SlideShare una empresa de Scribd logo
1 de 35
UNIVERSIDAD NACIONAL HERMILIO
VALDIZAN
E.A.P DE MATEMATICA Y FISICA
MECANICA DE
FLUIDOS
Mecánica de Fluidos
Un fluido es un líquido o un gas.
La característica principal de un fluido es su incapacidad para resistir fuerzas
cortantes.
En mecánica de fluidos se estudia el comportamiento de líquidos y gases,
especialmente los líquidos, en dos condiciones:
Líquidos en reposo: hidrostática
Líquidos en movimiento: hidrodinámica
Conceptos previos
Volumen
Este término tiene que ver con un concepto matemático y físico a la vez.
Físico: región del espacio que ocupa un cuerpo
Matemático: expresión matemática que determina esa región. Se mide en m3
o en cm3
Para determinar el volumen de un cuerpo se necesita conocer su forma física.
Para cuerpos especiales existen fórmulas específicas
Cubo de arista a
V = a3
Esfera de radio R Paralelepípedo
de lados a, b y c
V = abc
Cilindro con base de
radio R y altura h
V = πR2
h
3
3
4
RV π=
Volumen de un cuerpo irregular
Si un cuerpo es irregular, una piedra por ejemplo, no existe una fórmula
matemática que permita determinar su volumen, y si la hay de seguro
que es muy compleja
Entonces, ¿cómo se determina su volumen?
Procedimiento
1º Un vaso con agua
hasta cierto nivel
Se marca el nivel
2º Se coloca el cuerpo
en el interior del vaso
con agua
Se marca el nuevo nivel
3º El incremento de
volumen en el agua,
corresponde al volumen
del cuerpo
Hay que procurar que el
vaso tenga una forma
geométrica simple para
determinar el volumen
de agua. Un cilindro por
ejemplo.
Densidad
V
m
=ρ
Es una medida que representa la cantidad de materia que hay por cada
unidad de volumen de un cuerpo
Se mide en kg/m3
o en g/m3
En general los sólidos tienen mayor densidad que los líquidos y éstos mayor
densidad que los gases. Pero dentro de los sólidos, por ejemplo, hay unos con
más y otros con menos densidad.
Cálculo de densidades
En general la forma más simple de determinar la densidad de un cuerpo es dividir
su masa por el volumen que tiene:
Supongamos un cuerpo cualquiera
1º Determinamos su masa 2º Se determina su volumen
m V
3º Densidad
V
m
=ρ
Peso específico=
V
mg
g == ργ
Presión
A
F
P =
2
11
m
N
Pa =
La idea más simple que se tiene sobre presión se relaciona
con la acción de aplastar algo.
Y cuando se aplasta algo se ejerce una fuerza sobre una región del objeto.
Si la fuerza que se ejerce sobre
un objeto es F y la región sobre
la cual actúa es A, se tiene que
la presión que ejerce esa
fuerza, es:
La presión se mide en N/m2
y se
denomina Pascal.
Un ejercicio
Peso del libro:
W = mg
= 0,4 [kg]x 9,8 [m/s2
]
= 3,92 [N]
Presión:
[ ]
[ ]
[ ]Pa067,13P
m3,0
N92,3
P
A
F
P
2
=
=
=
Si un libro tiene una masa de 0,4 kg y su
portada mide 20 cm por 15 cm y está
apoyado sobre una mesa. El peso del libro
ejerce una presión sobre la mesa.
A
P
W
Área de contacto:
A = ab
= 0,2 [m] x 0,15 [m]
= 0,3 [m2
]
Otro ejercicio
Sobre el suelo hay un bloque de aluminio, de medidas 20 cm de alto, 30 cm de
ancho y 40 cm de largo. ¿Qué presión ejerce sobre el suelo?
A
P
F
La fuerza que actúa sobre
el área de contacto, es el
peso del bloque:
V = abc
m = ρV
Volumen del bloque:
V = abc = 0,2 [m]x0,3[m]x0,4[m]
V = 0,024 [m3
]
Área de contacto:
A = bc = 0,3[m]x0,4[m]
A = 0,12 [m2
]
Presión
Presión atmosférica
Es la presión que el aire ejerce sobre la superficie terrestre.
Cuando se mide la presión
atmosférica, se está midiendo la
presión que ejerce el peso de una
columna de aire sobre 1 [m2
] de
área en la superficie terrestre.
La presión atmosférica en la
superficie de la Tierra es:
P = 101.325 [Pa]
y se aproxima a:
P = 1,013X105
[Pa]
Experimento de Torricelli
En 1643, Evangelista Torricelli, hizo el siguiente
experimento: Llenó un tubo de vidrio, de 1 [m] de
longitud, con mercurio (“plata viva”). Tapó el extremo
abierto y luego lo dio vuelta en una vasija.
El mercurio empezó a descender pero se estabilizó en
el momento que la columna medía 76 cm.
El peso de la columna de mercurio ejerce presión
en el nivel en que quedó el mercurio vaciado, y
esa presión, para lograr la estabilización, se
equilibra con la presión a que está sometido el
mercurio por fuera del tubo.
Esa presión, la de fuera del tubo, es la presión
atmosférica, cuyo símbolo es P0.
Entonces, se tendrá que esa presión es:
P0
Presión en un líquido
Sumergirse en una piscina o en el mar o en un lago puede ser entretenido, pero también
puede ser una experiencia dolorosa e incómoda.
Lo que ocurre es que a medida que uno se sumerge empieza a soportar el peso del
agua que va quedando sobre uno, y eso constituye la idea de presión.
La presión aumenta a medida que la
profundidad aumenta.
Veamos lo siguiente:
Supongamos que se está en el agua,
mar o piscina o lo que sea. Podría ser
otro líquido también (de densidad ρ).
A nivel de la superficie existe la
presión atmosférica P0 y a una
profundidad h la presión es P.
P0
h
P
Presión en un líquido
Como ya se mencionó, en la
superficie está actuando la presión
atmosférica P0.
Y a una profundidad h, bajo una columna de
líquido de volumen V, en forma de cilindro
de base A, se tendrá una presión P.
Si la columna de agua tiene un volumen V = Ah
y densidad ρ, entonces se tendrá que la presión
en la base inferior de la columna de agua, es:
P0
h
P
A
Principio de Pascal
La presión aplicada a un fluido encerrado es transmitida sin disminución alguna a
todos los puntos del fluido y a las paredes del recipiente que lo contiene.
En la figura que se muestra un líquido confinado en un recipiente y en un costado hay
un sistema similar al de una jeringa.
Si empujamos el pistón con una fuerza F, ejerceremos una presión P sobre el líquido
que está al interior del recipiente.
Y esa presión se transmite a todos los
puntos del fluido y también a las
paredes del recipiente.
F P
P
P
P
P
P
P
P
P
Prensa hidráulica
Es un dispositivo que se aprovecha del Principio
de Pascal para su funcionamiento.
La siguiente figura nos muestra un
recipiente que contiene un líquido y en
ambos extremos está cerrado por
émbolos. Cada extremo tiene diferente
área.
Si ejercemos una fuerza F1 en el émbolo más
pequeño, esa fuerza actuará sobre un área
A1 y se estará aplicando una presión P1 sobre
el líquido.
Esa presión se transmitirá a través del líquido
y actuará – como P2 - sobre el émbolo más
grande, de área A2, y se traducirá en la
aplicación de una fuerza F2.
F1
P1
F2
P2
A1
A2
Prensa hidráulica
A
F
P =
F1
P1
F2
P2
A1
A2
De acuerdo al Principio de Pascal, la presión
P1 y la presión P2 son iguales.
P1 = P2
Y, como:
Se tendrá:
2
2
1
1
A
F
A
F
=
Ejemplos de prensas hidráulicas
Son prensas hidráulicas, o máquinas hidráulicas en general,
algunos sistemas para elevar vehículos (gata hidráulica),
frenos de vehículos, asientos de dentistas y otros.
Prensa hecha con
jeringas
Retroexcavadora
Gata
hidráulica
Silla de
dentista
Un ejercicio
F1
P1
F2
P2
A1
A2
Supongamos que se desea levantar un
automóvil, de masa m = 1.200 kg, con una gata
hidráulica, tal como se muestra en la figura.
¿Qué fuerza F1 se deberá aplicar en el émbolo
más pequeño, de área 10 cm2
, para levantarlo?
Suponga que el área del émbolo más grande es
200 cm2
.
2
2
1
1
A
F
A
F
=
De la situación se tiene:
Y como F2 tiene que al menos ser
igual al peso del automóvil, se
tendrá:
F2 = mg
21
1
A
mg
A
F
=
Por lo tanto, se tiene la igualdad:
Y, despejando:
2
1
1
A
mgA
F =
Y, reemplazando:
[ ] [ ]
[ ] [ ]N588
cm200
s
m
8,9kg200.1cm10
F 2
2
2
1 =




••
=
Medición de la presión
Antes, una aclaración conceptual:
Se llama presión absoluta a la expresión:
P = P0 + ρgh
Y se llama presión manométrica a la expresión:
P – P0 = ρgh
La presión atmosférica se
mide con el barómetro.
Es un manómetro de tubo
cerrado que se expone a la
atmósfera.
El manómetro mide la presión absoluta y
también la manométrica.
Si es de tubo abierto mide
la presión absoluta.
Si es de
tubo cerrado
mide la
presión
manométrica
.
Principio de Arquímedes
Un cuerpo sumergido, total o parcialmente, en un fluido,
es empujado hacia arriba por una fuerza igual en
magnitud al peso del volumen del fluido que desaloja.
B
Esto representa al volumen del
fluido que fue desalojado por el
cuerpo.
Y su peso es:
mg = ρVg
Donde ρ es la densidad del fluido y V el
volumen desplazado.
B = ρVg
Por lo tanto:
Fuerza de empuje
La fuerza B = ρVg se conoce como
“Fuerza de Empuje” o “Fuerza de
flotación”.
Si un cuerpo de masa m se introduce
un fluido quedará sujeto a dos
fuerzas verticales: el peso del cuerpo
y la fuerza de empuje.
B
mg
Y pueden ocurrir tres situaciones:
1.- Que el peso del cuerpo sea de
mayor medida que la fuerza de empuje.
2.- Que el peso del cuerpo sea de igual
medida que la fuerza de empuje.
3.- Que el peso del cuerpo sea de
menor medida que la fuerza de empuje.
Conclusiones:
1.- Si mg > B, entonces el cuerpo se
hunde.
2.- Si mg ≤ B, entonces el cuerpo
flota total o parcialmente en el fluido.
Peso aparente
Como se mencionó recientemente, cuando un cuerpo está dentro de un fluido
está afectado por dos fuerzas: el peso gravitacional y la fuerza de empuje.
Como ambas fuerzas actúan sobre el cuerpo, entonces se pueden sumar o restar.
Se llama peso aparente a la relación:
Wa = mg - B
Situaciones concretas:
Cuando estamos sumergidos en el agua
nos sentimos más livianos, y las cosas
que tomamos bajo el agua también las
sentimos más livianas.
Lo anterior ocurre porque el peso que
sentimos, no es el peso gravitacional, es
el peso aparente.
Un globo aerostático se eleva
porque la fuerza de empuje que le
afecta es mayor que su peso
gravitacional.
En estricto rigor:
El peso que nos medimos en una
balanza ¿qué es: peso gravitacional o
peso aparente?
B
mg
Flotación de barcos
Parece capcioso preguntar ¿por qué un barco flota a pesar que es de metal y el
metal tiene mayor densidad que el agua?
Algo muy cierto hay en la pregunta:
Un cuerpo de menor densidad que el agua siempre flotará. En este caso
se verificará que la fuerza de empuje es mayor o igual que el peso
gravitacional del cuerpo
La densidad promedio del barco. Eso es lo que
interesa. Y esa es menor que la del agua.
Su densidad promedio se determina por:
V
m
=ρ
Y el volumen del barco no incluye solo el
metal. También incluye el aire en su interior.
Y … ¿el submarino?
Un submarino se hunde o flota a discreción: ¿cómo lo hace?
Un submarino se hunde si su peso
gravitacional es mayor que el empuje que le
afecta.
Para lograr lo anterior se inundan, con agua,
compartimientos que antes estaban vacíos.
Con ello su densidad promedio aumenta y, en
consecuencia, también aumenta su peso
gravitacional.
Por lo tanto ocurrirá que
mg >B
Y el submarino se hundirá.
Para elevarse o flotar, su peso
gravitacional debe ser menor que el
empuje.
Esto se logra sacando el agua con que se
había inundado algunos compartimientos.
Así su densidad promedio disminuye y
también su peso gravitacional.
Y cuando ocurra que
B > mg
El submarino se elevará y emergerá.
Ya que estamos en el agua. Los peces se sumergen o se elevan en el agua
inflando o desinflando su vejiga natatoria.
HIDROSTÁTICA
Es el estudio de los fluidos en reposo, es decir estudia los fluidos que no
presentan esfuerzo cortante, sino, solo esfuerzos normales.
En aspectos prácticos estos estudios son útiles para determinar fuerzas
sobre objetos sumergidos, diseñar instrumentos medidores de presión, el
desarrollo de fuerzas por transmisión de presión como los sistemas
hidráulicos, conocer propiedades de la atmósfera y de los océanos.
PRESIÓN EN EL INTERIOR DE UN FLUIDO
Consideremos una pequeña porción del fluido
con límites imaginarios, en condiciones
estáticas y soportando presiones P1, P2 y P3
en diferentes direcciones como se muestra en
la figura.
El sistema está en equilibrio ∑ =⇒ 0F

0=∑ yF

Consideremos PAF
A
F
P =⇒=


Entonces: 032 =− dxdssenPdxdzP θ
032 =− dxdzPdxdzP 32 PP =
Ahora: 0=∑ zF

2
cos31
dxdydz
gdsdxPdydxP ρθ +=
dydxPdxdyP 31 =
31 PP =
321 PPP == PRINCIPIO DE PASCAL
ECUACIÓN BÁSICA DE LA ESTÁTICA DE FLUIDOS
Es una ecuación que permite determinar el campo de presiones dentro del
fluido estacionario; es decir nos muestra como varía la presión en el
interior del fluido cuando nos desplazamos en cada una de las tres
dimensiones x, y, z.
Consideremos el elemento diferencial de masa dm de fluido de peso
específico limitado imaginariamente por dx, dy, dz.
Recordando que:
dz
z
P
dy
y
P
dx
x
P
dP
∂
∂
+
∂
∂
+
∂
∂
=
Y tratándose de un sistema
en equilibrio estático:
∑ = 0F

γ
γ
MANOMETRÍA
Es el estudio de las presiones manométricas de un sistema
MANÓMETRO: Instrumento diseñado para medir la presión manométrica, en
su construcción se utiliza columnas líquidas en sistemas continuos.
Los manómetros como todo sistema hidrostático continuo basan su utilidad
en la ecuación básica de la estática de fluidos óγ−=∇P
g
z
P
ργ −=−=
∂
∂
Consideremos el siguiente sistema
∫∫ −=
1
0
1
0
dzdP γ )()( 100101 zzzzPP −=−−=− γγ
)( 1001 zzPP −+=⇒ γ
Para el sistema de la figura:
)()()()( 433322211100 zzzzzzzzPP AB −+−+−+−+= γγγγ
En la ecuación anterior puede notarse que si partimos de A a traves de un
medio continuo, entonces si el menisco inmediato siguiente está a un nivel
mas bajo entonces h es positivo, asimismo si el nivel del menisco inmediato
está mas alto, entonces h es negativa.
EJEMPLO:
Determinar la presión manométrica en A en
kg/cm² debido a la columna de mercurio de
densidad 13,6 en el manómetro en U que se
muestra en la figura.
SOLUCIÓN:
Aplicando los criterios de manometría
tenemos:
atmHgOHA PmmP =−+ )80,0()60,0(2
γγ
)80,0()60,0(2
mmP HgOHA γγ +−=
La presión manométrica es:
)60(/1)80(/6,13 33
cmcmgrcmcmgrPA −=
22
/028,1/1028 cmkgcmgrPA ==
EJEMPLO
El esquema de la figura representa dos tuberías A y B
por las que circula agua, entre ellas se conecta un
manómetro de aceite de densidad 0,8. Determine la
diferencia de presión entre los ejes de las tuberías
SOLUCIÓN: Por criterios de manometría
)48,1()38,0()38,0( 22
mymymPP OHacOHBA ++++−= γγγ
OHOHacOHOHBA yyPP 2222
48,138,038,0 γγγγγ +++−−=−
2
/4,140 cmgPP BA =−
EJEMPLO:
El recipiente de la figura contiene
dos líquidos; A con densidad 0,72
y B con densidad 2,36.
Determine:
a)La elevación de líquido en el
tubo izquierdo.
b)La elevación de líquido en el
tubo derecho.
c)La presión en el fondo del
recipiente.
SOLUCIÓN:
a) En el tubo de la izquierda el líquido ascenderá 2 m de altura medido desde 0.
b) Por manometría y considerando h medida desde el fondo del recipiente hasta
la superficie libre del líquido en el tubo.
atmBBAatm PhmmP =−++ γγγ )3,0()7,1(
B
BA mm
h
γ
γγ )3,0()7,1( +
= mh 82,0=
EJEMPLO:
El recipiente de la figura contiene tres
fluidos y está acoplada a un manómetro
de mercurio. Determine la altura y de la
columna de mercurio sabiendo que la
densidad del aceite es 0,82
SOLUCIÓN
Utilizando los criterios de manometría
iniciando el análisis desde donde se
almacena aire comprimido tenemos
que:
atmHg PykPakPakPa =−++ )()3)(81,9)(1()3)(81,9)(82,0(30 γ
3
2
/)81,9)(6,13(
/)4,291,2430(
mN
mN
y
++
=⇒ my 626,0=
FUERZA HIDROSTÁTICA SOBRE SUPERFICIES
SUMERGIDAS
SUPERFICIES SUMERGIDAS
PLANAS
CURVAS
HORIZONTALES
INCLINADAS
FUERZA SOBRE SUPERFICIE PLANA:
A
dA
dy
G
dFh
x
y
y
yG
O
Considérese la superficie de
la figura sumergida en un
líquido de peso específico γ
Se requiere determinar:
-La fuerza hidrostática
(módulo, dirección y sentido)
-Punto de aplicación (centro
de presión) es decir las
coordenadas (xp,yp)
EJEMPLO:
El recipiente de la figura presenta
una compuerta AB de 1,20 m de
ancho articulada en A.
La lectura del manómetro G es – 0,15
kg/cm² .
El depósito de la derecha contiene
aceite de densidad 0,75. Que fuerza
horizontal debe aplicarse en B para
que la compuerta se mantenga en
equilibrio en posición vertical?
SOLUCIÓN:
Se debe evaluar en primer lugar la fuerza que la presión de cada líquido
ejerce sobre la compuerta para luego evaluar el equilibrio de la misma en la
posición vertical
La fuerza debida a la presión del aceite será: AhF Gac γ=
kgmmmkgFac 1458)2,1)(8,1)(9,0)(/1000)(75,0( 23
==

Más contenido relacionado

La actualidad más candente

14 cap iii.1.capilaridad
14 cap iii.1.capilaridad14 cap iii.1.capilaridad
14 cap iii.1.capilaridadsanaron
 
Solucionariodelosexamenesdemecanicadesuelosii
SolucionariodelosexamenesdemecanicadesuelosiiSolucionariodelosexamenesdemecanicadesuelosii
Solucionariodelosexamenesdemecanicadesuelosiioscar torres
 
Mecanica de suelos_(problemas_resueltos)
Mecanica de suelos_(problemas_resueltos)Mecanica de suelos_(problemas_resueltos)
Mecanica de suelos_(problemas_resueltos)Geillyn Castro
 
Suelos labo 5 info gravedad especifica
Suelos labo 5 info gravedad especificaSuelos labo 5 info gravedad especifica
Suelos labo 5 info gravedad especificaismael cachi vargas
 
Informe triaxial geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
Informe triaxial  geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADOInforme triaxial  geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
Informe triaxial geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADOSANDYSANTOSARRIERTA
 
analisis granumetrico por medio del hidrometro
analisis granumetrico por medio del hidrometroanalisis granumetrico por medio del hidrometro
analisis granumetrico por medio del hidrometroThelmo Rafael Bustamante
 
El metodo de hardy cross para redes de tuberias
El metodo de hardy cross para redes de tuberiasEl metodo de hardy cross para redes de tuberias
El metodo de hardy cross para redes de tuberiasAnthony Yrs
 
Resalto Hidráulico - Mecánica de Fluidos
Resalto Hidráulico - Mecánica de FluidosResalto Hidráulico - Mecánica de Fluidos
Resalto Hidráulico - Mecánica de FluidosRobin Gomez Peña
 
unidad 4 hidraulica de canales
unidad 4 hidraulica de canales unidad 4 hidraulica de canales
unidad 4 hidraulica de canales flower henandez
 
Distribucion de esfuerzos en la masa de un suelo
Distribucion  de esfuerzos en la masa de un sueloDistribucion  de esfuerzos en la masa de un suelo
Distribucion de esfuerzos en la masa de un suelodiegoupt
 

La actualidad más candente (20)

14 cap iii.1.capilaridad
14 cap iii.1.capilaridad14 cap iii.1.capilaridad
14 cap iii.1.capilaridad
 
PROCTOR MODIFICADO
PROCTOR MODIFICADOPROCTOR MODIFICADO
PROCTOR MODIFICADO
 
Peso especifico y absorcion m
Peso especifico y absorcion mPeso especifico y absorcion m
Peso especifico y absorcion m
 
Solucionariodelosexamenesdemecanicadesuelosii
SolucionariodelosexamenesdemecanicadesuelosiiSolucionariodelosexamenesdemecanicadesuelosii
Solucionariodelosexamenesdemecanicadesuelosii
 
Mecanica de suelos_(problemas_resueltos)
Mecanica de suelos_(problemas_resueltos)Mecanica de suelos_(problemas_resueltos)
Mecanica de suelos_(problemas_resueltos)
 
Suelos labo 5 info gravedad especifica
Suelos labo 5 info gravedad especificaSuelos labo 5 info gravedad especifica
Suelos labo 5 info gravedad especifica
 
Informe triaxial geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
Informe triaxial  geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADOInforme triaxial  geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
Informe triaxial geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
 
analisis granumetrico por medio del hidrometro
analisis granumetrico por medio del hidrometroanalisis granumetrico por medio del hidrometro
analisis granumetrico por medio del hidrometro
 
El metodo de hardy cross para redes de tuberias
El metodo de hardy cross para redes de tuberiasEl metodo de hardy cross para redes de tuberias
El metodo de hardy cross para redes de tuberias
 
ENSAYO SPT
ENSAYO SPTENSAYO SPT
ENSAYO SPT
 
Resalto Hidráulico - Mecánica de Fluidos
Resalto Hidráulico - Mecánica de FluidosResalto Hidráulico - Mecánica de Fluidos
Resalto Hidráulico - Mecánica de Fluidos
 
unidad 4 hidraulica de canales
unidad 4 hidraulica de canales unidad 4 hidraulica de canales
unidad 4 hidraulica de canales
 
Límite plástico
Límite plásticoLímite plástico
Límite plástico
 
Hidraulica de-canales flujo uniforme y critico
Hidraulica de-canales flujo uniforme y criticoHidraulica de-canales flujo uniforme y critico
Hidraulica de-canales flujo uniforme y critico
 
cbr ensayos
cbr ensayoscbr ensayos
cbr ensayos
 
Ensayo triaxial consolidado drenado (cd)
Ensayo triaxial consolidado drenado (cd)Ensayo triaxial consolidado drenado (cd)
Ensayo triaxial consolidado drenado (cd)
 
Informe de-consolidacion
Informe de-consolidacionInforme de-consolidacion
Informe de-consolidacion
 
Distribucion de esfuerzos en la masa de un suelo
Distribucion  de esfuerzos en la masa de un sueloDistribucion  de esfuerzos en la masa de un suelo
Distribucion de esfuerzos en la masa de un suelo
 
Equipo 7 suelos
Equipo 7 suelosEquipo 7 suelos
Equipo 7 suelos
 
ENSAYO DE CORTE DIRECTO (Consolidado - Drenado)
ENSAYO DE CORTE DIRECTO  (Consolidado - Drenado)ENSAYO DE CORTE DIRECTO  (Consolidado - Drenado)
ENSAYO DE CORTE DIRECTO (Consolidado - Drenado)
 

Similar a Hidrostatica (20)

Hidrostatica
HidrostaticaHidrostatica
Hidrostatica
 
Hidrostatica (1)
Hidrostatica (1)Hidrostatica (1)
Hidrostatica (1)
 
Hidrostatica
HidrostaticaHidrostatica
Hidrostatica
 
Hidrostatica
HidrostaticaHidrostatica
Hidrostatica
 
Mecanica fluidos-ppt
Mecanica fluidos-pptMecanica fluidos-ppt
Mecanica fluidos-ppt
 
hidrostatica.pptx
hidrostatica.pptxhidrostatica.pptx
hidrostatica.pptx
 
Hidrostatica
HidrostaticaHidrostatica
Hidrostatica
 
Hidrostatica[1]
Hidrostatica[1]Hidrostatica[1]
Hidrostatica[1]
 
Hidrostatica
HidrostaticaHidrostatica
Hidrostatica
 
Tema 3 EstáTica De Fluidos
Tema 3 EstáTica De FluidosTema 3 EstáTica De Fluidos
Tema 3 EstáTica De Fluidos
 
Tema 3 EstáTica De Fluidos
Tema 3 EstáTica De FluidosTema 3 EstáTica De Fluidos
Tema 3 EstáTica De Fluidos
 
Tema 3 EstáTica De Fluidos
Tema 3 EstáTica De FluidosTema 3 EstáTica De Fluidos
Tema 3 EstáTica De Fluidos
 
Apuntes de hidrostática
Apuntes de hidrostáticaApuntes de hidrostática
Apuntes de hidrostática
 
Módulo de física 2010 parte 9 (mecánica de fluidos)
Módulo de física  2010 parte 9 (mecánica de fluidos)Módulo de física  2010 parte 9 (mecánica de fluidos)
Módulo de física 2010 parte 9 (mecánica de fluidos)
 
Hidrostatica
HidrostaticaHidrostatica
Hidrostatica
 
Hidrostatica
HidrostaticaHidrostatica
Hidrostatica
 
Hidrostatica diego
Hidrostatica diegoHidrostatica diego
Hidrostatica diego
 
Presion Y Fluidos Preparacion Prueba De Nivel
Presion Y Fluidos Preparacion Prueba De NivelPresion Y Fluidos Preparacion Prueba De Nivel
Presion Y Fluidos Preparacion Prueba De Nivel
 
Presion Y Fluidos
Presion Y FluidosPresion Y Fluidos
Presion Y Fluidos
 
Hidrostatica
HidrostaticaHidrostatica
Hidrostatica
 

Más de lidersantos86

Más de lidersantos86 (10)

Optica
OpticaOptica
Optica
 
Optica
OpticaOptica
Optica
 
Elec magnetismo
Elec magnetismoElec magnetismo
Elec magnetismo
 
Electromagnetismo
ElectromagnetismoElectromagnetismo
Electromagnetismo
 
Tema 5. termodinámica y equilibrio
Tema 5. termodinámica y equilibrioTema 5. termodinámica y equilibrio
Tema 5. termodinámica y equilibrio
 
14 leyes de la dinámica
14 leyes de la dinámica14 leyes de la dinámica
14 leyes de la dinámica
 
Trabajoyenergia
TrabajoyenergiaTrabajoyenergia
Trabajoyenergia
 
Cinematicadeparticula
CinematicadeparticulaCinematicadeparticula
Cinematicadeparticula
 
Analisis vectorial
Analisis vectorialAnalisis vectorial
Analisis vectorial
 
Analisis dimensional
Analisis dimensionalAnalisis dimensional
Analisis dimensional
 

Último

PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxJUANSIMONPACHIN
 
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdfBIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdfCESARMALAGA4
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOweislaco
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docxAgustinaNuez21
 
TEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfTEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfDannyTola1
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxMapyMerma1
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPELaura Chacón
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024IES Vicent Andres Estelles
 
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxc3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxMartín Ramírez
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxOscarEduardoSanchezC
 

Último (20)

PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
 
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdfBIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
DIA INTERNACIONAL DAS FLORESTAS .
DIA INTERNACIONAL DAS FLORESTAS         .DIA INTERNACIONAL DAS FLORESTAS         .
DIA INTERNACIONAL DAS FLORESTAS .
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 
TL/CNL – 2.ª FASE .
TL/CNL – 2.ª FASE                       .TL/CNL – 2.ª FASE                       .
TL/CNL – 2.ª FASE .
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docx
 
TEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfTEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdf
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptx
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPE
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024
 
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxc3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
 

Hidrostatica

  • 1. UNIVERSIDAD NACIONAL HERMILIO VALDIZAN E.A.P DE MATEMATICA Y FISICA MECANICA DE FLUIDOS
  • 2. Mecánica de Fluidos Un fluido es un líquido o un gas. La característica principal de un fluido es su incapacidad para resistir fuerzas cortantes. En mecánica de fluidos se estudia el comportamiento de líquidos y gases, especialmente los líquidos, en dos condiciones: Líquidos en reposo: hidrostática Líquidos en movimiento: hidrodinámica
  • 3. Conceptos previos Volumen Este término tiene que ver con un concepto matemático y físico a la vez. Físico: región del espacio que ocupa un cuerpo Matemático: expresión matemática que determina esa región. Se mide en m3 o en cm3 Para determinar el volumen de un cuerpo se necesita conocer su forma física. Para cuerpos especiales existen fórmulas específicas Cubo de arista a V = a3 Esfera de radio R Paralelepípedo de lados a, b y c V = abc Cilindro con base de radio R y altura h V = πR2 h 3 3 4 RV π=
  • 4. Volumen de un cuerpo irregular Si un cuerpo es irregular, una piedra por ejemplo, no existe una fórmula matemática que permita determinar su volumen, y si la hay de seguro que es muy compleja Entonces, ¿cómo se determina su volumen? Procedimiento 1º Un vaso con agua hasta cierto nivel Se marca el nivel 2º Se coloca el cuerpo en el interior del vaso con agua Se marca el nuevo nivel 3º El incremento de volumen en el agua, corresponde al volumen del cuerpo Hay que procurar que el vaso tenga una forma geométrica simple para determinar el volumen de agua. Un cilindro por ejemplo.
  • 5. Densidad V m =ρ Es una medida que representa la cantidad de materia que hay por cada unidad de volumen de un cuerpo Se mide en kg/m3 o en g/m3 En general los sólidos tienen mayor densidad que los líquidos y éstos mayor densidad que los gases. Pero dentro de los sólidos, por ejemplo, hay unos con más y otros con menos densidad.
  • 6. Cálculo de densidades En general la forma más simple de determinar la densidad de un cuerpo es dividir su masa por el volumen que tiene: Supongamos un cuerpo cualquiera 1º Determinamos su masa 2º Se determina su volumen m V 3º Densidad V m =ρ Peso específico= V mg g == ργ
  • 7. Presión A F P = 2 11 m N Pa = La idea más simple que se tiene sobre presión se relaciona con la acción de aplastar algo. Y cuando se aplasta algo se ejerce una fuerza sobre una región del objeto. Si la fuerza que se ejerce sobre un objeto es F y la región sobre la cual actúa es A, se tiene que la presión que ejerce esa fuerza, es: La presión se mide en N/m2 y se denomina Pascal.
  • 8. Un ejercicio Peso del libro: W = mg = 0,4 [kg]x 9,8 [m/s2 ] = 3,92 [N] Presión: [ ] [ ] [ ]Pa067,13P m3,0 N92,3 P A F P 2 = = = Si un libro tiene una masa de 0,4 kg y su portada mide 20 cm por 15 cm y está apoyado sobre una mesa. El peso del libro ejerce una presión sobre la mesa. A P W Área de contacto: A = ab = 0,2 [m] x 0,15 [m] = 0,3 [m2 ]
  • 9. Otro ejercicio Sobre el suelo hay un bloque de aluminio, de medidas 20 cm de alto, 30 cm de ancho y 40 cm de largo. ¿Qué presión ejerce sobre el suelo? A P F La fuerza que actúa sobre el área de contacto, es el peso del bloque: V = abc m = ρV Volumen del bloque: V = abc = 0,2 [m]x0,3[m]x0,4[m] V = 0,024 [m3 ] Área de contacto: A = bc = 0,3[m]x0,4[m] A = 0,12 [m2 ] Presión
  • 10.
  • 11. Presión atmosférica Es la presión que el aire ejerce sobre la superficie terrestre. Cuando se mide la presión atmosférica, se está midiendo la presión que ejerce el peso de una columna de aire sobre 1 [m2 ] de área en la superficie terrestre. La presión atmosférica en la superficie de la Tierra es: P = 101.325 [Pa] y se aproxima a: P = 1,013X105 [Pa]
  • 12. Experimento de Torricelli En 1643, Evangelista Torricelli, hizo el siguiente experimento: Llenó un tubo de vidrio, de 1 [m] de longitud, con mercurio (“plata viva”). Tapó el extremo abierto y luego lo dio vuelta en una vasija. El mercurio empezó a descender pero se estabilizó en el momento que la columna medía 76 cm. El peso de la columna de mercurio ejerce presión en el nivel en que quedó el mercurio vaciado, y esa presión, para lograr la estabilización, se equilibra con la presión a que está sometido el mercurio por fuera del tubo. Esa presión, la de fuera del tubo, es la presión atmosférica, cuyo símbolo es P0. Entonces, se tendrá que esa presión es: P0
  • 13. Presión en un líquido Sumergirse en una piscina o en el mar o en un lago puede ser entretenido, pero también puede ser una experiencia dolorosa e incómoda. Lo que ocurre es que a medida que uno se sumerge empieza a soportar el peso del agua que va quedando sobre uno, y eso constituye la idea de presión. La presión aumenta a medida que la profundidad aumenta. Veamos lo siguiente: Supongamos que se está en el agua, mar o piscina o lo que sea. Podría ser otro líquido también (de densidad ρ). A nivel de la superficie existe la presión atmosférica P0 y a una profundidad h la presión es P. P0 h P
  • 14. Presión en un líquido Como ya se mencionó, en la superficie está actuando la presión atmosférica P0. Y a una profundidad h, bajo una columna de líquido de volumen V, en forma de cilindro de base A, se tendrá una presión P. Si la columna de agua tiene un volumen V = Ah y densidad ρ, entonces se tendrá que la presión en la base inferior de la columna de agua, es: P0 h P A
  • 15. Principio de Pascal La presión aplicada a un fluido encerrado es transmitida sin disminución alguna a todos los puntos del fluido y a las paredes del recipiente que lo contiene. En la figura que se muestra un líquido confinado en un recipiente y en un costado hay un sistema similar al de una jeringa. Si empujamos el pistón con una fuerza F, ejerceremos una presión P sobre el líquido que está al interior del recipiente. Y esa presión se transmite a todos los puntos del fluido y también a las paredes del recipiente. F P P P P P P P P P
  • 16. Prensa hidráulica Es un dispositivo que se aprovecha del Principio de Pascal para su funcionamiento. La siguiente figura nos muestra un recipiente que contiene un líquido y en ambos extremos está cerrado por émbolos. Cada extremo tiene diferente área. Si ejercemos una fuerza F1 en el émbolo más pequeño, esa fuerza actuará sobre un área A1 y se estará aplicando una presión P1 sobre el líquido. Esa presión se transmitirá a través del líquido y actuará – como P2 - sobre el émbolo más grande, de área A2, y se traducirá en la aplicación de una fuerza F2. F1 P1 F2 P2 A1 A2
  • 17. Prensa hidráulica A F P = F1 P1 F2 P2 A1 A2 De acuerdo al Principio de Pascal, la presión P1 y la presión P2 son iguales. P1 = P2 Y, como: Se tendrá: 2 2 1 1 A F A F =
  • 18. Ejemplos de prensas hidráulicas Son prensas hidráulicas, o máquinas hidráulicas en general, algunos sistemas para elevar vehículos (gata hidráulica), frenos de vehículos, asientos de dentistas y otros. Prensa hecha con jeringas Retroexcavadora Gata hidráulica Silla de dentista
  • 19. Un ejercicio F1 P1 F2 P2 A1 A2 Supongamos que se desea levantar un automóvil, de masa m = 1.200 kg, con una gata hidráulica, tal como se muestra en la figura. ¿Qué fuerza F1 se deberá aplicar en el émbolo más pequeño, de área 10 cm2 , para levantarlo? Suponga que el área del émbolo más grande es 200 cm2 . 2 2 1 1 A F A F = De la situación se tiene: Y como F2 tiene que al menos ser igual al peso del automóvil, se tendrá: F2 = mg 21 1 A mg A F = Por lo tanto, se tiene la igualdad: Y, despejando: 2 1 1 A mgA F = Y, reemplazando: [ ] [ ] [ ] [ ]N588 cm200 s m 8,9kg200.1cm10 F 2 2 2 1 =     •• =
  • 20. Medición de la presión Antes, una aclaración conceptual: Se llama presión absoluta a la expresión: P = P0 + ρgh Y se llama presión manométrica a la expresión: P – P0 = ρgh La presión atmosférica se mide con el barómetro. Es un manómetro de tubo cerrado que se expone a la atmósfera. El manómetro mide la presión absoluta y también la manométrica. Si es de tubo abierto mide la presión absoluta. Si es de tubo cerrado mide la presión manométrica .
  • 21. Principio de Arquímedes Un cuerpo sumergido, total o parcialmente, en un fluido, es empujado hacia arriba por una fuerza igual en magnitud al peso del volumen del fluido que desaloja. B Esto representa al volumen del fluido que fue desalojado por el cuerpo. Y su peso es: mg = ρVg Donde ρ es la densidad del fluido y V el volumen desplazado. B = ρVg Por lo tanto:
  • 22. Fuerza de empuje La fuerza B = ρVg se conoce como “Fuerza de Empuje” o “Fuerza de flotación”. Si un cuerpo de masa m se introduce un fluido quedará sujeto a dos fuerzas verticales: el peso del cuerpo y la fuerza de empuje. B mg Y pueden ocurrir tres situaciones: 1.- Que el peso del cuerpo sea de mayor medida que la fuerza de empuje. 2.- Que el peso del cuerpo sea de igual medida que la fuerza de empuje. 3.- Que el peso del cuerpo sea de menor medida que la fuerza de empuje. Conclusiones: 1.- Si mg > B, entonces el cuerpo se hunde. 2.- Si mg ≤ B, entonces el cuerpo flota total o parcialmente en el fluido.
  • 23. Peso aparente Como se mencionó recientemente, cuando un cuerpo está dentro de un fluido está afectado por dos fuerzas: el peso gravitacional y la fuerza de empuje. Como ambas fuerzas actúan sobre el cuerpo, entonces se pueden sumar o restar. Se llama peso aparente a la relación: Wa = mg - B Situaciones concretas: Cuando estamos sumergidos en el agua nos sentimos más livianos, y las cosas que tomamos bajo el agua también las sentimos más livianas. Lo anterior ocurre porque el peso que sentimos, no es el peso gravitacional, es el peso aparente. Un globo aerostático se eleva porque la fuerza de empuje que le afecta es mayor que su peso gravitacional. En estricto rigor: El peso que nos medimos en una balanza ¿qué es: peso gravitacional o peso aparente? B mg
  • 24. Flotación de barcos Parece capcioso preguntar ¿por qué un barco flota a pesar que es de metal y el metal tiene mayor densidad que el agua? Algo muy cierto hay en la pregunta: Un cuerpo de menor densidad que el agua siempre flotará. En este caso se verificará que la fuerza de empuje es mayor o igual que el peso gravitacional del cuerpo La densidad promedio del barco. Eso es lo que interesa. Y esa es menor que la del agua. Su densidad promedio se determina por: V m =ρ Y el volumen del barco no incluye solo el metal. También incluye el aire en su interior.
  • 25. Y … ¿el submarino? Un submarino se hunde o flota a discreción: ¿cómo lo hace? Un submarino se hunde si su peso gravitacional es mayor que el empuje que le afecta. Para lograr lo anterior se inundan, con agua, compartimientos que antes estaban vacíos. Con ello su densidad promedio aumenta y, en consecuencia, también aumenta su peso gravitacional. Por lo tanto ocurrirá que mg >B Y el submarino se hundirá. Para elevarse o flotar, su peso gravitacional debe ser menor que el empuje. Esto se logra sacando el agua con que se había inundado algunos compartimientos. Así su densidad promedio disminuye y también su peso gravitacional. Y cuando ocurra que B > mg El submarino se elevará y emergerá. Ya que estamos en el agua. Los peces se sumergen o se elevan en el agua inflando o desinflando su vejiga natatoria.
  • 26. HIDROSTÁTICA Es el estudio de los fluidos en reposo, es decir estudia los fluidos que no presentan esfuerzo cortante, sino, solo esfuerzos normales. En aspectos prácticos estos estudios son útiles para determinar fuerzas sobre objetos sumergidos, diseñar instrumentos medidores de presión, el desarrollo de fuerzas por transmisión de presión como los sistemas hidráulicos, conocer propiedades de la atmósfera y de los océanos. PRESIÓN EN EL INTERIOR DE UN FLUIDO Consideremos una pequeña porción del fluido con límites imaginarios, en condiciones estáticas y soportando presiones P1, P2 y P3 en diferentes direcciones como se muestra en la figura. El sistema está en equilibrio ∑ =⇒ 0F 
  • 27. 0=∑ yF  Consideremos PAF A F P =⇒=   Entonces: 032 =− dxdssenPdxdzP θ 032 =− dxdzPdxdzP 32 PP = Ahora: 0=∑ zF  2 cos31 dxdydz gdsdxPdydxP ρθ += dydxPdxdyP 31 = 31 PP = 321 PPP == PRINCIPIO DE PASCAL
  • 28. ECUACIÓN BÁSICA DE LA ESTÁTICA DE FLUIDOS Es una ecuación que permite determinar el campo de presiones dentro del fluido estacionario; es decir nos muestra como varía la presión en el interior del fluido cuando nos desplazamos en cada una de las tres dimensiones x, y, z. Consideremos el elemento diferencial de masa dm de fluido de peso específico limitado imaginariamente por dx, dy, dz. Recordando que: dz z P dy y P dx x P dP ∂ ∂ + ∂ ∂ + ∂ ∂ = Y tratándose de un sistema en equilibrio estático: ∑ = 0F  γ γ
  • 29. MANOMETRÍA Es el estudio de las presiones manométricas de un sistema MANÓMETRO: Instrumento diseñado para medir la presión manométrica, en su construcción se utiliza columnas líquidas en sistemas continuos. Los manómetros como todo sistema hidrostático continuo basan su utilidad en la ecuación básica de la estática de fluidos óγ−=∇P g z P ργ −=−= ∂ ∂ Consideremos el siguiente sistema ∫∫ −= 1 0 1 0 dzdP γ )()( 100101 zzzzPP −=−−=− γγ )( 1001 zzPP −+=⇒ γ Para el sistema de la figura: )()()()( 433322211100 zzzzzzzzPP AB −+−+−+−+= γγγγ
  • 30. En la ecuación anterior puede notarse que si partimos de A a traves de un medio continuo, entonces si el menisco inmediato siguiente está a un nivel mas bajo entonces h es positivo, asimismo si el nivel del menisco inmediato está mas alto, entonces h es negativa. EJEMPLO: Determinar la presión manométrica en A en kg/cm² debido a la columna de mercurio de densidad 13,6 en el manómetro en U que se muestra en la figura. SOLUCIÓN: Aplicando los criterios de manometría tenemos: atmHgOHA PmmP =−+ )80,0()60,0(2 γγ )80,0()60,0(2 mmP HgOHA γγ +−= La presión manométrica es:
  • 31. )60(/1)80(/6,13 33 cmcmgrcmcmgrPA −= 22 /028,1/1028 cmkgcmgrPA == EJEMPLO El esquema de la figura representa dos tuberías A y B por las que circula agua, entre ellas se conecta un manómetro de aceite de densidad 0,8. Determine la diferencia de presión entre los ejes de las tuberías SOLUCIÓN: Por criterios de manometría )48,1()38,0()38,0( 22 mymymPP OHacOHBA ++++−= γγγ OHOHacOHOHBA yyPP 2222 48,138,038,0 γγγγγ +++−−=− 2 /4,140 cmgPP BA =−
  • 32. EJEMPLO: El recipiente de la figura contiene dos líquidos; A con densidad 0,72 y B con densidad 2,36. Determine: a)La elevación de líquido en el tubo izquierdo. b)La elevación de líquido en el tubo derecho. c)La presión en el fondo del recipiente. SOLUCIÓN: a) En el tubo de la izquierda el líquido ascenderá 2 m de altura medido desde 0. b) Por manometría y considerando h medida desde el fondo del recipiente hasta la superficie libre del líquido en el tubo. atmBBAatm PhmmP =−++ γγγ )3,0()7,1( B BA mm h γ γγ )3,0()7,1( + = mh 82,0=
  • 33. EJEMPLO: El recipiente de la figura contiene tres fluidos y está acoplada a un manómetro de mercurio. Determine la altura y de la columna de mercurio sabiendo que la densidad del aceite es 0,82 SOLUCIÓN Utilizando los criterios de manometría iniciando el análisis desde donde se almacena aire comprimido tenemos que: atmHg PykPakPakPa =−++ )()3)(81,9)(1()3)(81,9)(82,0(30 γ 3 2 /)81,9)(6,13( /)4,291,2430( mN mN y ++ =⇒ my 626,0=
  • 34. FUERZA HIDROSTÁTICA SOBRE SUPERFICIES SUMERGIDAS SUPERFICIES SUMERGIDAS PLANAS CURVAS HORIZONTALES INCLINADAS FUERZA SOBRE SUPERFICIE PLANA: A dA dy G dFh x y y yG O Considérese la superficie de la figura sumergida en un líquido de peso específico γ Se requiere determinar: -La fuerza hidrostática (módulo, dirección y sentido) -Punto de aplicación (centro de presión) es decir las coordenadas (xp,yp)
  • 35. EJEMPLO: El recipiente de la figura presenta una compuerta AB de 1,20 m de ancho articulada en A. La lectura del manómetro G es – 0,15 kg/cm² . El depósito de la derecha contiene aceite de densidad 0,75. Que fuerza horizontal debe aplicarse en B para que la compuerta se mantenga en equilibrio en posición vertical? SOLUCIÓN: Se debe evaluar en primer lugar la fuerza que la presión de cada líquido ejerce sobre la compuerta para luego evaluar el equilibrio de la misma en la posición vertical La fuerza debida a la presión del aceite será: AhF Gac γ= kgmmmkgFac 1458)2,1)(8,1)(9,0)(/1000)(75,0( 23 ==