SlideShare una empresa de Scribd logo
1 de 51
Unidad I – Cinemática de la vibración
1.1.- Grados de libertad
1.2.- Movimiento Armónico y su representación
1.3.- Uso de fasores (Vectores de rotación)
1
Conceptos básicos de la vibración
Cualquier movimiento que se repite después de un
intervalo de tiempo se llama vibración u oscilación.
El vaivén de un péndulo y el movimiento de una cuerda
pulsada son ejemplos comunes de vibración.
La teoría de la vibración tiene que ver con el estudio de
los movimientos oscilatorios de los cuerpos y las fuerzas
asociadas con ellos.
Conceptos básicos de la vibración
Un sistema vibratorio incluye:
• un medio para almacenar energía potencial (resorte o
elasticidad)
• un medio para conservar energía cinética (masa o
inercia)
• un medio por el cual la energía se pierde gradualmente
(amortiguador)
Conceptos básicos de la vibración
La vibración de un sistema implica la
transformación de su energía potencial en energía
cinética y de ésta en energía potencial, de manera
alterna.
Si el sistema se amortigua, una parte de su energía
se disipa en cada ciclo de vibración y se le debe
reemplazar por una fuente externa para que se
mantenga un estado de vibración estable.
Conceptos básicos de la vibración
Clasificación de la vibración
Libre o Forzada
No Amortiguada o Amortiguada
Lineal o No Lineal
Determinística o Aleatoria
Vibración libre
Si se deja que un sistema vibre por sí mismo
después de una perturbación inicial, la vibración
resultante se conoce como vibración libre.
Ninguna fuerza externa actúa en el sistema.
La oscilación de un péndulo simple es un ejemplo
de vibración libre.
Vibración Forzada
Si un sistema se somete a una fuerza externa (a
menudo, una fuerza repetitiva), la vibración
resultante se conoce como vibración forzada. La
oscilación que aparece en máquinas como
motores Diesel es un ejemplo de vibración
forzada.
Resonancia
Si la frecuencia de la fuerza externa coincide con
una de las frecuencias naturales del sistema,
ocurre una condición conocida como resonancia,
y el sistema sufre oscilaciones peligrosamente
grandes. Las fallas de estructuras como edificios,
puentes, turbinas y alas de avión se han asociado a
la ocurrencia de resonancia.
Resonancia
No amortiguada
No se pierde o disipa energía por fricción u otra
resistencia durante la oscilación.
En muchos sistemas físicos, la cantidad de
amortiguamiento es tan pequeña que puede ser
ignorada en la mayoría de las aplicaciones de
ingeniería.
Amortiguada
Sí se pierde energía durante la oscilación.
Sin embargo, la consideración del
amortiguamiento se vuelve extremadamente
importante al analizar sistemas vibratorios
próximos a la resonancia.
Lineal
Los componentes básicos de un sistema
vibratorio, el resorte, la masa y el amortiguador,
se comportan linealmente.
Si la vibración es lineal el principio de
superposición es válido y las técnicas matemáticas
de análisis están bien desarrolladas.
No Lineal
Cualquiera de los componentes básicos se
comporta de manera no lineal.
Para vibración no lineal, el principio de
superposición no es válido y las técnicas de
análisis son menos conocidas. Como los sistemas
vibratorios tienden a comportarse no linealmente
con amplitud de oscilación creciente, es deseable
un conocimiento de la vibración no lineal cuando
se trate con sistemas vibratorios.
Ejemplo de resorte lineal y no lineal
Determinística
El valor o magnitud de la excitación (fuerza o
movimiento) que actúa en un sistema vibratorio se
conoce en cualquier tiempo dado
Aleatoria
El valor de la excitación en un momento dado no
se puede pronosticar.
En estos casos, una recopilación de registros de la
excitación puede presentar cierta regularidad
estadística. Es posible estimar promedios como
los valores medios o medios al cuadrado de la
excitación.
Aleatoria
Ejemplos de excitaciones aleatorias son la
velocidad del viento, la aspereza del camino y el
movimiento de tierra durante sismos. Si la
excitación es aleatoria, la vibración resultante se
llama vibración aleatoria. En este caso la
respuesta vibratoria del sistema también es
aleatoria; se puede describir sólo en función de
cantidades estadísticas.
Ejemplos de excitaciones
determinísticas y aleatorias
Análisis de la vibración
Análisis de la vibración
Análisis de la vibración
Análisis de la vibración
Sistemas de un grado de libertad
Sistemas de dos grado de libertad
Sistemas de dos grado de libertad
Sistemas de continuos o distribuidos
1.2 – Cinemática del movimiento armónico simple (MAS).
• ¿Qué es un movimiento oscilatorio?
Una partícula tiene un movimiento oscilatorio cuando se mueve periódicamente
alrededor de una posición de equilibrio (movimiento de un péndulo, de un peso
unido a un resorte, de los átomos en un sólido y en una molécula, de los electrones
en una antena,...). Su estudio es esencial para entender el movimiento ondulatorio.
• ¿Qué es un movimiento armónico simple (MAS)?
Es el más importante de los movimientos oscilatorios (representa a muchas
oscilaciones presentes en la naturaleza), pero también el más sencillo de describir y
analizar. No todos los movimientos oscilatorios son armónicos.
• Cinemática del movimiento armónico simple (MAS)
Una partícula tiene un MAS si su desplazamiento x respecto el origen es,
 
0
cos 


 t
A
x
0


t Ángulo de fase o fase
0
 Fase inicial (fase cuando t =0)
Como el coseno varía entre +1 y –1, x toma valores entre A y -A
A Amplitud (máximo desplazamiento)


 2
P Periodo (intervalo de tiempo para
el que el valor de x se repite)
Equilibrio
P
1

 Frecuencia (se mide en hertz)




 2
2 P Frecuencia angular
2
8
6.1 – Cinemática del movimiento armónico simple (MAS).
La velocidad v de una partícula que tiene un MAS es,
 
0
sen 





 t
A
dt
dx
v Varía periódicamente entre los valores A y -A
La aceleración a de una partícula que tiene un MAS es,
  x
t
A
dt
dv
a 2
0
2
cos 








 Varía periódicamente entre los valores 2A y -2A.
En el MAS a es proporcional y opuesta a x.
Desplazamiento
Velocidad
Aceleración
Representación del desplazamiento en
función del tiempo
2
9
6.2 – Vectores de rotación o fasores.
• Vectores de rotación o fasores.
El desplazamiento de una partícula que se mueve con un MAS se puede considerar
como la componente X de un vector de longitud OP’= A; este vector rota en sentido
contrario a las agujas del reloj alrededor de O con velocidad angular  y en cada
instante forma un ángulo (t+ α) con el eje X.
X
O
Para t > 0
Y
P’
A
t+0 P
 
0
cos 


 t
A
x
t
X
Y
O
P’
A
0 P
0
cos
 A
x
Para t = 0
 
0
cos 


 t
A
x
X
Y
O
P’
A
t+ 0
P
t
X
Y
P’
A
t+ 0
x
A
2A
V’
A’
v
a O
/2

 
   
   































0
2
2
0
0
cos
cos
2
cos
sen
cos
t
A
t
A
a
t
A
t
A
v
t
A
OP
x
3
0
6.3 – Dinámica del oscilador libre. Energía del MAS.
• Aplicando la segunda ley de Newton, se tiene que la fuerza que tiene que actuar sobre
una partícula de masa m que se mueve con un MAS es,
ma
F 
Como x
a 2



x
m
F 2



En un MAS F es proporcional y opuesta a x
kx
F 

Llamando 2

 m
k Constante elástica
• De este modo, se puede escribir
• Dinámica del MAS.
m
k


2

 m
k
k
m
P 
 2


 2
P
m
k



2
1
P
1


3
1
6.3 – Dinámica del oscilador libre. Energía del MAS.
• Se obtiene la energía potencial a partir de
dx
dEp
Fx 

Como kx
Fx 

kx
dx
dEp
 
 
x
Ep
kxdx
dEp
0
0
Integrando
2
2
2
1
2
2
1
x
m
kx
Ep 


La Ep es cero en el centro (x=0) y máxima
en los extremos de oscilación (x=A)
• La energía total del MAS es
  2
2
2
1
2
2
2
2
1
x
m
x
A
m
Ep
Ec
E 





 2
2
1
2
2
2
1
kA
A
m
E 

 E es constante
• La energía cinética de una partícula que se mueve con un MAS es
   
 
0
2
2
2
2
1
0
2
2
2
2
1
2
2
1
cos
1
sen
2











 t
A
m
t
A
m
mv
Ec
v


 


 

 
0
cos 


 t
A
x
Como
   
2
2
2
1
2
2
2
2
1
x
A
k
x
A
m
Ec 




La Ec es máxima en el centro (x=0) y cero
en los extremos de oscilación (x=A)
• Energía del MAS.
3
2
6.3 – Dinámica del oscilador libre. Energía del MAS.
Ec
Ep
Epm
Ecm
Ep
Ep
Ep
Ec
Representación de la energía cinética y potencial
frente al tiempo
Representación de la energía potencial
frente al desplazamiento
3
3
6.4 – Ecuación básica del MAS.
• Se obtiene combinando la segunda ley de Newton con la expresión de la fuerza que
produce un MAS. Esto es,









kx
F
dt
x
d
m
ma
F 2
2
Ecuación básica
del MAS
kx
dt
x
d
m 

2
2
0
2
2

 kx
dt
x
d
m
Como m
k

2
0
2
2
2


 x
dt
x
d
• Es solución de esta ecuación (puede verificarse sustituyendo la solución en la
ecuación)
 
0
cos 


 t
A
x
• Y también son solución de la misma
  t
B
t
A
x
t
A
x 






 cos
sen
,
sen 0
• Esta ecuación básica aparece en muchas situaciones físicas. Siempre que aparezca
es una indicación de que el fenómeno es oscilatorio y corresponde a un MAS.
3
4
6.5 – Péndulos.
• Péndulo simple.
• Se define como una partícula de masa m suspendida de un punto O mediante una cuerda de
longitud l y masa despreciable.
• Cuando m se separa de la posición de equilibrio y se suelta
describe un movimiento oscilatorio, que se debe a la
componente tangencial del peso.
• Aplicando la segunda ley de Newton en la dirección tangencial
se obtiene


 ml
ma
F t
t 2
2
sen
dt
d
ml
mg



 0
sen
2
2




l
g
dt
d
• Que difiere de la ecuación básica de un MAS por el término
sen. Sin embargo si el ángulo  es muy pequeño, entonces
sen   y se tiene
0
2
2




l
g
dt
d Ecuación básica de un MAS
de frecuencia l
g

2
• Y su solución es un MAS cuya expresión es
 
0
0 cos 




 t
siendo el periodo de oscilación
g
l
P 
 2
3
6
6.5 – Péndulos.
• Péndulo compuesto.
• Se define como un sólido rígido suspendida de un punto O que pasa por un pivote.
• Cuando el sólido se separa de la posición de equilibrio y se
suelta describe un movimiento oscilatorio, debido al momento
de la fuerza producido por el peso.
• Aplicando la ecuación fundamental de la dinámica

 I
MO 2
2
sen
dt
d
I
mgD



 0
sen
2
2




I
mgD
dt
d
• Que difiere de la ecuación básica de un MAS por el término
sen. Sin embargo si el ángulo  es muy pequeño, entonces
sen   y se tiene
0
2
2




I
mgD
dt
d Ecuación básica de un MAS
de frecuencia I
mgD

2
• Y su solución es un MAS cuya expresión es
 
0
0 cos 




 t
siendo el periodo de oscilación
mgD
I
P 
 2
Pivote
O
37
6.6 – Superposición de MM. AA. SS.
• Superposición de dos MAS de la misma dirección y frecuencia.
Cuando una partícula está sometida a más de una fuerza armónica se dice que existe
una interferencia o superposición de movimientos armónicos simples. Se observan
sobre la superficie del agua cuando se lanzan dos piedras, y son importantes en
óptica y en acústica.
Sea una partícula sometida a dos MAS que actúan en la misma dirección y que
tienen la misma frecuencia. El desplazamiento producido por cada MAS es
 






t
A
x
t
A
x
cos
cos
2
2
1
1 La fase de x1 es cero
La fase de x2 es  (diferencia de fase)
El desplazamiento resultante de la partícula viene dado por
 







 t
A
t
A
x
x
x cos
cos 2
1
2
1
y como se verá es un MAS con periodo


 2
P
38
6.6 – Superposición de MM. AA. SS.
A
A1
A2
x
t
O x
t
y P’
P1’
P2’
• Primer caso especial. Si  = 0  los dos movimientos están en fase.
El movimiento resultante es
  t
A
A
t
A
t
A
x
x
x 







 cos
cos
cos 2
1
2
1
2
1
y se trata de un MAS de la misma frecuencia angular, que tiene una amplitud que es
igual a
2
1 A
A
A 

O
39
6.6 – Superposición de MM. AA. SS.
• Segundo caso especial. Si  =  rad  los dos movimientos están en oposición.
En este caso el desplazamiento x2 es
  t
A
A
t
A
t
A
x
x
x 







 cos
cos
cos 2
1
2
1
2
1
y se trata de un MAS de la misma frecuencia angular, que tiene una amplitud que es
igual a
2
1 A
A
A 

  t
A
t
A
x 





 cos
cos 2
2
2
y el movimiento resultante es
A
A1
A2
x
t
O x
t
y
P’
P1’
P2’

O
40
6.6 – Superposición de MM. AA. SS.
• Caso general. Si  toma un valor arbitrario.
De la representación como vectores rotantes se observa que el movimiento
resultante es un MAS de la misma frecuencia y una amplitud dada por
   
0
2
1
2
1 cos
cos
cos 










 t
A
t
A
t
A
x
x
x
y cuyo desplazamiento resultante es
A
A1
A2
x
t
O



 cos
2 2
1
2
2
2
1 A
A
A
A
A
x
t
y
P’
P1’
P2’
 0
O
A1
A2
A
41
6.6 – Superposición de MM. AA. SS.
• Superposición de dos MAS de la misma dirección pero distinta frecuencia.
Es el tipo de interferencia que resulta cuando dos señales de radio son trasmitidas
con frecuencias cercanas pero no iguales.
Consideremos que los MAS que se superponen vienen dados por las ecuaciones
t
A
x
t
A
x 2
2
2
1
1
1 cos
,
cos 


 La fase inicial de ambos es cero por simplicidad
x
1t
y
P’
P1’
P2’
2t
(2- 1)t
O
A
A1
A2
El ángulo entre los vectores de rotación OP1’ y OP2’ es
 t
t
t 1
2
1
2 





 No es constante
Por lo que el vector OP’ no tiene longitud constante y la
amplitud del movimiento resultante es
 t
A
A
A
A
A 1
2
2
1
2
2
2
1 cos
2 





Esta amplitud varía u oscila entre los valores
2
1 A
A
A 
 si   



 n
t 2
1
2
2
1 A
A
A 
 si   





 n
t 2
1
2
A
t
O
A1+A2
A1A2
Amplitud modulada
Por tanto el movimiento resultante en este caso
2
1 x
x
x 
 No es un MAS
42
6.6 – Superposición de MM. AA. SS.
• Caso especial  cuando A1=A2
Entonces la amplitud del movimiento resultante es
   
 
t
A
t
A
A
A 1
2
1
1
2
2
1
2
1 cos
1
2
cos
2
2 









Como 


 2
1
2
cos
2
cos
1
 t
A
A 1
2
2
1
1cos
2 


 Que oscila entre 0 y 2A1
x
x1,x2
A
x1+x2
x1
x2
43
6.7 – Dinámica de un oscilador amortiguado 44
•En un MAS la amplitud y la energía de la partícula que oscila se mantienen constante.
•Sin embargo en un sistema real, como un péndulo o resorte, se observa
que la amplitud de la vibración disminuye con el tiempo, ya que hay una
pérdida de energía. Se dice que la oscilación está amortiguada.
•Para el análisis dinámico del oscilador dinámico, se puede suponer que
además de la fuerza elástica, también actúa una fuerza disipativa que se
opone a la velocidad, de la forma
bv
Fd 
 b es una constante que indica la intensidad de la
fuerza disipativa
•Aplicando la segunda ley de Newton se tiene entonces que
 ma
bv
kx
d
el F
F



2
2
dt
x
d
m
dt
dx
b
kx 

 0
2
2


 kx
dt
dx
b
dt
x
d
m
dividiendo por m
0
2 2
0
2
2




 x
dt
dx
dt
x
d donde
m
k
m
b




0
2
Frecuencia
natural
•La frecuencia natural es aquella que tendría el oscilador si la fuerza disipativa no
estuviera presente.
Ecuación básica de un
oscilador amortiguado
6.7 – Dinámica de un oscilador amortiguado 45
1.- Si la fuerza disipativa es relativamente pequeña (b pequeño y   0).
• El desplazamiento está descrito por
m
b
m
k
2
2
2
2
0 






 
0
0 cos 


 

t
e
A
x t
observándose que la amplitud no es constante (disminuye exponencialmente con t)
• La frecuencia viene dada por
Se observa que  < 0
A0
Amplitud A=A0e- t
Desplazamiento x
Periodo P
6.7 – Dinámica de un oscilador amortiguado 46
• Al ser la energía proporcional a la amplitud al cuadrado, también disminuye con t
exponencialmente
• Se define el tiempo de relajación como
  t
t
e
A
m
e
A
m
A
m
E 








 2
2
0
2
2
1
2
0
2
2
1
2
2
2
1
Llamando
2
0
2
2
1
0 A
m
E 

t
e
E
E 

 2
0
b
m


 
2
1 Es el tiempo necesario para que la energía se reduzca
un número e de veces su valor original
y la energía se puede expresar como 

 t
e
E
E 0
• Se define el factor de calidad como
b
m
Q 0
0





Está relacionado con la pérdida relativa de energía por
ciclo.
se puede demostrar que el factor de calidad es igual a
 ciclo
2
E
E
Q


 Es inversamente proporcional a la pérdida de energía
relativa por ciclo.
6.7 – Dinámica de un oscilador amortiguado 47
2.- Si la fuerza disipativa alcanza un valor crítico (   0 y b =2m 0 ).
• En este caso la frecuencia del movimiento será
El sistema al ser desplazado de su posición de equilibrio vuelve a ésta sin oscilar. Se
dice que el sistema está amortiguado críticamente.
0
2
2
0 




 No es un movimiento oscilatorio.
3.- Si la fuerza disipativa supera este valor crítico (   0 y b 2m 0 ).
• En este caso tampoco hay oscilación, y el sistema al desplazarse vuelve a la posición
de equilibrio, pero más lentamente que con amortiguación crítica. Se dice que el
sistema está sobremortiguado.
Amortiguado críticamente
Sobreamortiguado
6.8 – Dinámica de un oscilador forzado. Resonancias 48
•Un oscilador forzado dejará de moverse transcurrido un tiempo. Podemos mantener
una partícula oscilando con amplitud constante aplicando una fuerza externa que varíe
con el tiempo de forma periódica. En este caso el movimiento resultante se dice que es
una oscilación forzada.
•Para el análisis dinámico del oscilador forzadoo, se puede
suponer que además de la fuerza elástica y la fuerza
disipativa, también actúa una fuerza externa, de la forma
t
F
F f
ext 
 cos
0
•Aplicando la segunda ley de Newton se tiene entonces que
 ma
bv
kx
t
F
d
el
ext
F
F
F
f 








cos
0 t
F
kx
dt
dx
b
dt
x
d
m f



 cos
0
2
2
0
F
f

Amplitud de la fuerza externa
Frecuencia de la fuerza externa
dividiendo por m
t
m
F
x
dt
dx
dt
x
d
f





 cos
2 0
2
0
2
2
Ecuación básica de un
oscilador forzado
donde
m
k
m
b




0
2
Frecuencia
natural
6.8 – Dinámica de un oscilador forzado. Resonancias. 49
•La solución de esta ecuación consta de dos partes, la solución transitoria y la solución
estacionaria. La parte transitoria es idéntica a la de un oscilador amortiguado y
transcurrido cierto tiempo se hace despreciable (disminuye exponencialmente con el
tiempo). Así solo queda la parte estacionaria que puede expresarse como
 



 t
A
x f
sen La partícula oscila con la
frecuencia de la fuerza externa
x
t
O
Solución
transitoria
Solución estacionaria
6.8 – Dinámica de un oscilador forzado. Resonancias. 50
    2
2
2
2
0
2
0
2
2
0
f
f
f
f
f
b
m
m
F
b
k
m
F
A












donde la amplitud y la fase inicial de la oscilación forzada vienen dadas por
f
f






2
tan
2
2
0
A
F0/k
f
0 0
b2
b1
b = 0
• La amplitud es máxima cuando
2
2
0 2



f
• La velocidad de un oscilador forzado es
Resonancia en
amplitud
 





 t
A
dt
dx
v f
f cos
• La amplitud de la velocidad es
  2
2
0
0
b
k
m
F
A
v
f
f
f







b2 > b1 > b=0
6.8 – Dinámica de un oscilador forzado. Resonancias. 51
•Cuando hay resonancia en energía se tiene que
•En resonancia, la velocidad está en fase con la
fuerza aplicada. Como la potencia transmitida al
oscilador por la fuerza aplicada es
Fv
P 
•La amplitud de la velocidad es máxima, y por tanto la energía cinética del oscilador
también es máxima, cuando
m
k
f 


 0 Resonancia en energía
v0
f
0 0
b2
b1
b = 0
b3
0
2
tan
2
2
0







f
f
0


esta cantidad siempre es positiva cuando la
fuerza y la velocidad están en fase, y es por tanto
la condición más favorable para la transferencia
de energía al oscilador.
b3 > b2 > b1 > b=0

Más contenido relacionado

Similar a Introducción Vibraciones Mecánicas Movimiento Armónico Simple

Similar a Introducción Vibraciones Mecánicas Movimiento Armónico Simple (20)

movimiento armonico simple
movimiento armonico simplemovimiento armonico simple
movimiento armonico simple
 
Mas
MasMas
Mas
 
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.SDINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
 
Movimiento oscilatorio.pdf
Movimiento oscilatorio.pdfMovimiento oscilatorio.pdf
Movimiento oscilatorio.pdf
 
Tema6 f1 03_04
Tema6 f1 03_04Tema6 f1 03_04
Tema6 f1 03_04
 
oscilaciones semana 1.ppt
oscilaciones semana 1.pptoscilaciones semana 1.ppt
oscilaciones semana 1.ppt
 
fisica_.pdf
fisica_.pdffisica_.pdf
fisica_.pdf
 
MAS.ppt
MAS.pptMAS.ppt
MAS.ppt
 
MAS.ppt
MAS.pptMAS.ppt
MAS.ppt
 
VIBRACIONES AMORTIGUADAS Y NO AMORTIGUADAS
VIBRACIONES AMORTIGUADAS Y NO AMORTIGUADASVIBRACIONES AMORTIGUADAS Y NO AMORTIGUADAS
VIBRACIONES AMORTIGUADAS Y NO AMORTIGUADAS
 
Tema6_f1_03_04.ppt
Tema6_f1_03_04.pptTema6_f1_03_04.ppt
Tema6_f1_03_04.ppt
 
MOVIMIENTO ARMONICO SIMPLE 11.ppt
MOVIMIENTO ARMONICO SIMPLE 11.pptMOVIMIENTO ARMONICO SIMPLE 11.ppt
MOVIMIENTO ARMONICO SIMPLE 11.ppt
 
Movimiento Armónico Simple (M.A.S.).pdf
Movimiento Armónico Simple (M.A.S.).pdfMovimiento Armónico Simple (M.A.S.).pdf
Movimiento Armónico Simple (M.A.S.).pdf
 
Semana 8mod
Semana 8modSemana 8mod
Semana 8mod
 
Semana 8 movimiento armonico simple
Semana 8  movimiento armonico simpleSemana 8  movimiento armonico simple
Semana 8 movimiento armonico simple
 
CINEMÁTICA - MOVIMIENTO OSCILATORIO.ppt
CINEMÁTICA - MOVIMIENTO OSCILATORIO.pptCINEMÁTICA - MOVIMIENTO OSCILATORIO.ppt
CINEMÁTICA - MOVIMIENTO OSCILATORIO.ppt
 
Vibraciones forzadas
Vibraciones forzadasVibraciones forzadas
Vibraciones forzadas
 
7 ap oscond1011
7 ap oscond10117 ap oscond1011
7 ap oscond1011
 
Movimiento ondulatorio
Movimiento ondulatorioMovimiento ondulatorio
Movimiento ondulatorio
 
7 ap oscond1011
7 ap oscond10117 ap oscond1011
7 ap oscond1011
 

Último

Fe_C_Tratamientos termicos_uap _3_.ppt
Fe_C_Tratamientos termicos_uap   _3_.pptFe_C_Tratamientos termicos_uap   _3_.ppt
Fe_C_Tratamientos termicos_uap _3_.pptVitobailon
 
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfMirthaFernandez12
 
Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasSegundo Silva Maguiña
 
Fijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEFijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEANDECE
 
CE.040 DRENAJE PLUVIAL_RM 126-2021-VIVIENDA.pdf
CE.040 DRENAJE PLUVIAL_RM 126-2021-VIVIENDA.pdfCE.040 DRENAJE PLUVIAL_RM 126-2021-VIVIENDA.pdf
CE.040 DRENAJE PLUVIAL_RM 126-2021-VIVIENDA.pdfssuserc34f44
 
COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIA
COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIACOMPONENTES DE LA VIA FERREA UAJMS - BOLIVIA
COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIARafaelPaco2
 
PRESENTACION DE CLASE. Factor de potencia
PRESENTACION DE CLASE. Factor de potenciaPRESENTACION DE CLASE. Factor de potencia
PRESENTACION DE CLASE. Factor de potenciazacariasd49
 
CLASE - 01 de construcción 1 ingeniería civil
CLASE - 01 de construcción 1 ingeniería civilCLASE - 01 de construcción 1 ingeniería civil
CLASE - 01 de construcción 1 ingeniería civilDissneredwinPaivahua
 
Una estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTUna estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTFundación YOD YOD
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdfAnthonyTiclia
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfIsbelRodrguez
 
Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaANDECE
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaXjoseantonio01jossed
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxEtse9
 
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxAMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxLuisvila35
 
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfAntonioGonzalezIzqui
 
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAIPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAJAMESDIAZ55
 
3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptxJhordanGonzalo
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.ALEJANDROLEONGALICIA
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxEduardoSnchezHernnde5
 

Último (20)

Fe_C_Tratamientos termicos_uap _3_.ppt
Fe_C_Tratamientos termicos_uap   _3_.pptFe_C_Tratamientos termicos_uap   _3_.ppt
Fe_C_Tratamientos termicos_uap _3_.ppt
 
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
 
Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la Ingenierías
 
Fijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEFijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSE
 
CE.040 DRENAJE PLUVIAL_RM 126-2021-VIVIENDA.pdf
CE.040 DRENAJE PLUVIAL_RM 126-2021-VIVIENDA.pdfCE.040 DRENAJE PLUVIAL_RM 126-2021-VIVIENDA.pdf
CE.040 DRENAJE PLUVIAL_RM 126-2021-VIVIENDA.pdf
 
COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIA
COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIACOMPONENTES DE LA VIA FERREA UAJMS - BOLIVIA
COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIA
 
PRESENTACION DE CLASE. Factor de potencia
PRESENTACION DE CLASE. Factor de potenciaPRESENTACION DE CLASE. Factor de potencia
PRESENTACION DE CLASE. Factor de potencia
 
CLASE - 01 de construcción 1 ingeniería civil
CLASE - 01 de construcción 1 ingeniería civilCLASE - 01 de construcción 1 ingeniería civil
CLASE - 01 de construcción 1 ingeniería civil
 
Una estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTUna estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NIST
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdf
 
Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de Almería
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptx
 
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxAMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
 
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
 
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAIPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
 
3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptx
 

Introducción Vibraciones Mecánicas Movimiento Armónico Simple

  • 1. Unidad I – Cinemática de la vibración 1.1.- Grados de libertad 1.2.- Movimiento Armónico y su representación 1.3.- Uso de fasores (Vectores de rotación) 1
  • 2. Conceptos básicos de la vibración Cualquier movimiento que se repite después de un intervalo de tiempo se llama vibración u oscilación. El vaivén de un péndulo y el movimiento de una cuerda pulsada son ejemplos comunes de vibración. La teoría de la vibración tiene que ver con el estudio de los movimientos oscilatorios de los cuerpos y las fuerzas asociadas con ellos.
  • 3. Conceptos básicos de la vibración Un sistema vibratorio incluye: • un medio para almacenar energía potencial (resorte o elasticidad) • un medio para conservar energía cinética (masa o inercia) • un medio por el cual la energía se pierde gradualmente (amortiguador)
  • 4. Conceptos básicos de la vibración La vibración de un sistema implica la transformación de su energía potencial en energía cinética y de ésta en energía potencial, de manera alterna. Si el sistema se amortigua, una parte de su energía se disipa en cada ciclo de vibración y se le debe reemplazar por una fuente externa para que se mantenga un estado de vibración estable.
  • 5. Conceptos básicos de la vibración
  • 6. Clasificación de la vibración Libre o Forzada No Amortiguada o Amortiguada Lineal o No Lineal Determinística o Aleatoria
  • 7. Vibración libre Si se deja que un sistema vibre por sí mismo después de una perturbación inicial, la vibración resultante se conoce como vibración libre. Ninguna fuerza externa actúa en el sistema. La oscilación de un péndulo simple es un ejemplo de vibración libre.
  • 8. Vibración Forzada Si un sistema se somete a una fuerza externa (a menudo, una fuerza repetitiva), la vibración resultante se conoce como vibración forzada. La oscilación que aparece en máquinas como motores Diesel es un ejemplo de vibración forzada.
  • 9. Resonancia Si la frecuencia de la fuerza externa coincide con una de las frecuencias naturales del sistema, ocurre una condición conocida como resonancia, y el sistema sufre oscilaciones peligrosamente grandes. Las fallas de estructuras como edificios, puentes, turbinas y alas de avión se han asociado a la ocurrencia de resonancia.
  • 11. No amortiguada No se pierde o disipa energía por fricción u otra resistencia durante la oscilación. En muchos sistemas físicos, la cantidad de amortiguamiento es tan pequeña que puede ser ignorada en la mayoría de las aplicaciones de ingeniería.
  • 12. Amortiguada Sí se pierde energía durante la oscilación. Sin embargo, la consideración del amortiguamiento se vuelve extremadamente importante al analizar sistemas vibratorios próximos a la resonancia.
  • 13. Lineal Los componentes básicos de un sistema vibratorio, el resorte, la masa y el amortiguador, se comportan linealmente. Si la vibración es lineal el principio de superposición es válido y las técnicas matemáticas de análisis están bien desarrolladas.
  • 14. No Lineal Cualquiera de los componentes básicos se comporta de manera no lineal. Para vibración no lineal, el principio de superposición no es válido y las técnicas de análisis son menos conocidas. Como los sistemas vibratorios tienden a comportarse no linealmente con amplitud de oscilación creciente, es deseable un conocimiento de la vibración no lineal cuando se trate con sistemas vibratorios.
  • 15. Ejemplo de resorte lineal y no lineal
  • 16. Determinística El valor o magnitud de la excitación (fuerza o movimiento) que actúa en un sistema vibratorio se conoce en cualquier tiempo dado
  • 17. Aleatoria El valor de la excitación en un momento dado no se puede pronosticar. En estos casos, una recopilación de registros de la excitación puede presentar cierta regularidad estadística. Es posible estimar promedios como los valores medios o medios al cuadrado de la excitación.
  • 18. Aleatoria Ejemplos de excitaciones aleatorias son la velocidad del viento, la aspereza del camino y el movimiento de tierra durante sismos. Si la excitación es aleatoria, la vibración resultante se llama vibración aleatoria. En este caso la respuesta vibratoria del sistema también es aleatoria; se puede describir sólo en función de cantidades estadísticas.
  • 20. Análisis de la vibración
  • 21. Análisis de la vibración
  • 22. Análisis de la vibración
  • 23. Análisis de la vibración
  • 24. Sistemas de un grado de libertad
  • 25. Sistemas de dos grado de libertad
  • 26. Sistemas de dos grado de libertad
  • 27. Sistemas de continuos o distribuidos
  • 28. 1.2 – Cinemática del movimiento armónico simple (MAS). • ¿Qué es un movimiento oscilatorio? Una partícula tiene un movimiento oscilatorio cuando se mueve periódicamente alrededor de una posición de equilibrio (movimiento de un péndulo, de un peso unido a un resorte, de los átomos en un sólido y en una molécula, de los electrones en una antena,...). Su estudio es esencial para entender el movimiento ondulatorio. • ¿Qué es un movimiento armónico simple (MAS)? Es el más importante de los movimientos oscilatorios (representa a muchas oscilaciones presentes en la naturaleza), pero también el más sencillo de describir y analizar. No todos los movimientos oscilatorios son armónicos. • Cinemática del movimiento armónico simple (MAS) Una partícula tiene un MAS si su desplazamiento x respecto el origen es,   0 cos     t A x 0   t Ángulo de fase o fase 0  Fase inicial (fase cuando t =0) Como el coseno varía entre +1 y –1, x toma valores entre A y -A A Amplitud (máximo desplazamiento)    2 P Periodo (intervalo de tiempo para el que el valor de x se repite) Equilibrio P 1   Frecuencia (se mide en hertz)      2 2 P Frecuencia angular 2 8
  • 29. 6.1 – Cinemática del movimiento armónico simple (MAS). La velocidad v de una partícula que tiene un MAS es,   0 sen        t A dt dx v Varía periódicamente entre los valores A y -A La aceleración a de una partícula que tiene un MAS es,   x t A dt dv a 2 0 2 cos           Varía periódicamente entre los valores 2A y -2A. En el MAS a es proporcional y opuesta a x. Desplazamiento Velocidad Aceleración Representación del desplazamiento en función del tiempo 2 9
  • 30. 6.2 – Vectores de rotación o fasores. • Vectores de rotación o fasores. El desplazamiento de una partícula que se mueve con un MAS se puede considerar como la componente X de un vector de longitud OP’= A; este vector rota en sentido contrario a las agujas del reloj alrededor de O con velocidad angular  y en cada instante forma un ángulo (t+ α) con el eje X. X O Para t > 0 Y P’ A t+0 P   0 cos     t A x t X Y O P’ A 0 P 0 cos  A x Para t = 0   0 cos     t A x X Y O P’ A t+ 0 P t X Y P’ A t+ 0 x A 2A V’ A’ v a O /2                                           0 2 2 0 0 cos cos 2 cos sen cos t A t A a t A t A v t A OP x 3 0
  • 31. 6.3 – Dinámica del oscilador libre. Energía del MAS. • Aplicando la segunda ley de Newton, se tiene que la fuerza que tiene que actuar sobre una partícula de masa m que se mueve con un MAS es, ma F  Como x a 2    x m F 2    En un MAS F es proporcional y opuesta a x kx F   Llamando 2   m k Constante elástica • De este modo, se puede escribir • Dinámica del MAS. m k   2   m k k m P   2    2 P m k    2 1 P 1   3 1
  • 32. 6.3 – Dinámica del oscilador libre. Energía del MAS. • Se obtiene la energía potencial a partir de dx dEp Fx   Como kx Fx   kx dx dEp     x Ep kxdx dEp 0 0 Integrando 2 2 2 1 2 2 1 x m kx Ep    La Ep es cero en el centro (x=0) y máxima en los extremos de oscilación (x=A) • La energía total del MAS es   2 2 2 1 2 2 2 2 1 x m x A m Ep Ec E        2 2 1 2 2 2 1 kA A m E    E es constante • La energía cinética de una partícula que se mueve con un MAS es       0 2 2 2 2 1 0 2 2 2 2 1 2 2 1 cos 1 sen 2             t A m t A m mv Ec v            0 cos     t A x Como     2 2 2 1 2 2 2 2 1 x A k x A m Ec      La Ec es máxima en el centro (x=0) y cero en los extremos de oscilación (x=A) • Energía del MAS. 3 2
  • 33. 6.3 – Dinámica del oscilador libre. Energía del MAS. Ec Ep Epm Ecm Ep Ep Ep Ec Representación de la energía cinética y potencial frente al tiempo Representación de la energía potencial frente al desplazamiento 3 3
  • 34. 6.4 – Ecuación básica del MAS. • Se obtiene combinando la segunda ley de Newton con la expresión de la fuerza que produce un MAS. Esto es,          kx F dt x d m ma F 2 2 Ecuación básica del MAS kx dt x d m   2 2 0 2 2   kx dt x d m Como m k  2 0 2 2 2    x dt x d • Es solución de esta ecuación (puede verificarse sustituyendo la solución en la ecuación)   0 cos     t A x • Y también son solución de la misma   t B t A x t A x         cos sen , sen 0 • Esta ecuación básica aparece en muchas situaciones físicas. Siempre que aparezca es una indicación de que el fenómeno es oscilatorio y corresponde a un MAS. 3 4
  • 35.
  • 36. 6.5 – Péndulos. • Péndulo simple. • Se define como una partícula de masa m suspendida de un punto O mediante una cuerda de longitud l y masa despreciable. • Cuando m se separa de la posición de equilibrio y se suelta describe un movimiento oscilatorio, que se debe a la componente tangencial del peso. • Aplicando la segunda ley de Newton en la dirección tangencial se obtiene    ml ma F t t 2 2 sen dt d ml mg     0 sen 2 2     l g dt d • Que difiere de la ecuación básica de un MAS por el término sen. Sin embargo si el ángulo  es muy pequeño, entonces sen   y se tiene 0 2 2     l g dt d Ecuación básica de un MAS de frecuencia l g  2 • Y su solución es un MAS cuya expresión es   0 0 cos       t siendo el periodo de oscilación g l P   2 3 6
  • 37. 6.5 – Péndulos. • Péndulo compuesto. • Se define como un sólido rígido suspendida de un punto O que pasa por un pivote. • Cuando el sólido se separa de la posición de equilibrio y se suelta describe un movimiento oscilatorio, debido al momento de la fuerza producido por el peso. • Aplicando la ecuación fundamental de la dinámica   I MO 2 2 sen dt d I mgD     0 sen 2 2     I mgD dt d • Que difiere de la ecuación básica de un MAS por el término sen. Sin embargo si el ángulo  es muy pequeño, entonces sen   y se tiene 0 2 2     I mgD dt d Ecuación básica de un MAS de frecuencia I mgD  2 • Y su solución es un MAS cuya expresión es   0 0 cos       t siendo el periodo de oscilación mgD I P   2 Pivote O 37
  • 38. 6.6 – Superposición de MM. AA. SS. • Superposición de dos MAS de la misma dirección y frecuencia. Cuando una partícula está sometida a más de una fuerza armónica se dice que existe una interferencia o superposición de movimientos armónicos simples. Se observan sobre la superficie del agua cuando se lanzan dos piedras, y son importantes en óptica y en acústica. Sea una partícula sometida a dos MAS que actúan en la misma dirección y que tienen la misma frecuencia. El desplazamiento producido por cada MAS es         t A x t A x cos cos 2 2 1 1 La fase de x1 es cero La fase de x2 es  (diferencia de fase) El desplazamiento resultante de la partícula viene dado por           t A t A x x x cos cos 2 1 2 1 y como se verá es un MAS con periodo    2 P 38
  • 39. 6.6 – Superposición de MM. AA. SS. A A1 A2 x t O x t y P’ P1’ P2’ • Primer caso especial. Si  = 0  los dos movimientos están en fase. El movimiento resultante es   t A A t A t A x x x          cos cos cos 2 1 2 1 2 1 y se trata de un MAS de la misma frecuencia angular, que tiene una amplitud que es igual a 2 1 A A A   O 39
  • 40. 6.6 – Superposición de MM. AA. SS. • Segundo caso especial. Si  =  rad  los dos movimientos están en oposición. En este caso el desplazamiento x2 es   t A A t A t A x x x          cos cos cos 2 1 2 1 2 1 y se trata de un MAS de la misma frecuencia angular, que tiene una amplitud que es igual a 2 1 A A A     t A t A x        cos cos 2 2 2 y el movimiento resultante es A A1 A2 x t O x t y P’ P1’ P2’  O 40
  • 41. 6.6 – Superposición de MM. AA. SS. • Caso general. Si  toma un valor arbitrario. De la representación como vectores rotantes se observa que el movimiento resultante es un MAS de la misma frecuencia y una amplitud dada por     0 2 1 2 1 cos cos cos             t A t A t A x x x y cuyo desplazamiento resultante es A A1 A2 x t O     cos 2 2 1 2 2 2 1 A A A A A x t y P’ P1’ P2’  0 O A1 A2 A 41
  • 42. 6.6 – Superposición de MM. AA. SS. • Superposición de dos MAS de la misma dirección pero distinta frecuencia. Es el tipo de interferencia que resulta cuando dos señales de radio son trasmitidas con frecuencias cercanas pero no iguales. Consideremos que los MAS que se superponen vienen dados por las ecuaciones t A x t A x 2 2 2 1 1 1 cos , cos     La fase inicial de ambos es cero por simplicidad x 1t y P’ P1’ P2’ 2t (2- 1)t O A A1 A2 El ángulo entre los vectores de rotación OP1’ y OP2’ es  t t t 1 2 1 2        No es constante Por lo que el vector OP’ no tiene longitud constante y la amplitud del movimiento resultante es  t A A A A A 1 2 2 1 2 2 2 1 cos 2       Esta amplitud varía u oscila entre los valores 2 1 A A A   si        n t 2 1 2 2 1 A A A   si          n t 2 1 2 A t O A1+A2 A1A2 Amplitud modulada Por tanto el movimiento resultante en este caso 2 1 x x x   No es un MAS 42
  • 43. 6.6 – Superposición de MM. AA. SS. • Caso especial  cuando A1=A2 Entonces la amplitud del movimiento resultante es       t A t A A A 1 2 1 1 2 2 1 2 1 cos 1 2 cos 2 2           Como     2 1 2 cos 2 cos 1  t A A 1 2 2 1 1cos 2     Que oscila entre 0 y 2A1 x x1,x2 A x1+x2 x1 x2 43
  • 44. 6.7 – Dinámica de un oscilador amortiguado 44 •En un MAS la amplitud y la energía de la partícula que oscila se mantienen constante. •Sin embargo en un sistema real, como un péndulo o resorte, se observa que la amplitud de la vibración disminuye con el tiempo, ya que hay una pérdida de energía. Se dice que la oscilación está amortiguada. •Para el análisis dinámico del oscilador dinámico, se puede suponer que además de la fuerza elástica, también actúa una fuerza disipativa que se opone a la velocidad, de la forma bv Fd   b es una constante que indica la intensidad de la fuerza disipativa •Aplicando la segunda ley de Newton se tiene entonces que  ma bv kx d el F F    2 2 dt x d m dt dx b kx    0 2 2    kx dt dx b dt x d m dividiendo por m 0 2 2 0 2 2      x dt dx dt x d donde m k m b     0 2 Frecuencia natural •La frecuencia natural es aquella que tendría el oscilador si la fuerza disipativa no estuviera presente. Ecuación básica de un oscilador amortiguado
  • 45. 6.7 – Dinámica de un oscilador amortiguado 45 1.- Si la fuerza disipativa es relativamente pequeña (b pequeño y   0). • El desplazamiento está descrito por m b m k 2 2 2 2 0          0 0 cos       t e A x t observándose que la amplitud no es constante (disminuye exponencialmente con t) • La frecuencia viene dada por Se observa que  < 0 A0 Amplitud A=A0e- t Desplazamiento x Periodo P
  • 46. 6.7 – Dinámica de un oscilador amortiguado 46 • Al ser la energía proporcional a la amplitud al cuadrado, también disminuye con t exponencialmente • Se define el tiempo de relajación como   t t e A m e A m A m E           2 2 0 2 2 1 2 0 2 2 1 2 2 2 1 Llamando 2 0 2 2 1 0 A m E   t e E E    2 0 b m     2 1 Es el tiempo necesario para que la energía se reduzca un número e de veces su valor original y la energía se puede expresar como    t e E E 0 • Se define el factor de calidad como b m Q 0 0      Está relacionado con la pérdida relativa de energía por ciclo. se puede demostrar que el factor de calidad es igual a  ciclo 2 E E Q    Es inversamente proporcional a la pérdida de energía relativa por ciclo.
  • 47. 6.7 – Dinámica de un oscilador amortiguado 47 2.- Si la fuerza disipativa alcanza un valor crítico (   0 y b =2m 0 ). • En este caso la frecuencia del movimiento será El sistema al ser desplazado de su posición de equilibrio vuelve a ésta sin oscilar. Se dice que el sistema está amortiguado críticamente. 0 2 2 0       No es un movimiento oscilatorio. 3.- Si la fuerza disipativa supera este valor crítico (   0 y b 2m 0 ). • En este caso tampoco hay oscilación, y el sistema al desplazarse vuelve a la posición de equilibrio, pero más lentamente que con amortiguación crítica. Se dice que el sistema está sobremortiguado. Amortiguado críticamente Sobreamortiguado
  • 48. 6.8 – Dinámica de un oscilador forzado. Resonancias 48 •Un oscilador forzado dejará de moverse transcurrido un tiempo. Podemos mantener una partícula oscilando con amplitud constante aplicando una fuerza externa que varíe con el tiempo de forma periódica. En este caso el movimiento resultante se dice que es una oscilación forzada. •Para el análisis dinámico del oscilador forzadoo, se puede suponer que además de la fuerza elástica y la fuerza disipativa, también actúa una fuerza externa, de la forma t F F f ext   cos 0 •Aplicando la segunda ley de Newton se tiene entonces que  ma bv kx t F d el ext F F F f          cos 0 t F kx dt dx b dt x d m f     cos 0 2 2 0 F f  Amplitud de la fuerza externa Frecuencia de la fuerza externa dividiendo por m t m F x dt dx dt x d f       cos 2 0 2 0 2 2 Ecuación básica de un oscilador forzado donde m k m b     0 2 Frecuencia natural
  • 49. 6.8 – Dinámica de un oscilador forzado. Resonancias. 49 •La solución de esta ecuación consta de dos partes, la solución transitoria y la solución estacionaria. La parte transitoria es idéntica a la de un oscilador amortiguado y transcurrido cierto tiempo se hace despreciable (disminuye exponencialmente con el tiempo). Así solo queda la parte estacionaria que puede expresarse como       t A x f sen La partícula oscila con la frecuencia de la fuerza externa x t O Solución transitoria Solución estacionaria
  • 50. 6.8 – Dinámica de un oscilador forzado. Resonancias. 50     2 2 2 2 0 2 0 2 2 0 f f f f f b m m F b k m F A             donde la amplitud y la fase inicial de la oscilación forzada vienen dadas por f f       2 tan 2 2 0 A F0/k f 0 0 b2 b1 b = 0 • La amplitud es máxima cuando 2 2 0 2    f • La velocidad de un oscilador forzado es Resonancia en amplitud         t A dt dx v f f cos • La amplitud de la velocidad es   2 2 0 0 b k m F A v f f f        b2 > b1 > b=0
  • 51. 6.8 – Dinámica de un oscilador forzado. Resonancias. 51 •Cuando hay resonancia en energía se tiene que •En resonancia, la velocidad está en fase con la fuerza aplicada. Como la potencia transmitida al oscilador por la fuerza aplicada es Fv P  •La amplitud de la velocidad es máxima, y por tanto la energía cinética del oscilador también es máxima, cuando m k f     0 Resonancia en energía v0 f 0 0 b2 b1 b = 0 b3 0 2 tan 2 2 0        f f 0   esta cantidad siempre es positiva cuando la fuerza y la velocidad están en fase, y es por tanto la condición más favorable para la transferencia de energía al oscilador. b3 > b2 > b1 > b=0