardo                                                                  31
Cuaderno de Actividades: Física II


                                                       1
                                       2 ± 4 − 4 × 3×  − 
                1                                      2         2 + 10
3d 2 − 2d −       ≡ 0 → d1,2         ≡                      → d1 ≡        ≡ 0,9
                2                             2×3                     6
Igual en Q:




E+ ≡
             ( )
          k 2q
                        ≡ E− ≡
                                     k 5q( ) → 2d    2
                                                         ≡ 5d12 + 5d1 +
                                                                            5
                    2                               1
            1                          d12                                4
        d1 + 
            2

                                                               5
                                         −5 ± 25 − 4 × 3 ×
                5                                              4       −5 ± 10
3d12 + 5d1 +      ≡ 0 → d11,2 ≡                                    ≡           ≡ −0,3; −1,4
                4                               2×3                        6
                                                                       b)

                                     -          +          x




c) Para el punto S:
                                                 
r     k { +2q} ˆ k { −5q} ˆ                      
                                      2        5 ˆ       ˆ
ET ≡          2
                i+     2
                          i ≡ kq           2
                                              − 2  i ≡ ET i
          1        x            x − 1     x 
     x −                                    
          2                          2        

                        
                        
             2        5       1
ET ≡ kq           2
                     − 2  ← x > ,L hay que especificar para cada región
         x − 1     x        2
        
             2
                        
                         




Lic. Percy Víctor Cañote Fajardo                                                      32
Cuaderno de Actividades: Física II


                 E-
                       y                 ET




                                          E+




                                         0,9
                            0      0,5                      x

            E+                                     E+




S1P7) En la distribución mostrada ρ0 es
      constante y q0 es una carga puntual.
                                                                R0   ρ0         centro de la circunferencia
      Calcule la fuerza sobre q0 si d >> R0.                                          q0


                                                                     R0/2


                                                                            d

Solución:




            0          0’                      q
                                                        r
                R0/2            d
       R0
                 ρ0



Por superposición:



Lic. Percy Víctor Cañote Fajardo                                                              33
Cuaderno de Actividades: Física II




                        Q                Q’


                 0                            0’
                               +                          ≡        r
                                                    -ρ0

                 ρ0

r     r      r          kQ
                                 kQ '      
                                            ˆ
Eq0 ≡ EQq0 + EQ ' q0 ≡  2 +                i ;
                       
                        d   ( d − R0 / 2 ) 
                                            

                                     3
       4 3               4 R        Q
Q ≡ ρ 0 π R0 , Q ' ≡ − ρ0 π  0  ≡ −
       3                 3 2        8



                                   
                                   
r           4π 3  1         1      ˆ       ˆ
Eq0 ≡ k ρ 0    R0  2 −            2
                                     i ≡ Eq0 i
             3     d         R 
                        8 d − 0  
                  
                             2  


                      R0
Si d >> R0 →             << 1{despreciando los cuadrados}
                      d
                                               −2             −2
             1     1    R        R      R 
→              2
                 ≡ 2 1 − 0  → 1 − 0  = 1 + 0 
         R      d  2d        2d          d 
  d 2 1 − 0 
       2d 

Usando la aproximación del Binomio de Newton:


(1 − x) n ≈ 1 − nx cuando x << 1




Lic. Percy Víctor Cañote Fajardo                                   34
Cuaderno de Actividades: Física II


             4 π R0  ( 1 + R0 / d ) 
                  3
→ Eq0 = k ρ0      2 
                     1−              
              3 d          8
                    144   244    3

     4      R0  1  R0  
             3
Eq0 = π k ρ0 2 1 − 1 +  
     3      d  8      d 

             3
     1      R0    R 
Eq0 = π k ρ0 2 7 − 0 
     6      d      d 
¿? Encuentre este resultado usando la definición. Analice la expresión
integral.

Ahora, usando

  r      r                           r    1          3
                                                    R0    R ˆ
  F ≡ q0 E                           Fq0 = π q0 k ρ0 2 7 − 0  i
                                          6         d      d 

S1P19) Un anillo fino aislante de radio R tiene una carga con densidad lineal
       λ(φ)= λ0 cosφ, donde λ0 es una constante positiva y φ el ángulo
       azimutal, ¿Cuál es el modulo del vector campo eléctrico?
                    Z                             a) En el centro del anillo
                   P                              b) En su eje a una distancia
              z≡d                                    d de su centro. Analice la
                                                     expresión obtenida para
                                                     d >> R.
                                λ
                                                                            r r
                   0                       y        r          k λ (φ )dl ( r − r ')
                       φ   R                   a)   E ( 0) ≡ ∫       r r 3
                                                             λ       r −r'
  x                        dq
                                               r r r
                                               r ≡ 0, r ' ≡ R cos φ i + Rsenφ ˆ
                                                                    ˆ         j
    r
→ ( r − r ') ≡ − R cos φ i − Rsenφ ˆ
                         ˆ         j
r r 3
r − r 1 ≡ R 3 ; dl ≡ Rdφ




Lic. Percy Víctor Cañote Fajardo                                                       35
Cuaderno de Actividades: Física II


r          −k λ0  2π  2
                                   ˆ 1
                                                   
E λ ( 0) ≡        ∫0  { cos φ dφ i + sen 2φ dφ ˆ  
                                                 j
            R                     2{           
                                                   
                     1
                       ( 1 + cos 2φ )
                     2
r          −k λ0π ˆ   r         kλ π
E λ ( 0) ≡        i → E λ ( 0) ≡ 0
             R                   R

     r    ˆ r
b)   r ≡ zk , r ' ≡ R cos φ i + Rsenφ ˆ
                            ˆ         j
    r r
→ ( r − r ' ) ≡ − R cos φ i − Rsenφ ˆ + zk
                          ˆ         j    ˆ

r r 3
               {                }
                                    3/ 2
r − r ' ≡ R2 + z 2                         ; dq ≡ λ R dφ

  r                     −k λ0 R 2   2π  2
                                                                            
→ Eλ ( z ) ≡                                       ˆ 1 sen 2     z         ˆ 
                              3/ 2  ∫0  {
                                          cos φ dφ i + { φ dφ ˆ − cos φ dφ k  
                                                              j
                                                                            
                   {   R +z
                        2   2
                                     }
                                    
                                                     2          R{          
rλ       − k λ0π R 2 ˆ     rλ        k λ0π R 2
E ( z) ≡               i → E ( z) ≡                ,
           {               }                         {      }
                  3/ 2                        3/ 2
         R +z
          2     2
                                    R +z
                                      2    2




        rλ     k λ0 R 2π
 lim E ( z ) ≡
 z >> R           z3



S1P47) Determine el campo eléctrico de un disco de radio R con densidad
       superficial de carga uniforme, sobre puntos en el eje axial del disco.

Solución:

                       z                                   A)   Usando      coordenadas
                            r
                            r                                    polares               (≡
                                                                 coordenadas
          σ                                                      cilíndricas en el plano)
                           rr                   y
                           r'                                       y

           x
Lic. Percy Víctor Cañote Fajardo                                                       36
Cuaderno de Actividades: Física II



     da=(rdθ)dr
                                    dr
                  dθ        r
                                            x
                       θ




                  r r
r r         kdq ( r − r ') r
E ( r ) ≡ ∫ r r 3 ≡ kσ I
          σ   r −r'

dq = σ da = σ ( rdθ dr )
r
r ≡ ( 0,0, z )
r
r ' ≡ ( r cosθ , rsenθ ,0 )

r     k ( σ rdθ dr ) ( −r cosθ , − rsenθ , z )
I ≡∫
                                (                        )
    s                        3/ 2
                    r2 + z2


   R 2π
≡ ∫ ∫
         ( −r cosθ , −rsenθ , z ) rdθ dr 
                                         
   0 0
                                (        
                                                         )
                           3/ 2
                  r2 + z2
                                        
    2π                                              2π
∫0
         cosθ dθ       =0
                                                ∫
                                                0
                                                         senθ dθ   =0   (por evaluarse en sus periodos)



r   2π R               rzdrdθ                   ˆ
I ≡∫ ∫                                          k
                  (r                 )
          0   0                          3/ 2
                       2
                           + z2




Lic. Percy Víctor Cañote Fajardo                                                                      37
Cuaderno de Actividades: Física II


                                            
   ≡
      { ∫ dθ } ∫ (
          0
           2π           R

                        0
                                   zrdr
                                r2 + z2    )
                                        3/ 2
                                             k
                                             
                                               ˆ
                                            

                                             
                      rdr
   ≡ ( 2π ) z ∫
                 R
                                              kˆ
     
                    (                )        
                0                        3/ 2
                   r2 + z2
                                             

r                   z
                         z                         ˆ
                                                    
E ( z ) ≡ kσ ( 2π )  −                             k
                    z
                       R2 + z 2                    
                                                    
¿? Encuentre este resultado usando la definición con un elemento de área
   cartesiano. Analice la expresión integral.
¿? Qué ocurre si R → ∞

R→∞
r                  z ˆ  kσ ( 2π ) k
                        
                                     ˆ
E ( z ) ≡ kσ ( 2π ) k ≡ 
                   z    − kσ ( 2π ) k
                        
                                      ˆ

 r                       1               σ
 E ( z ) ≡ k ( 2π ) σ ≡       ( 2π ) σ ≡                :   El   E   de   un   plano!
                        4πε 0             2ε 0
    (verifíquelo usando LG)


B) Usando anillos de λ=σdr


                    z
                            r
                            r
          σ
                        rr                     y
                        r'

          x




Lic. Percy Víctor Cañote Fajardo                                                    38
Cuaderno de Actividades: Física II

     r    ˆ r
b)   r ≡ zk , r ' ≡ r cos φ i + rsenφ ˆ
                            ˆ         j
    r r
→ ( r − r ') ≡ −r cos φ i − rsenφ ˆ + zk
                        ˆ         j    ˆ

r r 3
              {              }
                                 3/ 2
r − r ' ≡ r2 + z2                       ; dq ≡ λ rdφ

   r                    kσ rdr      2π 
                                                                            
→ dE λ ( z ) ≡                                        ˆ − rsenφ dφ ˆ + zdφ k  
                                                                           ˆ 
                              3/ 2  ∫0  124
                                         −r cos φ dφ i {          j
                   {   r +z
                        2   2
                                    }
                                    
                                   
                                          4 3                                
                                                                             
                                       R
 rλ        kσ (2π ) zrdr ˆ    rσ         kσ (2π ) zrdr ˆ
dE ( z ) ≡                k → E ( z) ≡ ∫               k
             {           }                             {   }
                     3/ 2                       2 3/ 2
            r +z
             2    2
                                       0 r + z
                                           2




r                   z
                         z   ˆ
                              
E ( z ) ≡ kσ ( 2π )  −       k
                    
                     z R +z 
                         2  2
                              




Lic. Percy Víctor Cañote Fajardo                                               39

Más contenido relacionado

La actualidad más candente

Cap1 carga y materia
Cap1 carga y materiaCap1 carga y materia
Cap1 carga y materia
goku10
 
Cap 4 Potencial Electrico 46 74
Cap 4 Potencial Electrico 46 74Cap 4 Potencial Electrico 46 74
Cap 4 Potencial Electrico 46 74SENCICO
 
Cap4 potencial electrico y energia potencial electrostatica
Cap4 potencial electrico y energia potencial electrostaticaCap4 potencial electrico y energia potencial electrostatica
Cap4 potencial electrico y energia potencial electrostatica
goku10
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45SENCICO
 
C A P 1 2 Cinematica De Una Particula 1 31 2011 I
C A P 1 2   Cinematica De Una Particula  1 31 2011 IC A P 1 2   Cinematica De Una Particula  1 31 2011 I
C A P 1 2 Cinematica De Una Particula 1 31 2011 IManuel Mendoza
 
Cap 2 1- dinamica de una particula 42-62-2011 i
Cap 2 1- dinamica de una particula  42-62-2011 iCap 2 1- dinamica de una particula  42-62-2011 i
Cap 2 1- dinamica de una particula 42-62-2011 iManuel Mendoza
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45katerin
 
Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74katerin
 
Cap 13 242
Cap 13  242Cap 13  242
Cap 13 242katerin
 

La actualidad más candente (11)

Cap 7 mas 180-204
Cap 7 mas  180-204Cap 7 mas  180-204
Cap 7 mas 180-204
 
Cap1 carga y materia
Cap1 carga y materiaCap1 carga y materia
Cap1 carga y materia
 
Cap4 sp 99-123-2011 i
Cap4 sp 99-123-2011 iCap4 sp 99-123-2011 i
Cap4 sp 99-123-2011 i
 
Cap 4 Potencial Electrico 46 74
Cap 4 Potencial Electrico 46 74Cap 4 Potencial Electrico 46 74
Cap 4 Potencial Electrico 46 74
 
Cap4 potencial electrico y energia potencial electrostatica
Cap4 potencial electrico y energia potencial electrostaticaCap4 potencial electrico y energia potencial electrostatica
Cap4 potencial electrico y energia potencial electrostatica
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45
 
C A P 1 2 Cinematica De Una Particula 1 31 2011 I
C A P 1 2   Cinematica De Una Particula  1 31 2011 IC A P 1 2   Cinematica De Una Particula  1 31 2011 I
C A P 1 2 Cinematica De Una Particula 1 31 2011 I
 
Cap 2 1- dinamica de una particula 42-62-2011 i
Cap 2 1- dinamica de una particula  42-62-2011 iCap 2 1- dinamica de una particula  42-62-2011 i
Cap 2 1- dinamica de una particula 42-62-2011 i
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45
 
Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74
 
Cap 13 242
Cap 13  242Cap 13  242
Cap 13 242
 

Destacado

Ley De Gauss
Ley De GaussLey De Gauss
Ley De Gaussisrael.1x
 
Problemario Física, Ley Coulomb, Gauss, Potencial Electrico
Problemario Física, Ley Coulomb, Gauss, Potencial ElectricoProblemario Física, Ley Coulomb, Gauss, Potencial Electrico
Problemario Física, Ley Coulomb, Gauss, Potencial ElectricoAmy Avalos Guillen
 
FLUJO ELECTRICO Y LEY DE GAUSS
FLUJO ELECTRICO Y LEY DE GAUSSFLUJO ELECTRICO Y LEY DE GAUSS
FLUJO ELECTRICO Y LEY DE GAUSS
Universidad Técnica de Manabí
 
Ley de gauss clase 6
Ley de gauss clase 6Ley de gauss clase 6
Ley de gauss clase 6Tensor
 
Problemas (67) del Capítulo III de física II Ley de Gauss
Problemas (67) del Capítulo III de física II   Ley de GaussProblemas (67) del Capítulo III de física II   Ley de Gauss
Problemas (67) del Capítulo III de física II Ley de Gauss
LUIS POWELL
 
Fisica3– e cy t_3+4_camp_pot_gaussunsam
Fisica3– e cy t_3+4_camp_pot_gaussunsamFisica3– e cy t_3+4_camp_pot_gaussunsam
Fisica3– e cy t_3+4_camp_pot_gaussunsamsgil1950
 
electricidad y magnetismo ejercicios resueltos Capitulo 2
electricidad y magnetismo  ejercicios resueltos  Capitulo 2electricidad y magnetismo  ejercicios resueltos  Capitulo 2
electricidad y magnetismo ejercicios resueltos Capitulo 2
J Alexander A Cabrera
 
Flujo electrico y sus clasificaciones
Flujo electrico y sus clasificacionesFlujo electrico y sus clasificaciones
Flujo electrico y sus clasificacionesOskaar Garciaa
 
Raíces racionales de polinomios - Teorema de Gauss
Raíces racionales de polinomios - Teorema de GaussRaíces racionales de polinomios - Teorema de Gauss
Raíces racionales de polinomios - Teorema de Gauss
tboragini
 
Problemas de aplicación de la ley de gaussf
Problemas de aplicación de la ley de gaussfProblemas de aplicación de la ley de gaussf
Problemas de aplicación de la ley de gaussf
hector
 
Capítulo III (68) de física II Ley de Gauss - definitivo
Capítulo III (68) de física II   Ley de Gauss - definitivoCapítulo III (68) de física II   Ley de Gauss - definitivo
Capítulo III (68) de física II Ley de Gauss - definitivo
LUIS POWELL
 
Fundamentos de-electromagnetismo-para-ingenieria-david-k-cheng
Fundamentos de-electromagnetismo-para-ingenieria-david-k-chengFundamentos de-electromagnetismo-para-ingenieria-david-k-cheng
Fundamentos de-electromagnetismo-para-ingenieria-david-k-cheng
Omar Corazza
 
Capítulo II de Física II - Campo Eléctrico - Definitivo
Capítulo II de Física II - Campo Eléctrico - DefinitivoCapítulo II de Física II - Campo Eléctrico - Definitivo
Capítulo II de Física II - Campo Eléctrico - Definitivo
guestf39ed9c1
 
Problemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serwayProblemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serwayjoaquings
 
Ley de coulomb problemas resueltos-gonzalo revelo pabon
Ley de coulomb  problemas resueltos-gonzalo revelo pabonLey de coulomb  problemas resueltos-gonzalo revelo pabon
Ley de coulomb problemas resueltos-gonzalo revelo pabonGONZALO REVELO PABON . GORETTI
 

Destacado (20)

Ley De Gauss
Ley De GaussLey De Gauss
Ley De Gauss
 
Problemario Física, Ley Coulomb, Gauss, Potencial Electrico
Problemario Física, Ley Coulomb, Gauss, Potencial ElectricoProblemario Física, Ley Coulomb, Gauss, Potencial Electrico
Problemario Física, Ley Coulomb, Gauss, Potencial Electrico
 
FLUJO ELECTRICO Y LEY DE GAUSS
FLUJO ELECTRICO Y LEY DE GAUSSFLUJO ELECTRICO Y LEY DE GAUSS
FLUJO ELECTRICO Y LEY DE GAUSS
 
Ley de gauss clase 6
Ley de gauss clase 6Ley de gauss clase 6
Ley de gauss clase 6
 
Problemas (67) del Capítulo III de física II Ley de Gauss
Problemas (67) del Capítulo III de física II   Ley de GaussProblemas (67) del Capítulo III de física II   Ley de Gauss
Problemas (67) del Capítulo III de física II Ley de Gauss
 
Flujo electrico
Flujo electricoFlujo electrico
Flujo electrico
 
Fisica3– e cy t_3+4_camp_pot_gaussunsam
Fisica3– e cy t_3+4_camp_pot_gaussunsamFisica3– e cy t_3+4_camp_pot_gaussunsam
Fisica3– e cy t_3+4_camp_pot_gaussunsam
 
Ley de gauss
Ley de gaussLey de gauss
Ley de gauss
 
electricidad y magnetismo ejercicios resueltos Capitulo 2
electricidad y magnetismo  ejercicios resueltos  Capitulo 2electricidad y magnetismo  ejercicios resueltos  Capitulo 2
electricidad y magnetismo ejercicios resueltos Capitulo 2
 
Flujo electrico y sus clasificaciones
Flujo electrico y sus clasificacionesFlujo electrico y sus clasificaciones
Flujo electrico y sus clasificaciones
 
Ley de gauss para el magnetismo
Ley de gauss para el magnetismoLey de gauss para el magnetismo
Ley de gauss para el magnetismo
 
Raíces racionales de polinomios - Teorema de Gauss
Raíces racionales de polinomios - Teorema de GaussRaíces racionales de polinomios - Teorema de Gauss
Raíces racionales de polinomios - Teorema de Gauss
 
Problemas de aplicación de la ley de gaussf
Problemas de aplicación de la ley de gaussfProblemas de aplicación de la ley de gaussf
Problemas de aplicación de la ley de gaussf
 
Capítulo III (68) de física II Ley de Gauss - definitivo
Capítulo III (68) de física II   Ley de Gauss - definitivoCapítulo III (68) de física II   Ley de Gauss - definitivo
Capítulo III (68) de física II Ley de Gauss - definitivo
 
Fundamentos de-electromagnetismo-para-ingenieria-david-k-cheng
Fundamentos de-electromagnetismo-para-ingenieria-david-k-chengFundamentos de-electromagnetismo-para-ingenieria-david-k-cheng
Fundamentos de-electromagnetismo-para-ingenieria-david-k-cheng
 
Capítulo II de Física II - Campo Eléctrico - Definitivo
Capítulo II de Física II - Campo Eléctrico - DefinitivoCapítulo II de Física II - Campo Eléctrico - Definitivo
Capítulo II de Física II - Campo Eléctrico - Definitivo
 
POTENCIAL ELECTRICO
POTENCIAL ELECTRICOPOTENCIAL ELECTRICO
POTENCIAL ELECTRICO
 
Problemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serwayProblemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serway
 
Ley de gauss
Ley de gaussLey de gauss
Ley de gauss
 
Ley de coulomb problemas resueltos-gonzalo revelo pabon
Ley de coulomb  problemas resueltos-gonzalo revelo pabonLey de coulomb  problemas resueltos-gonzalo revelo pabon
Ley de coulomb problemas resueltos-gonzalo revelo pabon
 

Similar a Cap2 campo electrico y ley de gauss

Cap 2 campo eléctrico y ley de gauss 19 38-2010 ii
Cap 2 campo eléctrico y ley de gauss 19 38-2010 iiCap 2 campo eléctrico y ley de gauss 19 38-2010 ii
Cap 2 campo eléctrico y ley de gauss 19 38-2010 iikaterin
 
Cap 2 campo eléctrico y ley de gauss 19 38-2010 ii
Cap 2 campo eléctrico y ley de gauss 19 38-2010 iiCap 2 campo eléctrico y ley de gauss 19 38-2010 ii
Cap 2 campo eléctrico y ley de gauss 19 38-2010 ii0g4m3
 
Cap 2 campo eléctrico y ley de gauss 19 38-2011 i
Cap 2 campo eléctrico y ley de gauss 19 38-2011 iCap 2 campo eléctrico y ley de gauss 19 38-2011 i
Cap 2 campo eléctrico y ley de gauss 19 38-2011 ikaterin
 
Cap i carga y materia 1 11-2010 ii
Cap i carga y materia 1 11-2010 iiCap i carga y materia 1 11-2010 ii
Cap i carga y materia 1 11-2010 ii0g4m3
 
Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74katerin
 
Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-740g4m3
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45SENCICO
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-450g4m3
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45katerin
 
Cap 1 2- cinematica de una particula 1-31-2010 i
Cap 1 2- cinematica de una particula  1-31-2010 iCap 1 2- cinematica de una particula  1-31-2010 i
Cap 1 2- cinematica de una particula 1-31-2010 i0g4m3
 
Cap 1 2- cinematica de una particula
Cap 1 2- cinematica de una particulaCap 1 2- cinematica de una particula
Cap 1 2- cinematica de una particulaDiego De la Cruz
 
Cap 1 2- cinematica de una particula 1-31-2011 i
Cap 1 2- cinematica de una particula  1-31-2011 iCap 1 2- cinematica de una particula  1-31-2011 i
Cap 1 2- cinematica de una particula 1-31-2011 iManuel Mendoza
 
Cap 1 2- cinematica de una particula 1-31-2011 i
Cap 1 2- cinematica de una particula  1-31-2011 iCap 1 2- cinematica de una particula  1-31-2011 i
Cap 1 2- cinematica de una particula 1-31-2011 iManuel Mendoza
 
Cap 1 2- cinematica de una particula 1-31-2011 i
Cap 1 2- cinematica de una particula  1-31-2011 iCap 1 2- cinematica de una particula  1-31-2011 i
Cap 1 2- cinematica de una particula 1-31-2011 iDune16
 
Cap 13 242
Cap 13  242Cap 13  242
Cap 13 242katerin
 
Cap 13 242
Cap 13  242Cap 13  242
Cap 13 242katerin
 
Cap 13 242
Cap 13  242Cap 13  242
Cap 13 242SENCICO
 
Cap5 con densadores y dielectricos
Cap5 con densadores y dielectricosCap5 con densadores y dielectricos
Cap5 con densadores y dielectricos
goku10
 
Capitulo 3 Trabajo y Energía
Capitulo 3 Trabajo y EnergíaCapitulo 3 Trabajo y Energía
Capitulo 3 Trabajo y EnergíaDiego De la Cruz
 

Similar a Cap2 campo electrico y ley de gauss (20)

Cap 2 campo eléctrico y ley de gauss 19 38-2010 ii
Cap 2 campo eléctrico y ley de gauss 19 38-2010 iiCap 2 campo eléctrico y ley de gauss 19 38-2010 ii
Cap 2 campo eléctrico y ley de gauss 19 38-2010 ii
 
Cap 2 campo eléctrico y ley de gauss 19 38-2010 ii
Cap 2 campo eléctrico y ley de gauss 19 38-2010 iiCap 2 campo eléctrico y ley de gauss 19 38-2010 ii
Cap 2 campo eléctrico y ley de gauss 19 38-2010 ii
 
Cap 2 campo eléctrico y ley de gauss 19 38-2011 i
Cap 2 campo eléctrico y ley de gauss 19 38-2011 iCap 2 campo eléctrico y ley de gauss 19 38-2011 i
Cap 2 campo eléctrico y ley de gauss 19 38-2011 i
 
Cap i carga y materia 1 11-2010 ii
Cap i carga y materia 1 11-2010 iiCap i carga y materia 1 11-2010 ii
Cap i carga y materia 1 11-2010 ii
 
Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74
 
Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74Cap 4-potencial electrico 46-74
Cap 4-potencial electrico 46-74
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45
 
Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45Cap 3 lg y lc 39-45
Cap 3 lg y lc 39-45
 
Cap 1 2- cinematica de una particula 1-31-2010 i
Cap 1 2- cinematica de una particula  1-31-2010 iCap 1 2- cinematica de una particula  1-31-2010 i
Cap 1 2- cinematica de una particula 1-31-2010 i
 
Cap 1 2- cinematica de una particula
Cap 1 2- cinematica de una particulaCap 1 2- cinematica de una particula
Cap 1 2- cinematica de una particula
 
Cap 1 2- cinematica de una particula 1-31-2011 i
Cap 1 2- cinematica de una particula  1-31-2011 iCap 1 2- cinematica de una particula  1-31-2011 i
Cap 1 2- cinematica de una particula 1-31-2011 i
 
Cap 1 2- cinematica de una particula 1-31-2011 i
Cap 1 2- cinematica de una particula  1-31-2011 iCap 1 2- cinematica de una particula  1-31-2011 i
Cap 1 2- cinematica de una particula 1-31-2011 i
 
CINEMATICA
CINEMATICACINEMATICA
CINEMATICA
 
Cap 1 2- cinematica de una particula 1-31-2011 i
Cap 1 2- cinematica de una particula  1-31-2011 iCap 1 2- cinematica de una particula  1-31-2011 i
Cap 1 2- cinematica de una particula 1-31-2011 i
 
Cap 13 242
Cap 13  242Cap 13  242
Cap 13 242
 
Cap 13 242
Cap 13  242Cap 13  242
Cap 13 242
 
Cap 13 242
Cap 13  242Cap 13  242
Cap 13 242
 
Cap5 con densadores y dielectricos
Cap5 con densadores y dielectricosCap5 con densadores y dielectricos
Cap5 con densadores y dielectricos
 
Capitulo 3 Trabajo y Energía
Capitulo 3 Trabajo y EnergíaCapitulo 3 Trabajo y Energía
Capitulo 3 Trabajo y Energía
 

Último

Mapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativaMapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativa
TatianaVanessaAltami
 
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdfHABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
DIANADIAZSILVA1
 
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
sandradianelly
 
PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.
https://gramadal.wordpress.com/
 
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
pablomarin116
 
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptxCLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
LilianaRivera778668
 
Introducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BIIntroducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BI
arleyo2006
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
https://gramadal.wordpress.com/
 
Semana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxSemana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptx
LorenaCovarrubias12
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
auxsoporte
 
evalaución de reforzamiento de cuarto de secundaria de la competencia lee
evalaución de reforzamiento de cuarto de secundaria de la competencia leeevalaución de reforzamiento de cuarto de secundaria de la competencia lee
evalaución de reforzamiento de cuarto de secundaria de la competencia lee
MaribelGaitanRamosRa
 
Portafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPNPortafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPN
jmorales40
 
Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitales
nievesjiesc03
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
Edurne Navarro Bueno
 
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Monseespinoza6
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
ClaudiaAlcondeViadez
 
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
rosannatasaycoyactay
 
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIACONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
BetzabePecheSalcedo1
 
El fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amorEl fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amor
Alejandrino Halire Ccahuana
 
Fase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcionalFase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcional
YasneidyGonzalez
 

Último (20)

Mapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativaMapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativa
 
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdfHABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
 
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
 
PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.
 
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
 
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptxCLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
 
Introducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BIIntroducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BI
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
 
Semana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxSemana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptx
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
 
evalaución de reforzamiento de cuarto de secundaria de la competencia lee
evalaución de reforzamiento de cuarto de secundaria de la competencia leeevalaución de reforzamiento de cuarto de secundaria de la competencia lee
evalaución de reforzamiento de cuarto de secundaria de la competencia lee
 
Portafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPNPortafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPN
 
Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitales
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
 
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
 
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
 
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIACONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
 
El fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amorEl fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amor
 
Fase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcionalFase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcional
 

Cap2 campo electrico y ley de gauss

  • 1. Cuaderno de Actividades: Física II 2) CAMPO ELÉCTRICO Y LEY DE GAUSS Lic. Percy Víctor Cañote Fajardo 19
  • 2. Cuaderno de Actividades: Física II r 2.1) Definición de campo eléctrico, E r El vector E describe las propiedades eléctricas del espacio {medio}. r q0 r Fe r E r Fe P P E= → q0 q Donde: q0 : Carga de prueba , q0 → + q0 → 0 Campo eléctrico: Discusión… “Las interacciones del campo no son instantáneas” “La carga q modifica el medio que la rodea (campo)” r E Lic. Percy Víctor Cañote Fajardo 20
  • 3. Cuaderno de Actividades: Física II Ecuaciones de E i) q r r kqq0 ( r − r ′ ) r r3 r rq r − r′ kqr r r q P E ( rr ) = = r 3 , si r ′ ≡ 0 r q0 r r E (qrr ) r′ r r En general : r r r r kq ( r − r ′ ) Eq ( r ) = r r 3 r − r′ ii) Distribuciones Discretas, DD qi qi P r E (qrr ) i r r ri = r ' r r r r r DD r i =n r r E ( r ) = ∑ E qi ( r ) ≡ ∑ r r 3 i ( i) i = n kq r − r i =1 i =1 r − ri iii) Distribuciones continuas: continuas: j) Volumétrica Lic. Percy Víctor Cañote Fajardo 21
  • 4. Cuaderno de Actividades: Física II r r rρ k ρ dv′ ( r − r ′ ) E ( rr ) = ∫ r r 3 , v : representa el volumen ρ r − r′ jj) Superficial r r rσ kσ da′ ( r − r ′ ) E ( rr ) = ∫ r r 3 , a o s : representa el área σ r − r′ jjj) Lineal r r rλ k λ dl ′ ( r − r ′ ) E ( rr ) = ∫ r r 3 , l : representa la longitud λ r − r′ “Las distribuciones de carga crean el campo” Observaciones r j) u E ≡ N   C r r Fe jj) E = : definición operacional q0 r r r Fe = q0 E , Fe : Fuerza " sentida " por q0 . r E : creado por cierta distribución de jjj) cargas en la posición de q0 . r jv) El E es usado intensivamente en las ecuaciones. Lic. Percy Víctor Cañote Fajardo 22
  • 5. Cuaderno de Actividades: Física II 2.2) Lineas de fuerza, LF ρ( rr ) r r r P rρ k ρ ( r ) dv′ ( r − r ′ ) E ( rr ) = ∫ r r3 ρ r − r′ r r′ r ∀ρ , E se obtiene por definicion r r → LEY DE GAUSS: ρ de alta simetría . r → Útil sólo para ρ de alta simetría: E “fácil” de calcular. → LF / LF=simetría ρ . Definición de lineas de fuerza r r Son las trayectorias descritas por las q0 debido a la Fe ≡ qE ( ) generada por cierta ρ . r Fe r ρ ( r ') q0 LF “La forma de las LF esta ligada a cómo se distribuye la q” Lic. Percy Víctor Cañote Fajardo 23
  • 6. Cuaderno de Actividades: Física II LF para diversas distribuciones de carga i) ρ ≡ q r Fe q0 ii) q q g|q|  ρ : q1 − q2 g+- g d Caso especial:  q1 ≡ q2 ≡ q  q1 → +  q2 → − d → " pequeña "  Lic. Percy Víctor Cañote Fajardo 24
  • 7. Cuaderno de Actividades: Física II Dipolo eléctrico: Modelo más simple para describir sistemas cargados (cuando d se aprox. a 0) d q -q iii) ρ ≡ λ O λ λ iv) ρ ≡ σ σ σ O v) ρ ≡ ρ 0 ∨ ρ ( r ) Lic. Percy Víctor Cañote Fajardo 25
  • 8. Cuaderno de Actividades: Física II Q = ∫ ρ dv Q Características r q0 r j) E tg LF E jj) ρ+ ρ− jjj) No se cruzan jv) Distribución de LF: k) Densidad LF: Relacionada a la intensidad. kk) Uniformidad LF: Relacionada a campos constantes. ¿? Prepare maquetas de LFs 2.3) Ley de Gauss Lic. Percy Víctor Cañote Fajardo 26
  • 9. Cuaderno de Actividades: Física II Establece la proporcionalidad entre el flujo eléctrico a través de cierta superficie cerrada, llamada gausiana y la carga eléctrica encerrada por dicha superficie. Johann Carl Friedrich Gauss, El príncipe de las matemáticas. Definición del flujo eléctrico, φE r r Es la cantidad física escalar que informa acerca de cuanto E atraviesa la superficie. r r r r r E φES ≡ φE ≡ ∫ E.ds ≡ ∫ E.da , r S S r r r ds = da : vector de area elemental da da r r → da ≡ da S=A da  r  → da ⊥ da Lic. Percy Víctor Cañote Fajardo 27
  • 10. Cuaderno de Actividades: Física II Ley de Gauss r r φ r E ,SG = Ñ .da α ∫E qNE SG r r q SG Ñ∫ SG E.da ≡ NE ε0 qNE ≡ ∫ ρ dV SG Para simplificar los cálculos ver que: r r r E ⋅ da ≡ E da cosθ r r r r 1º θ ≡ 0 ∨ π → E ⋅ da ≡ ± E da { } r r r r r 2º E ≡ cte → E ⋅ da ≡ E da E sale dela ∫ *SG, Superficie gaussiana {superficie. cerrada} ¿? Investigue por lo menos una biografía del Príncipe de las Matemáticas. ¿? Que otros flujos se usan en la Física. ¿? Será posible matematizar las LF Lic. Percy Víctor Cañote Fajardo 28
  • 11. Cuaderno de Actividades: Física II Ejemplo Z λ dl = dz dq = λ dz r r′ r Y E r r X r 1º Por la definición de E r r rλ k λ dl ′ ( r − r ′ ) r ˆ r = rj ( r − r ′ ) ≡ ( rj − zkˆ ) → r − r ′ ≡ r r ˆ r r r 2 + z2 E ( rr ) = ∫ r r3 λ r − r′ r ˆ r ′ = zk r r Eλ ( r ) = ∞ ˆ ( ˆ k λ dz rj − zk ) =E ˆ ∫ ˆ + Ez k j {r } y 2 32 −∞ 2 +z ∞ dz Ey = kλr ∫ = ¿? −∞ {r 2 +z } 2 32 ∞ zdz Ez = − k λ ∫ → 0, por simetria {r } 32 −∞ 2 +z 2 Lic. Percy Víctor Cañote Fajardo 29
  • 12. Cuaderno de Actividades: Física II 2º λ → alta simetría → Gauss λ λ r r r r da r E H H r E O SG=SCL+STS+STI Lic. Percy Víctor Cañote Fajardo 30
  • 13. Cuaderno de Actividades: Física II r r qNE ÑE ⋅ da ≡ ∫ SG ∫ SCL + ∫ STS + ∫ STI = ε0 6 8 7 678 r r r r da || E da ⊥ E r q r = ∫ SCL E da + 0 + 0 = NE , SG : E = cte ε0 r  r λH = E  ∫ da  = E { 2π rH } =  SCL  ε0 r λ → E = 2π rε 0 S1P22) a) Localice en la figura los puntos donde el campo eléctrico es cero. b) Trace un dibujo cualitativo que muestre las líneas de fuerza del campo resultante. c) Haga un gráfico cualitativo de E vs. x, dónde E se evalúe en puntos del eje X. Solución: Q q- q+ E- P E+ S x d1 0 d0 d x k q+ k q− 2q 5q E+ ≡ E− → ≡ → ≡ d2 { d0 + d } 2 a) Para el punto S: d2 1  2  + d 2  1  2  + d + d 2  ≡ 5d 2 4  Lic. Percy Víctor Cañote Fajardo 31
  • 14. Cuaderno de Actividades: Física II  1 2 ± 4 − 4 × 3×  −  1  2 2 + 10 3d 2 − 2d − ≡ 0 → d1,2 ≡ → d1 ≡ ≡ 0,9 2 2×3 6 Igual en Q: E+ ≡ ( ) k 2q ≡ E− ≡ k 5q( ) → 2d 2 ≡ 5d12 + 5d1 + 5 2 1  1 d12 4 d1 +   2 5 −5 ± 25 − 4 × 3 × 5 4 −5 ± 10 3d12 + 5d1 + ≡ 0 → d11,2 ≡ ≡ ≡ −0,3; −1,4 4 2×3 6 b) - + x c) Para el punto S:   r k { +2q} ˆ k { −5q} ˆ    2 5 ˆ ˆ ET ≡ 2 i+ 2 i ≡ kq  2 − 2  i ≡ ET i  1 x  x − 1  x  x −      2  2       2 5 1 ET ≡ kq  2 − 2  ← x > ,L hay que especificar para cada región  x − 1  x  2   2    Lic. Percy Víctor Cañote Fajardo 32
  • 15. Cuaderno de Actividades: Física II E- y ET E+ 0,9 0 0,5 x E+ E+ S1P7) En la distribución mostrada ρ0 es constante y q0 es una carga puntual. R0 ρ0 centro de la circunferencia Calcule la fuerza sobre q0 si d >> R0. q0 R0/2 d Solución: 0 0’ q r R0/2 d R0 ρ0 Por superposición: Lic. Percy Víctor Cañote Fajardo 33
  • 16. Cuaderno de Actividades: Física II Q Q’ 0 0’ + ≡ r -ρ0 ρ0 r r r  kQ  kQ '  ˆ Eq0 ≡ EQq0 + EQ ' q0 ≡  2 + i ;   d ( d − R0 / 2 )   3 4 3 4 R  Q Q ≡ ρ 0 π R0 , Q ' ≡ − ρ0 π  0  ≡ − 3 3 2 8     r 4π 3  1 1 ˆ ˆ Eq0 ≡ k ρ 0 R0  2 − 2 i ≡ Eq0 i 3  d  R  8 d − 0      2   R0 Si d >> R0 → << 1{despreciando los cuadrados} d −2 −2 1 1  R   R   R  → 2 ≡ 2 1 − 0  → 1 − 0  = 1 + 0   R  d  2d   2d   d  d 2 1 − 0   2d  Usando la aproximación del Binomio de Newton: (1 − x) n ≈ 1 − nx cuando x << 1 Lic. Percy Víctor Cañote Fajardo 34
  • 17. Cuaderno de Actividades: Física II 4 π R0  ( 1 + R0 / d )  3 → Eq0 = k ρ0 2  1−  3 d  8 144 244  3 4 R0  1  R0   3 Eq0 = π k ρ0 2 1 − 1 +   3 d  8 d  3 1 R0  R  Eq0 = π k ρ0 2 7 − 0  6 d  d  ¿? Encuentre este resultado usando la definición. Analice la expresión integral. Ahora, usando r r r 1 3 R0  R ˆ F ≡ q0 E Fq0 = π q0 k ρ0 2 7 − 0  i 6 d  d  S1P19) Un anillo fino aislante de radio R tiene una carga con densidad lineal λ(φ)= λ0 cosφ, donde λ0 es una constante positiva y φ el ángulo azimutal, ¿Cuál es el modulo del vector campo eléctrico? Z a) En el centro del anillo P b) En su eje a una distancia z≡d d de su centro. Analice la expresión obtenida para d >> R. λ r r 0 y r k λ (φ )dl ( r − r ') φ R a) E ( 0) ≡ ∫ r r 3 λ r −r' x dq r r r r ≡ 0, r ' ≡ R cos φ i + Rsenφ ˆ ˆ j r → ( r − r ') ≡ − R cos φ i − Rsenφ ˆ ˆ j r r 3 r − r 1 ≡ R 3 ; dl ≡ Rdφ Lic. Percy Víctor Cañote Fajardo 35
  • 18. Cuaderno de Actividades: Física II r −k λ0  2π  2  ˆ 1  E λ ( 0) ≡  ∫0  { cos φ dφ i + sen 2φ dφ ˆ   j R    2{   1 ( 1 + cos 2φ ) 2 r −k λ0π ˆ r kλ π E λ ( 0) ≡ i → E λ ( 0) ≡ 0 R R r ˆ r b) r ≡ zk , r ' ≡ R cos φ i + Rsenφ ˆ ˆ j r r → ( r − r ' ) ≡ − R cos φ i − Rsenφ ˆ + zk ˆ j ˆ r r 3 { } 3/ 2 r − r ' ≡ R2 + z 2 ; dq ≡ λ R dφ r −k λ0 R 2  2π  2   → Eλ ( z ) ≡ ˆ 1 sen 2 z ˆ  3/ 2  ∫0  { cos φ dφ i + { φ dφ ˆ − cos φ dφ k   j   { R +z 2 2 }    2 R{  rλ − k λ0π R 2 ˆ rλ k λ0π R 2 E ( z) ≡ i → E ( z) ≡ , { } { } 3/ 2 3/ 2 R +z 2 2 R +z 2 2 rλ k λ0 R 2π lim E ( z ) ≡ z >> R z3 S1P47) Determine el campo eléctrico de un disco de radio R con densidad superficial de carga uniforme, sobre puntos en el eje axial del disco. Solución: z A) Usando coordenadas r r polares (≡ coordenadas σ cilíndricas en el plano) rr y r' y x Lic. Percy Víctor Cañote Fajardo 36
  • 19. Cuaderno de Actividades: Física II da=(rdθ)dr dr dθ r x θ r r r r kdq ( r − r ') r E ( r ) ≡ ∫ r r 3 ≡ kσ I σ r −r' dq = σ da = σ ( rdθ dr ) r r ≡ ( 0,0, z ) r r ' ≡ ( r cosθ , rsenθ ,0 ) r k ( σ rdθ dr ) ( −r cosθ , − rsenθ , z ) I ≡∫ ( ) s 3/ 2 r2 + z2  R 2π ≡ ∫ ∫ ( −r cosθ , −rsenθ , z ) rdθ dr    0 0 (  ) 3/ 2 r2 + z2   2π 2π ∫0 cosθ dθ =0 ∫ 0 senθ dθ =0 (por evaluarse en sus periodos) r 2π R rzdrdθ ˆ I ≡∫ ∫ k (r ) 0 0 3/ 2 2 + z2 Lic. Percy Víctor Cañote Fajardo 37
  • 20. Cuaderno de Actividades: Física II   ≡  { ∫ dθ } ∫ ( 0 2π R 0 zrdr r2 + z2 ) 3/ 2 k  ˆ     rdr ≡ ( 2π ) z ∫ R kˆ  ( )  0 3/ 2 r2 + z2   r z  z ˆ  E ( z ) ≡ kσ ( 2π )  − k z  R2 + z 2   ¿? Encuentre este resultado usando la definición con un elemento de área cartesiano. Analice la expresión integral. ¿? Qué ocurre si R → ∞ R→∞ r z ˆ  kσ ( 2π ) k  ˆ E ( z ) ≡ kσ ( 2π ) k ≡  z − kσ ( 2π ) k  ˆ r 1 σ E ( z ) ≡ k ( 2π ) σ ≡ ( 2π ) σ ≡  : El E de un plano! 4πε 0  2ε 0 (verifíquelo usando LG) B) Usando anillos de λ=σdr z r r σ rr y r' x Lic. Percy Víctor Cañote Fajardo 38
  • 21. Cuaderno de Actividades: Física II r ˆ r b) r ≡ zk , r ' ≡ r cos φ i + rsenφ ˆ ˆ j r r → ( r − r ') ≡ −r cos φ i − rsenφ ˆ + zk ˆ j ˆ r r 3 { } 3/ 2 r − r ' ≡ r2 + z2 ; dq ≡ λ rdφ r kσ rdr  2π    → dE λ ( z ) ≡ ˆ − rsenφ dφ ˆ + zdφ k   ˆ  3/ 2  ∫0  124  −r cos φ dφ i { j { r +z 2 2 }    4 3   R rλ kσ (2π ) zrdr ˆ rσ kσ (2π ) zrdr ˆ dE ( z ) ≡ k → E ( z) ≡ ∫ k { } { } 3/ 2 2 3/ 2 r +z 2 2 0 r + z 2 r z  z ˆ  E ( z ) ≡ kσ ( 2π )  − k   z R +z  2 2  Lic. Percy Víctor Cañote Fajardo 39