SlideShare una empresa de Scribd logo
1 de 45
Descargar para leer sin conexión
CÉLULAS SOLARES FOTOVOLTAICAS
TIPOLOGÍA Y CARACTERÍSTICAS QUE LAS DEFINEN
-El efecto fotovoltaico permite que la célula de silicio del panel solar transforme la luz
del sol en energía eléctrica. La unión de muchas células puede producir una energía aún
mayor, y un grupo de paneles la electricidad suficiente para cubrir los consumos diarios
de una vivienda habitual.
-La luz solar está compuesta de diferentes tipos de partículas llamadas fotones, los
cuales están compuestos por diferentes tipos de energía, desde luz ultravioleta, luz
visible, luz infrarroja, rayos gamma y rayos x.
-Por su parte, el silicio es un elemento semiconductor que se encuentra en abundancia
en la arena de la Tierra, en el cual mediante un proceso de depuración se obtiene silicio
puro. Tiene características aislantes a baja temperatura y conductoras cuando reciben
mucha energía.
-
CÉLULAS SOLARES FOTOVOLTAICAS
EFECTO FOTOVOLTAICO.
-Este silicio por un lado se dopará con fósforo para obtener material de carga negativa (Capa
N), y por el otro lado, se dopará con boro para para obtener material de carga positiva
(Capa P). Estas 2 capas se mantendrán separadas por una fina junta para que se mantengan
como capas neutras.
-Cuando un fotón choque contra la célula solar con suficiente energía provocará que los
electrones de la capa N absorban dicha energía y se conviertan en conductores, creándose
un campo eléctrico. Los campos positivos y negativos de la célula solar se conectarán entre
ellos mediante cable eléctrico creándose así un circuito de corriente eléctrica que estará en
funcionamiento durante el tiempo que se reciba la radiación solar.
-Cuanta más energía solar reciba la célula, mayor será la energía eléctrica que se generará ya
que mayor será el número de electrones conductores que se creen. Esto determinará que
un panel solar tenga un rendimiento bajo a primeras horas de la mañana y alto al mediodía
cuando más fuerte incidan los rayos del sol en la superficie de la placa solar.
CÉLULAS SOLARES FOTOVOLTAICAS
EFECTO FOTOVOLTAICO
CÉLULAS SOLARES FOTOVOLTAICAS
EFECTO FOTOVOLTAICO
FUNDAMENTOS DEL EFECTO FOTOVOLTAICO
-El rendimiento/eficiencia del material se define por la cantidad de energía procedente
de la radiación solar que es capaz de transformar en energía eléctrica. La superficie del
material de cara a la radiación solar, debería ser lo mayor posible.
-La radiación procedente del sol se caracteriza por su INTERMITENCIA, DISPERSIÓN Y
BAJA DENSIDAD. Además, la radiación solar que llega a la superficie de la Tierra es
aproximadamente el 50% de la irradiación emitida por el Sol.
CÉLULAS SOLARES FOTOVOLTAICAS
DEFINICIÓN. La célula solar fotovoltaica es el dispositivo capaz de capturar la energía
del Sol y convertir parte de esa energía en electricidad. Los problemas que presenta
el aprovechamiento de la energía son:
LA CÉLULA SOLAR
ENLACE WEB DE INTERÉS
https://www.youtube.com/watch?v=fNUML9mU0J0&t=98s
CÉLULAS SOLARES FOTOVOLTAICAS
PARÁMETROS QUE
IDENTIFICAN LAS
CURVAS DE UNA
CÉLULA FV.
-Tensión en circuito abierto (VOC).
-Intensidad de cortocircuito (Isc)
.
-Punto de máxima potencia (MPP).
VALORES QUE IDENTIFICAN LAS CURVAS DE UNA CÉLULA SON EN C.E.M.:
VALORES QUE IDENTIFICAN LAS CURVAS DE UNA CÉLULA SON EN C.E.M.:
-Una TENSIÓN EN VACÍO o TENSIÓN EN CIRCUITO ABIERTO (VOC) u OPEN CIRCUIT
VOLTAGE. Corresponde a la máxima tensión que puede proporcionar o generar una
célula (o módulo o campo fotovoltaico). Es la tensión cuando la corriente de la célula es
nula (ICELL=0 A) al dejar los terminales al aire (sin conectarlos a nada).
-Una INTENSIDAD DE CORTOCIRCUITO (ISC) o SHORT CIRCUIT CURRENT. Corresponde a la
máxima corriente que puede generar una célula (o módulo o campo fotovoltaico). Es la
corriente cuando la tensión de la célula se anula (VCELL=0 V). Se obtiene uniendo
mediante un cable, de sección adecuada, los dos terminales de una célula o módulo o
campo fotovoltaico. Suele tener un valor entre un 5% y un 15% mayor que la corriente
en el punto de máxima potencia.
CÉLULAS SOLARES FOTOVOLTAICAS
-Un PUNTO MÁXIMO DE POTENCIA (M.P.P. de maximum power point) donde se entrega
la potencia de pico (PPK), o PMPP definido por la corriente en el punto de máx. potencia
(IMPP) y por la tensión en el punto de máx. potencia (VMPP).
CÉLULAS SOLARES FOTOVOLTAICAS
CONDICIONES
ESTÁNDAR DE
MEDICIÓN.
-Irradiancia :1.000 w/m2.
-Tª de la célula: 25ºC
-Masa de Aire (AM): 1,5
VALORES QUE IDENTIFICAN LAS CURVAS DE UNA CÉLULA SON EN C.E.M.:
∆T>0
∆ISC>0
∆VOC<0
∆ɳ<0
CÉLULAS SOLARES FOTOVOLTAICAS
INFLUENCIA DE LA Tª SOBRE LOS PARÁMETROS BÁSICOS DE UNA CÉLULA.
-TENSIÓN EN EL PUNTO DE POTENCIA MÁX. (VMPP) Es la tensión correspondiente a
la potencia máxima medida en condiciones estándar (C.E.M./S.T.C.).
-INTENSIDAD EN EL PUNTO DE MÁXIMA POTENCIA. (IMPP) Es la intensidad de
corriente que genera la célula fotovoltaica, en el punto de potencia y medida en
condiciones estándar (C.E.M./S.T.C.).
-POTENCIA ELÉCTRICA MÁXIMA O DE PICO (PEAK POWER). (PMPP) Es la potencia
máxima que puede generar el panel o módulo en condiciones C.E.M./S.T.C. y se
define por el punto de la curva I-V donde el producto de la intensidad generada y
la tensión es máximo. El nombre de “pico” hace referencia a que, en realidad,
una intensidad de 1.000w/m2 es difícil de “captar”.
CÉLULAS SOLARES FOTOVOLTAICAS
VALORES QUE IDENTIFICAN LAS CURVAS DE UNA CÉLULA SON EN C.E.M.:
CURVA CTCA. DE UNA CÉLULA DE SILICIO CRISTALINO.
CÉLULAS SOLARES FOTOVOLTAICAS
VALORES QUE IDENTIFICAN LAS CURVAS DE UNA CÉLULA SON EN C.E.M.:
RENDIMIENTO ENERGÉTICO DE UNA CÉLULA FOTOVOLTAICA. (ɳ)
Es el rendimiento máximo medido en condiciones estándar que, si no se especifica,
puede calcularse a partir de la siguiente ecuación puesto que calculado en tanto por
uno, viene dado por la expresión que figura en el recuadro inferior.
-VMPP viene dada en V.
-IMPP en A
-S es la superficie efectiva de la célula o elemento fotovoltaico en m2.
-G es la Irradiancia en w/m2
CÉLULAS SOLARES FOTOVOLTAICAS
ɳ 𝒎 =
𝑽 𝑴𝑷𝑷 × 𝑰 𝑴𝑷𝑷
𝑷 𝑰𝑵𝑪𝑰𝑫𝑬𝑵𝑻𝑬
=
𝑽 𝑴𝑷𝑷 × 𝑰 𝑴𝑷𝑷
𝑮 × 𝑺
RENDIMIENTO ENERGÉTICO DE UNA CÉLULA FOTOVOLTAICA
EXPLICACIÓN DE LA EXPRESIÓN DEL RENDIMIENTO DE LA CÉLULA F.V.
-En la expresión del rendimiento de una célula la PINCIDENTE es la energía luminosa que
llega a la célula por unidad de tiempo y lo que obtenemos es la potencia eléctrica
(VMPP·IMPP) máxima para dichas condiciones de trabajo.
-Aproximadamente entre un 13% a un 20% de la energía solar es transformada en
energía eléctrica en los módulos actuales de silicio policristalino y monocristalino.
-Debido a esta baja eficiencia en la conversión de la luz solar en electricidad es por lo
que se precisan grandes superficies de módulos fotovoltaicos para conseguir
potencias elevadas.
CÉLULAS SOLARES FOTOVOLTAICAS
RENDIMIENTO ENERGÉTICO DE UNA CÉLULA FOTOVOLTAICA
-FACTOR DE FORMA (FILL FACTOR). Se define como el cociente entre la potencia
máxima que se puede entregar a una carga por parte de una célula y el producto de la
tensión de circuito abierto y la intensidad de cortocircuito (C.E.M./S.T.C.).
-Los valores habituales del factor de forma (F.F.) oscilan entre 0,7 y 0,8.
-También se puede definir como el cociente entre el área del rectángulo formado por el
origen de coordenadas y el punto de máxima potencia del rectángulo de lados ISC y
VOC.
CÉLULAS SOLARES FOTOVOLTAICAS
𝑭. 𝑭.=
𝑽 𝑴𝑷𝑷 × 𝑰 𝑴𝑷𝑷
𝑽 𝒐𝒄 × 𝑰 𝒔𝒄
FACTOR DE FORMA DE UNA CÉLULA FOTOVOLTAICA
EL F.F. (FILL FACTOR) MUESTRA LA RELACIÓN ENTRE LAS ÁREAS RECTANGULARES
DEFINIDAS POR (VOC,ISC) Y (VMPP,IMPP).
CÉLULAS SOLARES FOTOVOLTAICAS
FACTOR DE FORMA DE UNA CÉLULA FOTOVOLTAICA
CÉLULAS SOLARES FOTOVOLTAICAS
 MATERIAL ELEMENTALES: el material más utilizado es el silicio (Si), aunque
también se utilizan el germanio (Ge) y selenio (Se).
 COMPUESTOS BINARIOS: los compuestos binarios que se han investigado han
sido muchos, aunque lo más habituales han sido: CdTe, AsGa, InP, CdS…
 COMPUESTOS TERNARIOS: entre otros cabe destacar algunos compuestos
como AlGaAs, y los compuestos de estructura calcopirita basados en el Cu,
como CuInSe2, …
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR NÚMERO DE MATERIALES
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
-MONOCRISTALINAS. La tecnología monocristalina ha ocupado durante años el
primer lugar en porcentaje de implantación en la instalación de estructuras
fotovoltaicas. El silicio monocristalino está formado por cristales orientados de la
misma forma, por lo que la red cristalina es uniforme en todo el material y tiene
muy pocas imperfecciones.
-Su principal ventaja es la eficiencia (14-20%), muy superior a la del silicio
policristalino y a la del Silicio Amorfo.
-Tienen una duración media de vida de 20-25 años.
CÉLULAS SOLARES FOTOVOLTAICAS
-Así pues, se trata de una estructura completamente ordenada y periódica de
átomos, de forma que todos tienen una orientación cristalina, es decir, todos
los átomos están dispuestos de manera asimétrica y uniforme.
-Presentan una monocromía con un color azulado oscuro y con un cierto brillo
metálico.
-El Silicio monocristalino presenta prestaciones y duración en el tiempo
superiores a cualquier otro tipo de Silicio. Por su rentabilidad energética son
las células más utilizadas.
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
Los módulos monocristalinos están compuestos de un solo cristal de silicio. En
estado puro, los átomos de silicio están perfectamente alineados. Gracias a esta
estructura pura se garantiza la máxima eficiencia.
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
El mayor problema reside en el comportamiento frente a la temperatura
(coeficiente térmico), entre otras causas por su color más oscuro, por lo que
finalmente la producción se asemeja bastante a la de un panel policristalino.
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
PRINCIPALES TIPOS DE CÉLULAS SOLARES FOTOVOLTAICAS:
-POLICRISTALINAS. Los cristales no están orientados de la misma manera y, por
tanto, la red cristalina no es uniforme en todo el material, apreciándose las
zonas donde los cristales tienen la misma orientación.
La eficiencia de este tipo de cristales es similar a la tecnología monocristalina
(15%).
En condiciones de altas temperaturas, los paneles solares policristalinos
pueden ser algo mas productivos. Ello es debido a que los incrementos de Tª
les afectan menos.
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
-Son visualmente muy reconocibles por presentar su superficie un aspecto
granulado, composición de diferentes cristales azulados y grises metálicos. Por
las características físicas del silicio cristalizado, los paneles fabricados siguiendo
esta tecnología presentan un grosor considerable.
-La diferencia fundamental con respecto al silicio monocristalino es que
presentan un forma totalmente cuadrada, esto que se aproveche mejor el
espacio entre las células que componen el panel solar.
-También presenta la ventaja de que el coste por módulo o panel es menor, ya
que se aplica menos silicio en su fabricación y su proceso es menos silicio en su
fabricación y su proceso es menos complicado.
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
Los lingotes de silicio policristalino tienen cristales desalineados y distintos tonos
azulados. La célula policristalina es menos pura que la célula monocristalina pero con
menos fases de cristalización aunque se ahorra en costes de fabricación.
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
COMPARATIVA SILICIO MONO/POLICRISTALINO:
-Respecto al rendimiento, las células monocristalinas tienen un rendimiento
teórico (en el laboratorio) mayor . Sin embargo, la práctica llega a demostrarnos
que esa ventaja teórica no sólo no existe, sino que las policristalinas suelen estar
a la par e incluso mejorar en prestaciones a las monocristalinas.
-El rendimiento de una célula suele medirse en condiciones ideales de radiación
solar y de temperatura, condiciones C.E.M./S.T.C. En base a estos datos los
fabricantes informan del rendimiento de sus paneles. Pero el funcionamiento
diario es muy distinto, ya que las célula trabajan a bastante más temperatura.
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
COMPARATIVA SILICIO MONO/POLICRISTALINO:
-La célula monocristalina tiene peor coeficiente térmico, es decir, ante un
aumento de temperatura, las células monocristalinas disminuyen más su
rendimiento que las policristalinas.
-Por otro lado hemos de tener en cuenta el color de la célula, que en las
policristalinas es más claro que el de las monocristalinas que son muy oscuras.
Esto provoca un mayor absorción de calor y el consiguiente aumento de
temperatura.
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
PRINCIPALES TIPOS DE CÉLULAS SOLARES FOTOVOLTAICAS:
-SILICIO AMORFO (a-Si). No hay red cristalina, obteniendo rendimientos
máximos alrededor de un 9% inferiores a los de silicio monocristalino. Por
tratarse de un material muy absorbente de la luz solar tan solo se precisan capas
delgadas de material semiconductor. Para una potencia similar se utiliza
alrededor del 3% de lo que se usaría en silicio cristalino.
Presenta el inconveniente de una alta degradación respecto a la potencia
eléctrica generada en las primeras semanas de funcionamiento, lo que ha
frenado su comercialización masiva hasta el momento actual.
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
LA MALEABILIDAD ES UNA DE LAS PROPIEDADES DE LAS CÉLULAS DE a-Si
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
ENLACE WEB DE INTERÉS
https://www.youtube.com/watch?v=TXAPrioqFcE&t=7s
CÉLULAS SOLARES FOTOVOLTAICAS
ASPECTOS SINGULARES (VENTAJAS) DE LA TECNOLOGÍA DE SILICIO AMORFO SON:
-Facilidad para realizar módulos flexibles.
-Reducción de gasto energético o coste de fabricación.
-Facilidad para realizar módulos flexibles.
-Mejor comportamiento frente a la luz difusa (d. nublados).
-Alto grado de maleabilidad (propiedad que presentan algunos
materiales de poder ser descompuestos en láminas sin que el
material en cuestión se rompa).
-Son muy eficientes bajo iluminación artificial (con eficiencia –en este
caso- superior a la del Silicio Cristalino).
SILICIO AMORFO (ASPECTOS SINGULARES):
-Reducción del espacio. Las láminas de Silicio Amorfo son realmente muy delgadas,
y si encontramos un substrato sobre el cual aplicarlas que resulta cómodo
podremos llegar a obtener un panel solar realmente versátil.
-Gran adaptabilidad. Ya que este tipo de células funciona como si las
imprimiésemos en un sustrato, podemos ver que sus características posibilitan la
fabricación de paneles curvos y su aplicación a lugares inaccesibles.
-Esta tecnología tiene un rendimiento comprendido entre un 5 y un 10% para las
células comercializadas y hasta un 13% en laboratorio.
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
-Las células y módulos fotovoltaicos de a-Si (Silicio Amorfo) se suelen emplear cuando
el espacio no es problema o aprovechando su maleabilidad para integrarlo en la
arquitectura, si bien su baja eficiencia obliga a una mayor superficie para una misma
producción.
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
Algunos de sus usos más comunes son:
-Instalación en tejados y superficies de edificios de oficinas donde se aplica en
tamaños considerables por su adaptabilidad.
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
-Las tejas solares permiten la configuración de paneles flexibles y adaptarse a
cualquier forma (a-Si).
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
-Utilización en relojes y calculadoras solares así como su uso en interiores, en
atmósferas con mucho polvo, etc…
CÉLULA SOLAR DE SILICIO AMORFO. MÓDULO F.V. DE 12V y 4w
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
CALCULADORA DE BOLSILLO ALIMENTADA POR CÉLULAS DE SILICIO AMORFO
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
CÉLULAS DE TELURURO DE CADMIO (CdTe):
PROPIEDADES:
-Tiene un rendimiento del 17-18% y en módulos comerciales del 8%. Es un
material policristalino, formado por pequeños cristales de varias micras de
tamaño.
-Trabaja mejor que el silicio a altas temperaturas, hecho de gran importancia para
células que trabajan en sistemas concentradores de radiación
-Uno de sus problemas es su elevada resistividad eléctrica, solventada mediante
la adición de una capa de ZnTe entre el CdTe y el contacto.
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
CÉLULAS/TELURO DE CADMIO (CdTe). INCONVENIENTES PARA SU USO.
-Las reservas existentes en la Tierra son suficientes para permitir un crecimiento
exponencial de esta tecnología, pero aún está por determinar si estas reservas serán
fácilmente explotables, y como afectará su extracción al precio del teluro y de los
módulos CdTe.
-El principal inconveniente radica en la toxicidad producida por el Cd. La unión CdTe no es
tóxica y sí muy estable. Los riesgos medioambientales y de salud, solo aparecen cuando
está en estado gaseoso.
-El punto de fusión del CdTe es de 1.050ºC, demasiado elevado en el caso de incendios en
edificios residenciales pero no en fuegos industriales donde existen otro tipo de
combustibles y puede fundirse el Cadmio.
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
ARSENIURO DE GALIO (GaAs).
-Material que presenta alto rendimiento, siendo el material más indicado para la
fabricación de paneles, presentando unos rendimientos en laboratorio del 25,7% y
en las células comerciales un 20%. Con poco material se obtiene una eficacia muy
elevada, a diferencia de las células de silicio cristalino que son de mayor espesor ya
que tienen un coeficiente de absorción de la luz incidente muy reducido. Por este
motivo, es un material muy apto para tecnologías aeroespaciales. El problema que
presenta esta tecnología es la escasez de material, encareciendo mucho el precio.
-Trabaja mejor que el Silicio. a altas temperaturas, importante para células que
trabajan en sistemas concentradores de radiación.
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
POR SU ALTO COEFICIENTE DE ABSORCIÓN, EL GaAs ES UN MATERIAL MUY ADECUADO
PARA SU USO EN TECNOLOGÍAS AEROESPACIALES.
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
COBRE INDIO GALIO.
-Presenta rendimientos en laboratorios próximos al 17% y en módulos
comerciales del 9%.
-Su tecnología de fabricación es completamente distinta, basadas en una o
varias capas delgadas de material fotovoltaico sobre un soporte semirrígido.
-Su maleabilidad unida a que las altas temperaturas y sombras tienen un
impacto menor convierte a este tipo de células en una alternativa válida para
su integración arquitectónica, si bien su baja eficiencia obliga a una mayor
superficie para una misma producción.
CÉLULAS SOLARES FOTOVOLTAICAS
CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
-Las condiciones de funcionamiento de una célula solar vienen referidas a
condiciones estándar que raramente se reproducen: G= 1000 W/m2
-Las variaciones en la intensidad de la irradiación influyen en la corriente
fotogenerada, y con ello de forma decisiva en la intensidad de Cortocircuito ISC
mientras que la VOC se ve muy poco afectada.
-La ISC para una irradiancia G distinta de las condiciones estándar se obtiene
mediante la expresión:
𝑰 𝒔𝒄 (𝑮) = 𝑰 𝒔𝒄 (𝑪.𝑬.𝑴.) ∙
𝑮
𝒘
𝒎 𝟐
𝟏. 𝟎𝟎𝟎
𝒘
𝒎 𝟐
CÉLULAS SOLARES FOTOVOLTAICAS
EFECTO DE LAS CONDICIONES EXTERIORES: IRRADIANCIA.
-El punto de trabajo ideal de una célula se sitúa en las condiciones estándar (Tª
25ºC), a partir de los cuales la temperatura exterior afecta a la temperatura de la
célula modificando los valores de trabajo de Intensidad y sobre todo tensión. La
temperatura de trabajo de la célula TCELL se obtiene en función de:
-TAMB: Temperatura ambiente (ºC)
-T.O.N.C.: Temperatura de Operación Nominal de Célula (ºC).
-E (w/m2): Valor suministrado por el fabricante (puede tomarse 47ºC).
𝑻 𝑪𝑬𝑳𝑳 = 𝑻 𝑨𝑴𝑩 +
𝑻. 𝑶. 𝑵. 𝑪.−𝟐𝟎
𝟏. 𝟎𝟎𝟎
∙ 𝑬
CÉLULAS SOLARES FOTOVOLTAICAS
EFECTO DE LAS CONDICIONES EXTERIORES: TEMPERATURA
FACTORES DE CORRECCIÓN POR TEMPERATURA.
Los fabricantes suelen proporcionar tres factores de corrección, ya sea en valor
absoluto o porcentual:
-α Coeficiente Intensidad-Temperatura (A/ºC o %/ºC) Especifica el aumento de la ISC
por grado de aumento de temperatura.
-β Coeficiente de Tensión-Temperatura (V/ºC o %/ºC). Especifica la disminución de
la VOC por grado de aumento de temperatura.
-δ Coeficiente Potencia-Temperatura (W/ºC o %/ºC). Especifica la disminución de la
Potencia por grado de aumento de temperatura.
CÉLULAS SOLARES FOTOVOLTAICAS
EFECTO DE LAS CONDICIONES EXTERIORES: TEMPERATURA
Dado un modulo fotovoltaico de VOC=44V en condiciones C.E.M. (25ºC) con un
coeficiente Tensión Temperatura de -0,34%/ºC, establecer su VOC de
funcionamiento para una temperatura de célula de 50ºC (aprox. 25ºC
ambiente).
𝜷 =
𝜷(%)
𝟏𝟎𝟎
∙ 𝑽 𝒐𝒄
𝜷 =
−𝟎, 𝟑𝟒
𝟏𝟎𝟎
∙ 𝟒𝟒 = 𝟎, 𝟏𝟒𝟗𝟔𝑽
𝑽 𝒐𝒄 𝟓𝟎º𝑪 = 𝑽 𝒐𝒄 + 𝜷 𝑻 𝑪𝑬𝑳𝑳 − 𝟐𝟓 = 𝟒𝟒 − 𝟎, 𝟏𝟓 𝟐𝟓
𝑽 𝒐𝒄 𝟓𝟎º𝑪 = 𝟒𝟎, 𝟐𝟓𝑽
CÉLULAS SOLARES FOTOVOLTAICAS

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Energia fotovoltaica ppt
Energia fotovoltaica pptEnergia fotovoltaica ppt
Energia fotovoltaica ppt
 
Energia solar
Energia solarEnergia solar
Energia solar
 
SISTEMAS DE ENERGÍA FOTOVOLTAICA
SISTEMAS DE ENERGÍA FOTOVOLTAICASISTEMAS DE ENERGÍA FOTOVOLTAICA
SISTEMAS DE ENERGÍA FOTOVOLTAICA
 
Las centrales electricas
Las centrales electricasLas centrales electricas
Las centrales electricas
 
PresentacióN Energia Solar
PresentacióN Energia SolarPresentacióN Energia Solar
PresentacióN Energia Solar
 
Energia solar
Energia solarEnergia solar
Energia solar
 
Control de-motores-electricos
Control de-motores-electricosControl de-motores-electricos
Control de-motores-electricos
 
Energía Solar Fotovoltaica
Energía Solar FotovoltaicaEnergía Solar Fotovoltaica
Energía Solar Fotovoltaica
 
Redes de distribución
Redes de distribuciónRedes de distribución
Redes de distribución
 
Los paneles solares.
Los paneles solares.Los paneles solares.
Los paneles solares.
 
Solar energy
Solar energySolar energy
Solar energy
 
Presentación Energía Solar Térmica
Presentación Energía Solar TérmicaPresentación Energía Solar Térmica
Presentación Energía Solar Térmica
 
Energía en pequeñas cantidades Presión, vibración, o por calor
Energía en pequeñas cantidades Presión, vibración, o por calorEnergía en pequeñas cantidades Presión, vibración, o por calor
Energía en pequeñas cantidades Presión, vibración, o por calor
 
Centrales Eolicas
Centrales EolicasCentrales Eolicas
Centrales Eolicas
 
Sistemas de generacion y transmision electrica
Sistemas de generacion y transmision electricaSistemas de generacion y transmision electrica
Sistemas de generacion y transmision electrica
 
ENERGIA SOLAR
ENERGIA SOLARENERGIA SOLAR
ENERGIA SOLAR
 
Energía solar
Energía solar Energía solar
Energía solar
 
Energía Solar Térmica
Energía Solar TérmicaEnergía Solar Térmica
Energía Solar Térmica
 
Energía solar fotovoltaica
Energía solar fotovoltaicaEnergía solar fotovoltaica
Energía solar fotovoltaica
 
Energia solar fotovoltaica
Energia solar fotovoltaicaEnergia solar fotovoltaica
Energia solar fotovoltaica
 

Similar a Celulas solares fotovoltaicas (20)

Celulas solares fotovoltaicas
Celulas solares fotovoltaicasCelulas solares fotovoltaicas
Celulas solares fotovoltaicas
 
Celulas solares fotovoltaicas
Celulas solares fotovoltaicasCelulas solares fotovoltaicas
Celulas solares fotovoltaicas
 
Electrónica: Celdas solares
Electrónica: Celdas solaresElectrónica: Celdas solares
Electrónica: Celdas solares
 
1234267189 energia solar_fotovoltaica_iter
1234267189 energia solar_fotovoltaica_iter1234267189 energia solar_fotovoltaica_iter
1234267189 energia solar_fotovoltaica_iter
 
1234267189 energia solar_fotovoltaica_iter
1234267189 energia solar_fotovoltaica_iter1234267189 energia solar_fotovoltaica_iter
1234267189 energia solar_fotovoltaica_iter
 
Modulos solares fotovoltaicos
Modulos solares fotovoltaicosModulos solares fotovoltaicos
Modulos solares fotovoltaicos
 
Aplicacion normas apa
Aplicacion normas apaAplicacion normas apa
Aplicacion normas apa
 
Aplicacion normas apa
Aplicacion normas apaAplicacion normas apa
Aplicacion normas apa
 
Solar
SolarSolar
Solar
 
Aprovechamiento de la energía solar
Aprovechamiento de la energía solarAprovechamiento de la energía solar
Aprovechamiento de la energía solar
 
Energía solar
Energía solar Energía solar
Energía solar
 
Diplomado Paneles Fotovoltaicos.pptx
Diplomado Paneles Fotovoltaicos.pptxDiplomado Paneles Fotovoltaicos.pptx
Diplomado Paneles Fotovoltaicos.pptx
 
paneles solares_materiales.pptx
paneles solares_materiales.pptxpaneles solares_materiales.pptx
paneles solares_materiales.pptx
 
TareaCazz
TareaCazzTareaCazz
TareaCazz
 
Estaciones de bombeo
Estaciones de bombeoEstaciones de bombeo
Estaciones de bombeo
 
Solar
SolarSolar
Solar
 
Celdas solares
Celdas solaresCeldas solares
Celdas solares
 
Aplicaciones de la energía solar
Aplicaciones de la energía solarAplicaciones de la energía solar
Aplicaciones de la energía solar
 
Proyecto celdas solares
Proyecto celdas solaresProyecto celdas solares
Proyecto celdas solares
 
Proyecto celdas-solares
Proyecto celdas-solaresProyecto celdas-solares
Proyecto celdas-solares
 

Más de JUAN-ANTONIO RAMOS MANSILLA

Más de JUAN-ANTONIO RAMOS MANSILLA (10)

INVERSORES AISLADOS DE RED PARA USO SOLAR
INVERSORES AISLADOS DE RED PARA USO SOLARINVERSORES AISLADOS DE RED PARA USO SOLAR
INVERSORES AISLADOS DE RED PARA USO SOLAR
 
Sistemas fotovoltaicos y radiacion solar
Sistemas fotovoltaicos y radiacion solarSistemas fotovoltaicos y radiacion solar
Sistemas fotovoltaicos y radiacion solar
 
Componentes sistema fotovoltaico aislado
Componentes sistema fotovoltaico aisladoComponentes sistema fotovoltaico aislado
Componentes sistema fotovoltaico aislado
 
Conceptos basicos sobre baterias de uso solar
Conceptos basicos sobre baterias de uso solarConceptos basicos sobre baterias de uso solar
Conceptos basicos sobre baterias de uso solar
 
Modulos fotovoltaicos
Modulos fotovoltaicosModulos fotovoltaicos
Modulos fotovoltaicos
 
Sistemas fotovoltaicos y radiacion solar
Sistemas fotovoltaicos y radiacion solarSistemas fotovoltaicos y radiacion solar
Sistemas fotovoltaicos y radiacion solar
 
Campo solar fotovoltaico instalado en Sevilla
Campo solar fotovoltaico instalado en  SevillaCampo solar fotovoltaico instalado en  Sevilla
Campo solar fotovoltaico instalado en Sevilla
 
Instalacion solar fotovoltaica badajoz
Instalacion solar fotovoltaica badajozInstalacion solar fotovoltaica badajoz
Instalacion solar fotovoltaica badajoz
 
SISTEMAS FOTOVOLTAICOS Y RADIACIÓN SOLAR
SISTEMAS FOTOVOLTAICOS Y RADIACIÓN SOLARSISTEMAS FOTOVOLTAICOS Y RADIACIÓN SOLAR
SISTEMAS FOTOVOLTAICOS Y RADIACIÓN SOLAR
 
Campos solares fotovoltaicos - (JUAN-ANTONIO RAMOS MANSILA)
Campos solares fotovoltaicos - (JUAN-ANTONIO RAMOS MANSILA)Campos solares fotovoltaicos - (JUAN-ANTONIO RAMOS MANSILA)
Campos solares fotovoltaicos - (JUAN-ANTONIO RAMOS MANSILA)
 

Último

Linealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfLinealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfrolandolazartep
 
Exposicion. del documentos de YPFB corporación
Exposicion. del documentos de YPFB corporaciónExposicion. del documentos de YPFB corporación
Exposicion. del documentos de YPFB corporaciónjas021085
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaXjoseantonio01jossed
 
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)ssuser6958b11
 
3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptxJhordanGonzalo
 
PPT ASISTENCIA TECNICA PRESENTACIÓN FT- ET.pdf
PPT ASISTENCIA TECNICA PRESENTACIÓN FT- ET.pdfPPT ASISTENCIA TECNICA PRESENTACIÓN FT- ET.pdf
PPT ASISTENCIA TECNICA PRESENTACIÓN FT- ET.pdfZamiertCruzSuyo
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Francisco Javier Mora Serrano
 
Fisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfFisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfJessLeonelVargasJimn
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPJosLuisFrancoCaldern
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.ALEJANDROLEONGALICIA
 
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfMirthaFernandez12
 
estadisticasII Metodo-de-la-gran-M.pdf
estadisticasII   Metodo-de-la-gran-M.pdfestadisticasII   Metodo-de-la-gran-M.pdf
estadisticasII Metodo-de-la-gran-M.pdfFlorenciopeaortiz
 
Tiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IITiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IILauraFernandaValdovi
 
Una estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTUna estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTFundación YOD YOD
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaANDECE
 
Cadenas de Markov investigación de operaciones
Cadenas de Markov investigación de operacionesCadenas de Markov investigación de operaciones
Cadenas de Markov investigación de operacionesal21510263
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxEduardoSnchezHernnde5
 
Parámetros de Perforación y Voladura. para Plataformas
Parámetros de  Perforación y Voladura. para PlataformasParámetros de  Perforación y Voladura. para Plataformas
Parámetros de Perforación y Voladura. para PlataformasSegundo Silva Maguiña
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALKATHIAMILAGRITOSSANC
 
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfLEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfAdelaHerrera9
 

Último (20)

Linealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfLinealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdf
 
Exposicion. del documentos de YPFB corporación
Exposicion. del documentos de YPFB corporaciónExposicion. del documentos de YPFB corporación
Exposicion. del documentos de YPFB corporación
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
 
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
 
3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx
 
PPT ASISTENCIA TECNICA PRESENTACIÓN FT- ET.pdf
PPT ASISTENCIA TECNICA PRESENTACIÓN FT- ET.pdfPPT ASISTENCIA TECNICA PRESENTACIÓN FT- ET.pdf
PPT ASISTENCIA TECNICA PRESENTACIÓN FT- ET.pdf
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
 
Fisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfFisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdf
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.
 
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
 
estadisticasII Metodo-de-la-gran-M.pdf
estadisticasII   Metodo-de-la-gran-M.pdfestadisticasII   Metodo-de-la-gran-M.pdf
estadisticasII Metodo-de-la-gran-M.pdf
 
Tiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IITiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo II
 
Una estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTUna estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NIST
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes Granada
 
Cadenas de Markov investigación de operaciones
Cadenas de Markov investigación de operacionesCadenas de Markov investigación de operaciones
Cadenas de Markov investigación de operaciones
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptx
 
Parámetros de Perforación y Voladura. para Plataformas
Parámetros de  Perforación y Voladura. para PlataformasParámetros de  Perforación y Voladura. para Plataformas
Parámetros de Perforación y Voladura. para Plataformas
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
 
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfLEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
 

Celulas solares fotovoltaicas

  • 1. CÉLULAS SOLARES FOTOVOLTAICAS TIPOLOGÍA Y CARACTERÍSTICAS QUE LAS DEFINEN
  • 2. -El efecto fotovoltaico permite que la célula de silicio del panel solar transforme la luz del sol en energía eléctrica. La unión de muchas células puede producir una energía aún mayor, y un grupo de paneles la electricidad suficiente para cubrir los consumos diarios de una vivienda habitual. -La luz solar está compuesta de diferentes tipos de partículas llamadas fotones, los cuales están compuestos por diferentes tipos de energía, desde luz ultravioleta, luz visible, luz infrarroja, rayos gamma y rayos x. -Por su parte, el silicio es un elemento semiconductor que se encuentra en abundancia en la arena de la Tierra, en el cual mediante un proceso de depuración se obtiene silicio puro. Tiene características aislantes a baja temperatura y conductoras cuando reciben mucha energía. - CÉLULAS SOLARES FOTOVOLTAICAS EFECTO FOTOVOLTAICO.
  • 3. -Este silicio por un lado se dopará con fósforo para obtener material de carga negativa (Capa N), y por el otro lado, se dopará con boro para para obtener material de carga positiva (Capa P). Estas 2 capas se mantendrán separadas por una fina junta para que se mantengan como capas neutras. -Cuando un fotón choque contra la célula solar con suficiente energía provocará que los electrones de la capa N absorban dicha energía y se conviertan en conductores, creándose un campo eléctrico. Los campos positivos y negativos de la célula solar se conectarán entre ellos mediante cable eléctrico creándose así un circuito de corriente eléctrica que estará en funcionamiento durante el tiempo que se reciba la radiación solar. -Cuanta más energía solar reciba la célula, mayor será la energía eléctrica que se generará ya que mayor será el número de electrones conductores que se creen. Esto determinará que un panel solar tenga un rendimiento bajo a primeras horas de la mañana y alto al mediodía cuando más fuerte incidan los rayos del sol en la superficie de la placa solar. CÉLULAS SOLARES FOTOVOLTAICAS EFECTO FOTOVOLTAICO
  • 4. CÉLULAS SOLARES FOTOVOLTAICAS EFECTO FOTOVOLTAICO FUNDAMENTOS DEL EFECTO FOTOVOLTAICO
  • 5. -El rendimiento/eficiencia del material se define por la cantidad de energía procedente de la radiación solar que es capaz de transformar en energía eléctrica. La superficie del material de cara a la radiación solar, debería ser lo mayor posible. -La radiación procedente del sol se caracteriza por su INTERMITENCIA, DISPERSIÓN Y BAJA DENSIDAD. Además, la radiación solar que llega a la superficie de la Tierra es aproximadamente el 50% de la irradiación emitida por el Sol. CÉLULAS SOLARES FOTOVOLTAICAS DEFINICIÓN. La célula solar fotovoltaica es el dispositivo capaz de capturar la energía del Sol y convertir parte de esa energía en electricidad. Los problemas que presenta el aprovechamiento de la energía son: LA CÉLULA SOLAR
  • 6. ENLACE WEB DE INTERÉS https://www.youtube.com/watch?v=fNUML9mU0J0&t=98s
  • 7. CÉLULAS SOLARES FOTOVOLTAICAS PARÁMETROS QUE IDENTIFICAN LAS CURVAS DE UNA CÉLULA FV. -Tensión en circuito abierto (VOC). -Intensidad de cortocircuito (Isc) . -Punto de máxima potencia (MPP). VALORES QUE IDENTIFICAN LAS CURVAS DE UNA CÉLULA SON EN C.E.M.:
  • 8. VALORES QUE IDENTIFICAN LAS CURVAS DE UNA CÉLULA SON EN C.E.M.: -Una TENSIÓN EN VACÍO o TENSIÓN EN CIRCUITO ABIERTO (VOC) u OPEN CIRCUIT VOLTAGE. Corresponde a la máxima tensión que puede proporcionar o generar una célula (o módulo o campo fotovoltaico). Es la tensión cuando la corriente de la célula es nula (ICELL=0 A) al dejar los terminales al aire (sin conectarlos a nada). -Una INTENSIDAD DE CORTOCIRCUITO (ISC) o SHORT CIRCUIT CURRENT. Corresponde a la máxima corriente que puede generar una célula (o módulo o campo fotovoltaico). Es la corriente cuando la tensión de la célula se anula (VCELL=0 V). Se obtiene uniendo mediante un cable, de sección adecuada, los dos terminales de una célula o módulo o campo fotovoltaico. Suele tener un valor entre un 5% y un 15% mayor que la corriente en el punto de máxima potencia. CÉLULAS SOLARES FOTOVOLTAICAS
  • 9. -Un PUNTO MÁXIMO DE POTENCIA (M.P.P. de maximum power point) donde se entrega la potencia de pico (PPK), o PMPP definido por la corriente en el punto de máx. potencia (IMPP) y por la tensión en el punto de máx. potencia (VMPP). CÉLULAS SOLARES FOTOVOLTAICAS CONDICIONES ESTÁNDAR DE MEDICIÓN. -Irradiancia :1.000 w/m2. -Tª de la célula: 25ºC -Masa de Aire (AM): 1,5 VALORES QUE IDENTIFICAN LAS CURVAS DE UNA CÉLULA SON EN C.E.M.:
  • 10. ∆T>0 ∆ISC>0 ∆VOC<0 ∆ɳ<0 CÉLULAS SOLARES FOTOVOLTAICAS INFLUENCIA DE LA Tª SOBRE LOS PARÁMETROS BÁSICOS DE UNA CÉLULA.
  • 11. -TENSIÓN EN EL PUNTO DE POTENCIA MÁX. (VMPP) Es la tensión correspondiente a la potencia máxima medida en condiciones estándar (C.E.M./S.T.C.). -INTENSIDAD EN EL PUNTO DE MÁXIMA POTENCIA. (IMPP) Es la intensidad de corriente que genera la célula fotovoltaica, en el punto de potencia y medida en condiciones estándar (C.E.M./S.T.C.). -POTENCIA ELÉCTRICA MÁXIMA O DE PICO (PEAK POWER). (PMPP) Es la potencia máxima que puede generar el panel o módulo en condiciones C.E.M./S.T.C. y se define por el punto de la curva I-V donde el producto de la intensidad generada y la tensión es máximo. El nombre de “pico” hace referencia a que, en realidad, una intensidad de 1.000w/m2 es difícil de “captar”. CÉLULAS SOLARES FOTOVOLTAICAS VALORES QUE IDENTIFICAN LAS CURVAS DE UNA CÉLULA SON EN C.E.M.:
  • 12. CURVA CTCA. DE UNA CÉLULA DE SILICIO CRISTALINO. CÉLULAS SOLARES FOTOVOLTAICAS VALORES QUE IDENTIFICAN LAS CURVAS DE UNA CÉLULA SON EN C.E.M.:
  • 13. RENDIMIENTO ENERGÉTICO DE UNA CÉLULA FOTOVOLTAICA. (ɳ) Es el rendimiento máximo medido en condiciones estándar que, si no se especifica, puede calcularse a partir de la siguiente ecuación puesto que calculado en tanto por uno, viene dado por la expresión que figura en el recuadro inferior. -VMPP viene dada en V. -IMPP en A -S es la superficie efectiva de la célula o elemento fotovoltaico en m2. -G es la Irradiancia en w/m2 CÉLULAS SOLARES FOTOVOLTAICAS ɳ 𝒎 = 𝑽 𝑴𝑷𝑷 × 𝑰 𝑴𝑷𝑷 𝑷 𝑰𝑵𝑪𝑰𝑫𝑬𝑵𝑻𝑬 = 𝑽 𝑴𝑷𝑷 × 𝑰 𝑴𝑷𝑷 𝑮 × 𝑺 RENDIMIENTO ENERGÉTICO DE UNA CÉLULA FOTOVOLTAICA
  • 14. EXPLICACIÓN DE LA EXPRESIÓN DEL RENDIMIENTO DE LA CÉLULA F.V. -En la expresión del rendimiento de una célula la PINCIDENTE es la energía luminosa que llega a la célula por unidad de tiempo y lo que obtenemos es la potencia eléctrica (VMPP·IMPP) máxima para dichas condiciones de trabajo. -Aproximadamente entre un 13% a un 20% de la energía solar es transformada en energía eléctrica en los módulos actuales de silicio policristalino y monocristalino. -Debido a esta baja eficiencia en la conversión de la luz solar en electricidad es por lo que se precisan grandes superficies de módulos fotovoltaicos para conseguir potencias elevadas. CÉLULAS SOLARES FOTOVOLTAICAS RENDIMIENTO ENERGÉTICO DE UNA CÉLULA FOTOVOLTAICA
  • 15. -FACTOR DE FORMA (FILL FACTOR). Se define como el cociente entre la potencia máxima que se puede entregar a una carga por parte de una célula y el producto de la tensión de circuito abierto y la intensidad de cortocircuito (C.E.M./S.T.C.). -Los valores habituales del factor de forma (F.F.) oscilan entre 0,7 y 0,8. -También se puede definir como el cociente entre el área del rectángulo formado por el origen de coordenadas y el punto de máxima potencia del rectángulo de lados ISC y VOC. CÉLULAS SOLARES FOTOVOLTAICAS 𝑭. 𝑭.= 𝑽 𝑴𝑷𝑷 × 𝑰 𝑴𝑷𝑷 𝑽 𝒐𝒄 × 𝑰 𝒔𝒄 FACTOR DE FORMA DE UNA CÉLULA FOTOVOLTAICA
  • 16. EL F.F. (FILL FACTOR) MUESTRA LA RELACIÓN ENTRE LAS ÁREAS RECTANGULARES DEFINIDAS POR (VOC,ISC) Y (VMPP,IMPP). CÉLULAS SOLARES FOTOVOLTAICAS FACTOR DE FORMA DE UNA CÉLULA FOTOVOLTAICA
  • 17. CÉLULAS SOLARES FOTOVOLTAICAS  MATERIAL ELEMENTALES: el material más utilizado es el silicio (Si), aunque también se utilizan el germanio (Ge) y selenio (Se).  COMPUESTOS BINARIOS: los compuestos binarios que se han investigado han sido muchos, aunque lo más habituales han sido: CdTe, AsGa, InP, CdS…  COMPUESTOS TERNARIOS: entre otros cabe destacar algunos compuestos como AlGaAs, y los compuestos de estructura calcopirita basados en el Cu, como CuInSe2, … CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR NÚMERO DE MATERIALES
  • 18. CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA -MONOCRISTALINAS. La tecnología monocristalina ha ocupado durante años el primer lugar en porcentaje de implantación en la instalación de estructuras fotovoltaicas. El silicio monocristalino está formado por cristales orientados de la misma forma, por lo que la red cristalina es uniforme en todo el material y tiene muy pocas imperfecciones. -Su principal ventaja es la eficiencia (14-20%), muy superior a la del silicio policristalino y a la del Silicio Amorfo. -Tienen una duración media de vida de 20-25 años. CÉLULAS SOLARES FOTOVOLTAICAS
  • 19. -Así pues, se trata de una estructura completamente ordenada y periódica de átomos, de forma que todos tienen una orientación cristalina, es decir, todos los átomos están dispuestos de manera asimétrica y uniforme. -Presentan una monocromía con un color azulado oscuro y con un cierto brillo metálico. -El Silicio monocristalino presenta prestaciones y duración en el tiempo superiores a cualquier otro tipo de Silicio. Por su rentabilidad energética son las células más utilizadas. CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 20. Los módulos monocristalinos están compuestos de un solo cristal de silicio. En estado puro, los átomos de silicio están perfectamente alineados. Gracias a esta estructura pura se garantiza la máxima eficiencia. CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 21. El mayor problema reside en el comportamiento frente a la temperatura (coeficiente térmico), entre otras causas por su color más oscuro, por lo que finalmente la producción se asemeja bastante a la de un panel policristalino. CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 22. PRINCIPALES TIPOS DE CÉLULAS SOLARES FOTOVOLTAICAS: -POLICRISTALINAS. Los cristales no están orientados de la misma manera y, por tanto, la red cristalina no es uniforme en todo el material, apreciándose las zonas donde los cristales tienen la misma orientación. La eficiencia de este tipo de cristales es similar a la tecnología monocristalina (15%). En condiciones de altas temperaturas, los paneles solares policristalinos pueden ser algo mas productivos. Ello es debido a que los incrementos de Tª les afectan menos. CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 23. -Son visualmente muy reconocibles por presentar su superficie un aspecto granulado, composición de diferentes cristales azulados y grises metálicos. Por las características físicas del silicio cristalizado, los paneles fabricados siguiendo esta tecnología presentan un grosor considerable. -La diferencia fundamental con respecto al silicio monocristalino es que presentan un forma totalmente cuadrada, esto que se aproveche mejor el espacio entre las células que componen el panel solar. -También presenta la ventaja de que el coste por módulo o panel es menor, ya que se aplica menos silicio en su fabricación y su proceso es menos silicio en su fabricación y su proceso es menos complicado. CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 24. Los lingotes de silicio policristalino tienen cristales desalineados y distintos tonos azulados. La célula policristalina es menos pura que la célula monocristalina pero con menos fases de cristalización aunque se ahorra en costes de fabricación. CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 25. COMPARATIVA SILICIO MONO/POLICRISTALINO: -Respecto al rendimiento, las células monocristalinas tienen un rendimiento teórico (en el laboratorio) mayor . Sin embargo, la práctica llega a demostrarnos que esa ventaja teórica no sólo no existe, sino que las policristalinas suelen estar a la par e incluso mejorar en prestaciones a las monocristalinas. -El rendimiento de una célula suele medirse en condiciones ideales de radiación solar y de temperatura, condiciones C.E.M./S.T.C. En base a estos datos los fabricantes informan del rendimiento de sus paneles. Pero el funcionamiento diario es muy distinto, ya que las célula trabajan a bastante más temperatura. CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 26. COMPARATIVA SILICIO MONO/POLICRISTALINO: -La célula monocristalina tiene peor coeficiente térmico, es decir, ante un aumento de temperatura, las células monocristalinas disminuyen más su rendimiento que las policristalinas. -Por otro lado hemos de tener en cuenta el color de la célula, que en las policristalinas es más claro que el de las monocristalinas que son muy oscuras. Esto provoca un mayor absorción de calor y el consiguiente aumento de temperatura. CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 27. PRINCIPALES TIPOS DE CÉLULAS SOLARES FOTOVOLTAICAS: -SILICIO AMORFO (a-Si). No hay red cristalina, obteniendo rendimientos máximos alrededor de un 9% inferiores a los de silicio monocristalino. Por tratarse de un material muy absorbente de la luz solar tan solo se precisan capas delgadas de material semiconductor. Para una potencia similar se utiliza alrededor del 3% de lo que se usaría en silicio cristalino. Presenta el inconveniente de una alta degradación respecto a la potencia eléctrica generada en las primeras semanas de funcionamiento, lo que ha frenado su comercialización masiva hasta el momento actual. CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 28. LA MALEABILIDAD ES UNA DE LAS PROPIEDADES DE LAS CÉLULAS DE a-Si CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 29. ENLACE WEB DE INTERÉS https://www.youtube.com/watch?v=TXAPrioqFcE&t=7s
  • 30. CÉLULAS SOLARES FOTOVOLTAICAS ASPECTOS SINGULARES (VENTAJAS) DE LA TECNOLOGÍA DE SILICIO AMORFO SON: -Facilidad para realizar módulos flexibles. -Reducción de gasto energético o coste de fabricación. -Facilidad para realizar módulos flexibles. -Mejor comportamiento frente a la luz difusa (d. nublados). -Alto grado de maleabilidad (propiedad que presentan algunos materiales de poder ser descompuestos en láminas sin que el material en cuestión se rompa). -Son muy eficientes bajo iluminación artificial (con eficiencia –en este caso- superior a la del Silicio Cristalino).
  • 31. SILICIO AMORFO (ASPECTOS SINGULARES): -Reducción del espacio. Las láminas de Silicio Amorfo son realmente muy delgadas, y si encontramos un substrato sobre el cual aplicarlas que resulta cómodo podremos llegar a obtener un panel solar realmente versátil. -Gran adaptabilidad. Ya que este tipo de células funciona como si las imprimiésemos en un sustrato, podemos ver que sus características posibilitan la fabricación de paneles curvos y su aplicación a lugares inaccesibles. -Esta tecnología tiene un rendimiento comprendido entre un 5 y un 10% para las células comercializadas y hasta un 13% en laboratorio. CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 32. -Las células y módulos fotovoltaicos de a-Si (Silicio Amorfo) se suelen emplear cuando el espacio no es problema o aprovechando su maleabilidad para integrarlo en la arquitectura, si bien su baja eficiencia obliga a una mayor superficie para una misma producción. CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 33. Algunos de sus usos más comunes son: -Instalación en tejados y superficies de edificios de oficinas donde se aplica en tamaños considerables por su adaptabilidad. CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 34. -Las tejas solares permiten la configuración de paneles flexibles y adaptarse a cualquier forma (a-Si). CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 35. -Utilización en relojes y calculadoras solares así como su uso en interiores, en atmósferas con mucho polvo, etc… CÉLULA SOLAR DE SILICIO AMORFO. MÓDULO F.V. DE 12V y 4w CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 36. CALCULADORA DE BOLSILLO ALIMENTADA POR CÉLULAS DE SILICIO AMORFO CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 37. CÉLULAS DE TELURURO DE CADMIO (CdTe): PROPIEDADES: -Tiene un rendimiento del 17-18% y en módulos comerciales del 8%. Es un material policristalino, formado por pequeños cristales de varias micras de tamaño. -Trabaja mejor que el silicio a altas temperaturas, hecho de gran importancia para células que trabajan en sistemas concentradores de radiación -Uno de sus problemas es su elevada resistividad eléctrica, solventada mediante la adición de una capa de ZnTe entre el CdTe y el contacto. CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 38. CÉLULAS/TELURO DE CADMIO (CdTe). INCONVENIENTES PARA SU USO. -Las reservas existentes en la Tierra son suficientes para permitir un crecimiento exponencial de esta tecnología, pero aún está por determinar si estas reservas serán fácilmente explotables, y como afectará su extracción al precio del teluro y de los módulos CdTe. -El principal inconveniente radica en la toxicidad producida por el Cd. La unión CdTe no es tóxica y sí muy estable. Los riesgos medioambientales y de salud, solo aparecen cuando está en estado gaseoso. -El punto de fusión del CdTe es de 1.050ºC, demasiado elevado en el caso de incendios en edificios residenciales pero no en fuegos industriales donde existen otro tipo de combustibles y puede fundirse el Cadmio. CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 39. ARSENIURO DE GALIO (GaAs). -Material que presenta alto rendimiento, siendo el material más indicado para la fabricación de paneles, presentando unos rendimientos en laboratorio del 25,7% y en las células comerciales un 20%. Con poco material se obtiene una eficacia muy elevada, a diferencia de las células de silicio cristalino que son de mayor espesor ya que tienen un coeficiente de absorción de la luz incidente muy reducido. Por este motivo, es un material muy apto para tecnologías aeroespaciales. El problema que presenta esta tecnología es la escasez de material, encareciendo mucho el precio. -Trabaja mejor que el Silicio. a altas temperaturas, importante para células que trabajan en sistemas concentradores de radiación. CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 40. POR SU ALTO COEFICIENTE DE ABSORCIÓN, EL GaAs ES UN MATERIAL MUY ADECUADO PARA SU USO EN TECNOLOGÍAS AEROESPACIALES. CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 41. COBRE INDIO GALIO. -Presenta rendimientos en laboratorios próximos al 17% y en módulos comerciales del 9%. -Su tecnología de fabricación es completamente distinta, basadas en una o varias capas delgadas de material fotovoltaico sobre un soporte semirrígido. -Su maleabilidad unida a que las altas temperaturas y sombras tienen un impacto menor convierte a este tipo de células en una alternativa válida para su integración arquitectónica, si bien su baja eficiencia obliga a una mayor superficie para una misma producción. CÉLULAS SOLARES FOTOVOLTAICAS CLASIFICACIÓN DE CÉLULAS FOTOVOLTAICAS POR SU ESTRUCTURA INTERNA
  • 42. -Las condiciones de funcionamiento de una célula solar vienen referidas a condiciones estándar que raramente se reproducen: G= 1000 W/m2 -Las variaciones en la intensidad de la irradiación influyen en la corriente fotogenerada, y con ello de forma decisiva en la intensidad de Cortocircuito ISC mientras que la VOC se ve muy poco afectada. -La ISC para una irradiancia G distinta de las condiciones estándar se obtiene mediante la expresión: 𝑰 𝒔𝒄 (𝑮) = 𝑰 𝒔𝒄 (𝑪.𝑬.𝑴.) ∙ 𝑮 𝒘 𝒎 𝟐 𝟏. 𝟎𝟎𝟎 𝒘 𝒎 𝟐 CÉLULAS SOLARES FOTOVOLTAICAS EFECTO DE LAS CONDICIONES EXTERIORES: IRRADIANCIA.
  • 43. -El punto de trabajo ideal de una célula se sitúa en las condiciones estándar (Tª 25ºC), a partir de los cuales la temperatura exterior afecta a la temperatura de la célula modificando los valores de trabajo de Intensidad y sobre todo tensión. La temperatura de trabajo de la célula TCELL se obtiene en función de: -TAMB: Temperatura ambiente (ºC) -T.O.N.C.: Temperatura de Operación Nominal de Célula (ºC). -E (w/m2): Valor suministrado por el fabricante (puede tomarse 47ºC). 𝑻 𝑪𝑬𝑳𝑳 = 𝑻 𝑨𝑴𝑩 + 𝑻. 𝑶. 𝑵. 𝑪.−𝟐𝟎 𝟏. 𝟎𝟎𝟎 ∙ 𝑬 CÉLULAS SOLARES FOTOVOLTAICAS EFECTO DE LAS CONDICIONES EXTERIORES: TEMPERATURA
  • 44. FACTORES DE CORRECCIÓN POR TEMPERATURA. Los fabricantes suelen proporcionar tres factores de corrección, ya sea en valor absoluto o porcentual: -α Coeficiente Intensidad-Temperatura (A/ºC o %/ºC) Especifica el aumento de la ISC por grado de aumento de temperatura. -β Coeficiente de Tensión-Temperatura (V/ºC o %/ºC). Especifica la disminución de la VOC por grado de aumento de temperatura. -δ Coeficiente Potencia-Temperatura (W/ºC o %/ºC). Especifica la disminución de la Potencia por grado de aumento de temperatura. CÉLULAS SOLARES FOTOVOLTAICAS EFECTO DE LAS CONDICIONES EXTERIORES: TEMPERATURA
  • 45. Dado un modulo fotovoltaico de VOC=44V en condiciones C.E.M. (25ºC) con un coeficiente Tensión Temperatura de -0,34%/ºC, establecer su VOC de funcionamiento para una temperatura de célula de 50ºC (aprox. 25ºC ambiente). 𝜷 = 𝜷(%) 𝟏𝟎𝟎 ∙ 𝑽 𝒐𝒄 𝜷 = −𝟎, 𝟑𝟒 𝟏𝟎𝟎 ∙ 𝟒𝟒 = 𝟎, 𝟏𝟒𝟗𝟔𝑽 𝑽 𝒐𝒄 𝟓𝟎º𝑪 = 𝑽 𝒐𝒄 + 𝜷 𝑻 𝑪𝑬𝑳𝑳 − 𝟐𝟓 = 𝟒𝟒 − 𝟎, 𝟏𝟓 𝟐𝟓 𝑽 𝒐𝒄 𝟓𝟎º𝑪 = 𝟒𝟎, 𝟐𝟓𝑽 CÉLULAS SOLARES FOTOVOLTAICAS