SlideShare una empresa de Scribd logo
1. Concepto de lípido
2. Clasificación de los lípidos
3. Los ácidos grasos
a. Características
b. Clasificación
c. Propiedades
4. Lípidos SAPONIFICABLES
a. Lípidos simples
i. Acilglicéridos
ii. Ceras
b. Lípidos complejos
i. Fosfolípidos
ii. Glucolípidos
iii. Lipoproteínas
5. Lípidos INSAPONIFICABLES
a. Terpenos
b. Esteroides
c. Prostaglandinas
6. Funciones de los lípidos
2
Eduardo Gómez
Concepto de Lípido
• Los lípidos son biomoléculas orgánicas formadas básicamente por
carbono e hidrógeno y generalmente también oxígeno; pero en
porcentajes mucho más bajos.
• Además pueden contener también fósforo, nitrógeno y azufre .
Todo lo que entra y sale de las células tiene que atravesar las
barreras lipídicas que forman las membranas celulares.
• Es un grupo de sustancias muy heterogéneas que sólo tienen en
común estas características:
• Son insolubles en agua u otros disolventes polares.
• Son solubles en disolventes orgánicos (no polares), como
éter, cloroformo, benceno, etc.
• Son compuestos orgánicos reducidos que contienen gran
cantidad de energía química que puede ser extraída por
oxidación.
3
Eduardo Gómez
Lípidos
Saponificables
Simples
Acilgliceridos
Ceras
Complejos
Fosfolípidos
Glucolípidos
Lipoproteínas
Insaponificables
Terpenos
Esteroides
Prostaglandinas
4
Eduardo Gómez
Ácidos grasos
• Los ácidos grasos son moléculas formadas por una larga
cadena hidrocarbonada de tipo lineal.
• Cuentan con un número par
de átomos de carbono (entre
4 y 24).
• Tienen en un extremo un
grupo carboxilo (-COOH).
• En la naturaleza es muy raro
encontrarlos en estados libre.
• Están formando parte de los
lípidos y se obtienen a partir
de ellos mediante la ruptura
por hidrólisis.
5
Eduardo Gómez
Se conocen unos 70 ácidos grasos que se pueden clasificar en dos
grupos:
1. Ácidos grasos saturados
2. Ácidos grasos insaturados
Los ácidos grasos saturados sólo tienen
enlaces simples entre los átomos de
carbono (mirístico (14C);el palmítico
(16C) y el esteárico (18C)) .
6
Eduardo Gómez
Ácidos grasos saturados
Ácidos grasos insaturados
7
Eduardo Gómez
• Los ácidos grasos insaturados tienen
uno (monoinsaturados) o varios enlaces
dobles (poliinsaturados).
• Sus moléculas presentan codos dónde
aparece un doble enlace.
• Esto provoca variaciones en sus
propiedades como el punto de fusión
(cuanto mas larga es la cadena y más
saturada, mayor es el punto de fusión).
(oléico (18C, un doble enlace) y el linoleíco
(18C y dos dobles enlaces)).
8
Eduardo Gómez
• Los ácidos grasos esenciales son ácidos grasos poliinsaturados,
que no pueden ser sintetizados por los animales y deben tomarse en
la dieta.
• El cuerpo humano es capaz de producir todos los ácidos grasos que
necesita, excepto dos: el ácido linoléico, un ácido graso omega-6, y
el ácido alfa-linolénico (ALA), un ácido graso omega-3, que deben
ingerirse a través de la alimentación.
• Se denominan, en conjunto, vitamina F (aunque no son una
verdadera vitamina).
• Son mas abundantes que los saturados, tanto en animales como en
vegetales, pero especialmente en estos últimos.
9
Eduardo Gómez
Eduardo Gómez 10
11
Eduardo Gómez
Propiedades químicas de los ácidos grasos.
Los ácidos grasos se comportan como ácidos moderadamente fuertes,
lo que les permite realizar reacciones de esterificación, saponificación y
autooxidación.
En la esterificación, un ácido graso se une a un alcohol mediante un
enlace covalente, formando un éster y liberándose una molécula de
agua. Mediante hidrólisis (hirviendo con ácidos o bases), el éster se
rompe y da lugar de nuevo al ácido graso y al alcohol.
12
Eduardo Gómez
13
Eduardo Gómez
La saponificación es una reacción típica de los ácidos grasos, en la cual
reaccionan con bases (NaOH o KOH) y dan lugar a una sal de ácido graso,
que se denomina jabón.
Las moléculas de jabón presentan simultáneamente una zona
lipófila o hidrófoba, que rehúye el contacto con el agua, y una
zona hidrófila o polar, que tiende a contactar con ella. Esto se
denomina comportamiento anfipático.
14
Eduardo Gómez
El gran tamaño de la cadena
hidrófoba, es responsable de la
insolubilidad en el agua de estas
moléculas que, en un medio acuoso,
tienden a disponerse en forma de
láminas o micelas
En las micelas las zonas polares
establecen puentes de hidrógeno
con las moléculas de agua y las
zonas hidrófobas permanecen
alejadas de éstas.
15
Eduardo Gómez
Fuerzas de Van der Waals
Puentes de H
16
Eduardo Gómez
Un jabón, por ejemplo, el palmitato sódico (CH3-(CH2)14-COONa), presenta
una cadena hidrocarbonada que actúa como zona lipófila y por ello capaz de
establecer enlaces de Van der Waals con moléculas lipófílas.
La parte hidrófila (-COONa) se ioniza, estableciendo atracciones de tipo
eléctrico con las moléculas del agua y otros grupos polares.
Sus moléculas forman grupos llamados micelas, constituyendo dispersiones
coloidales.
Las micelas pueden ser monocapas, o bicapas si engloban agua en su
interior.
También tienen un efecto espumante cuando una micela monocapa atrapa
aire, y efecto emulsionante o detergente cuando una micela monocapa
contiene gotitas de lípidos.
17
Eduardo Gómez
En condiciones de laboratorio se pueden
conseguir bicapas lipídicas que encierren agua u
otras sustancias y que sirven para transportar
sustancias entre el interior y el exterior de la
célula. Esto se puede utilizar para medicamentos,
cosméticos o el intercambio de genes entre
distintos organismos. Estas estructuras reciben el
nombre de liposomas.
18
Eduardo Gómez
La autooxidación de los ácidos grasos. La autooxidación o enranciamiento
de los ácidos grasos insaturados se debe a la reacción de los dobles enlaces
con moléculas de oxígeno. Por esta reacción, los dobles enlaces se rompen y
la molécula de ácido graso se escinde, dando lugar a aldehídos.
Se ha comprobado que la presencia de la vitamina E, evita la autooxidación
de algunos tipos de lípidos como la vitamina A, lípidos de membrana, grasas,
etc. La vitamina E se encuentra en las hojas verdes, semillas, aceites y en los
huevos. Su actividad no ha sido comprobada en el hombre.
CH3-(CH2)n-CH=CH-(CH2) n-COOH + O2
CH3-(CH2)n-CHO CHO-(CH2) n-COOH
19
Eduardo Gómez
• El aceite de oliva refinado es extraído
mediante disolventes orgánicos,
proceso que requiere un tratamiento
posterior de eliminación de impurezas
en el que se pierde la vitamina E, por
ello, este tipo de aceite se enrancia
(autooxida) con facilidad.
• El aceite de oliva denominado virgen es
extraído por simple presión en frío de
las olivas.
• Este aceite contiene la suficiente
vitamina E para evitar su autooxidación.
• La mezcla de aceite refinado con aceite
virgen se denomina aceite puro de oliva.
20
Eduardo Gómez
Propiedades físicas de los ácidos grasos
1. solubilidad
2. punto de fusión.
La solubilidad.
Los ácidos de 4 o 6 carbonos son solubles en
agua, pero a partir de 8 carbonos son
prácticamente insolubles en ella.
Esto se debe a que su grupo carboxilo (—COOH) se ioniza muy poco y por
tanto su polo hidrófilo es muy débil. Cuanto más larga es la cadena
hidrocarbonada, que es lipófila, más insolubles son en agua y más
solubles son en disolventes apolares.
21
Eduardo Gómez
El punto de fusión. Depende de la longitud de la cadena y del número de
dobles enlaces. Los ácidos grasos se agrupan por los enlaces de Van der
Waals entre las cadenas hidrocarbonadas
Si forman un sólido, para fundirlo hay que romper esos enlaces y separar así
sus moléculas.
 En los ácidos grasos saturados, cuanto mayor es el número de carbonos,
más enlaces hay que romper, más energía calorífica se ha de gastar y, por
tanto, más alto es su punto de fusión.
 En los ácidos grasos insaturados, la presencia de dobles y triples
enlaces forma codos en las cadenas, y hace que sea más difícil la
formación de enlaces de Van der Waals entre ellas y en consecuencia sus
puntos de fusión son mucho más bajos que en un ácido graso saturado de
peso molecular parecido
22
Eduardo Gómez
Eduardo Gómez 23
Eduardo Gómez 24
LÍPIDOS CON ÁCIDOS GRASOS O SAPONIFICABLES
• Los lípidos saponificables son aquellos que contienen ácidos grasos.
• Todos los lípidos saponificables son esteres de ácidos grasos y un
alcohol o un aminoalcohol.
• Pertenecen a este grupo los lípidos simples u hololípidos y los
lípidos complejos o heterolípidos.
LIPIDOS SIMPLES
Son lípidos saponificables en cuya composición química solo intervienen
carbono, hidrógeno y oxígeno. Comprenden dos grupos de lípidos:
1. Acilglicéridos
2. Ceras
25
Eduardo Gómez
ACILGLICÉRIDOS
Son lípidos simples formados por la
esterificación de una dos o tres
moléculas de ácidos grasos con una
molécula de glicerina (propanotriol).
También reciben el nombre de glicéridos
o grasas simples.
Según el número de ácidos grasos que
forman la molécula, se distinguen:
1. Monoacilglicéridos
2. Diacilglicéridos
3. Triacilglicéridos
26
Eduardo Gómez
27
Eduardo Gómez
Eduardo Gómez 28
Si un acilglicérido presenta como mínimo un ácido
graso insaturado, es líquido y recibe el nombre de
aceite (el aceite de oliva es un éster de tres ácidos
oleicos con una glicerina).
Si todos los ácidos grasos son saturados,
el acilglicérido es sólido y recibe el nombre
de sebo (la grasa de buey, de caballo o de
cabra).
Si el acilglicérido es semisólido, recibe el
nombre de manteca, como la grasa de
cerdo. En los animales de sangre fría y en
los vegetales hay aceites, y en los
animales de sangre caliente hay sebos o
mantecas.
29
Eduardo Gómez
 Los acilglicéridos son moléculas insolubles en agua, sobre la que flotan
debido a su baja densidad.
 Los triacilglicéridos carecen de polaridad, (también se denominan grasas
neutras).
 Sólo los monoacilglicéridos y los diacilglicéridos poseen una débil
polaridad debida a los radicales hidroxilo que dejan libres en la glicerina.
 Los acilglicéridos frente a bases dan lugar a reacciones de
saponificación en la que se producen moléculas de jabón.
 Las grasas son sustancias de reserva alimenticia (energética) en el
organismo. En los animales se almacenan en los adipocitos (células
adiposas) del tejido adiposo. Su combustión metabólica produce 9,4
kilocalorías por gramo.
30
Eduardo Gómez
Ceras
Se obtienen por esterificación de un ácido
graso con un alcohol monovalente de cadena
larga (peso molecular elevado).
Tienen un fuerte carácter hidrófobo y forman
laminas impermeables que protegen muchos
tejidos y formaciones dérmicas de animales y
vegetales (cera de las abejas, grasa de la
lana, cerumen del oído..)
31
Eduardo Gómez
Eduardo Gómez 32
LÍPIDOS COMPLEJOS
 Son lípidos saponificables en cuya estructura molecular, además de
carbono, hidrógeno y oxígeno, hay también nitrógeno, fósforo, azufre o
un glúcido.
 Los lípidos complejos son las principales moléculas constitutivas de la
doble capa lipídica de las membranas citoplasmáticas, por lo que
también se los denomina lípidos de membrana.
 Al igual que los jabones, estos lípidos tienen un comportamiento
anfipático. En contacto con el agua, los lípidos complejos se disponen
formando bicapas, en las que las zonas lipófílas quedan en la parte
interior y las zonas hidrófilas en la exterior, enfrentadas a las moléculas
de agua.
 Los lípidos complejos se dividen en dos grupos los fosfolípidos y los
glucolípidos.
33
Eduardo Gómez
34
Eduardo Gómez
Fosfolípidos.
Son lípidos complejos caracterizados por presentar un ácido ortofosfórico
en su zona polar.
Son las moléculas mas abundantes de la membrana citoplasmática.
Se dividen en dos grupos:
 fosfoglicéridos
 Esfingolípidos
35
Eduardo Gómez
Aminoalcohol
Fosfoglicéridos
Están formados por la esterificación de un ácido fosfatídico con un alcohol
o un aminoalcohol.
El ácido fosfatídico es el fosfolípido más
sencillo, es una molécula formada por la
unión por un enlace éster de un grupo
fosfato con el carbono 3 de la glicerina.
Los carbonos 1 y 2 están esterificados con
dos ácidos grasos uno saturado y otro
insaturado.
Acido
graso
insaturado
Acido
graso
saturado
Glicerina
P
El resto de los fosfoglicéridos tiene por lo menos un
grupo alcohol o amino unido al ácido fosfatídico.
Los fosfoglicéridos más abundantes son la
fosfatidilserina, la lecitina o fosfatidilcolina y la
fosfatidiletanolamina, (abundantes en las
membranas de las células eucariotas)
36
Eduardo Gómez
37
Eduardo Gómez
Eduardo Gómez 38
Los fosfoesfíngolípidos
Están formados por la unión de un aminoalcohol insaturado (esfingosina) y un
ácido graso saturado o monoinsaturados de cadena larga. Este conjunto se
denomina ceramida, al que se une un grupo fosfato y una molécula polar que
es la que va a diferenciar los distintos tipos de esfingolípidos.
39
Eduardo Gómez
El fosfoesfingolípido más abundante es la esfingomielina, (muy
abundante en las vainas de mielina de las neuronas). El radical R es una
molécula de ác. fosfórico esterificada con colina
40
Eduardo Gómez
Glucolípidos.
Son lípidos complejos formados por la unión de una ceramida y un
glúcido. No tienen fosfato y en lugar de un alcohol, presentan un glúcido.
Forman parte de las membranas celulares, especialmente las neuronas
del cerebro.
También se encuentran asociados a glucoproteínas formando el glucacálix
de las membranas.
Los glucolípidos pueden dividirse en dos grupos:
1. cerebrósidos
2. gangliósidos.
41
Eduardo Gómez
Eduardo Gómez 42
Los cerebrósidos son moléculas
en las que a la ceramida se une
una cadena glucídica que puede
tener entre uno y quince
monosacáridos. Son abundantes
en el cerebro y en el sistema
nervioso.
Los gangliósidos, son moléculas en las
que la ceramida se une a un oligosacárido
complejo en el que siempre aparece el
ácido siálico.
Esfingosina
Acido Graso
Glucosa o
Galactosa
Esfingosina
Acido Graso
Oligosacáridos
cerebrósido
gangliósido 43
Eduardo Gómez
Los glucolípidos se sitúan en la cara externa de la membrana celular, en
donde realizan una función de relación. Algunos gangliósidos actúan
como receptores de membrana de toxinas (la causante del cólera) y de
ciertos virus, permitiendo su entrada en la célula.
Otros tiene que ver con la especificidad del grupo sanguíneo, o con la
recepción del impulso nervioso a través de la sinapsis.
44
Eduardo Gómez
Lipoproteínas.
Son asociaciones de lípidos y proteínas cuya fracción proteica es
específica.
Tienen dos funciones: participan en los sistemas de membranas y actúan
como sistemas de transporte por el plasma sanguíneo.
Las lipoproteínas de transporte han adquirido mucha importancia por su
influencia en el metabolismo del colesterol.
Se clasifican en función de su densidad.
1. Quilomicrones:
2. VLDL (Very Low Density Lipoproteins)
3. LDL (Low Density Lipoproteins)
4. HDL (High Density Lipoproteins)
45
Eduardo Gómez
Eduardo Gómez 46
• Se caracterizan por que no tienen ácidos grasos en la estructura.
• En las células aparecen en menor cantidad que los otros tipos de lípidos.
• Algunos que son sustancias biológicamente muy activas como hormonas
y vitaminas.
47
Eduardo Gómez
LÍPIDOS INSAPONIFICABLES
TERPENOS O
ISOPRENOIDES
ESTEROIDES PROSTAGLANDINAS.
Eduardo Gómez 48
Terpenos o Isoprenoides
Los terpenos o isoprenoides son moléculas lineales o cíclicas formadas
por la polimerización del isopreno o 2-metil-l,3-butadieno
La clasificación de los
terpenos se basa en el
número de moléculas de
isopreno que contienen.
Carotenoides: Xantofila,
β-caroteno
8 unidades
Tetraterpeno
Caucho natural.
Más de 8
Politerpeno
Escualeno
6 unidades
Triterpeno
Fitol, Vitaminas E y A
4 unidades
Diterpeno
Limoneno, Mentol
Geraniol,
2 unidades.
Monoterpeno
49
Eduardo Gómez
1. Entre los monoterpenos, algunas esencias vegetales como el mentol
de la menta, el limoneno del limón y el geraniol del geranio. Son
compuestos con aroma característico y en general, volátiles.
50
Eduardo Gómez
limoneno
geraniol
2. De los diterpenos, el fítol, alcohol que forma parte de la clorofila, y las
vitaminas A, E (tocoferoles) y K.
51
Eduardo Gómez
Los tocoferoles son poderosos agentes
antioxidantes, y previenen las
reacciones de peroxidación de lípidos
característica del fenómeno de
enranciamiento.
El enranciamiento está ligado a
procesos como el envejecimiento o el
tristemente famoso síndrome tóxico
provocado por aceite de colza
desnaturalizado.
Uno de los tocoferoles más abundantes es el α-tocoferol, que en ratas evita
la esterilidad, y por eso se le llama vitamina E.
Eduardo Gómez 52
3. Entre los tetraterpenos, destacan los
carotenoides, que son pigmentos
fotosintéticos.
• Se dividen en carotenos (color rojo) y
xantofilas (color amarillo).
• Los carotenoides son precursores de la
vitamina A. Estos compuestos
presentan en su estructura muchos
dobles enlaces conjugados, lo que
hace que los electrones estén muy
deslocalizados y sean fácilmente
excitables. De ahí su función como
pigmentos fotosintéticos.
53
Eduardo Gómez
4. Entre los politerpenos, el caucho, que se
obtiene del árbol Hevea brasiliensis. El
caucho es un polímero formado por miles
de moléculas de isopreno, dispuestas de
forma lineal.
54
Eduardo Gómez
ESTEROIDES
Los esteroides comprenden dos grandes grupos de sustancias, derivados de
la molecula ciclopentano perhidrofenantreno: los esteroles y las hormonas
esteroideas.
Esteroles. Son esteroides que
poseen un grupo hidroxilo unido
al carbono 3 y una cadena
alifática en el carbono 17. Los
esteróles son el grupo más
numeroso de los esteroides. Los
principales esteróles son el
colesterol, los ácidos biliares,
las vitaminas D y el estradiol.
55
Eduardo Gómez
Eduardo Gómez 56
57
Eduardo Gómez
El colesterol forma parte estructural de las membranas de las células de los
animales, a las que confiere estabilidad debido a que disminuye la movilidad de
las moléculas de fosfolípidos, ya que se sitúa entre los fosfolípidos y fija a estas
moléculas.
El colesterol se une mediante su grupo
polar con las zonas hidrófilas de los
fosfolípidos contiguos, mientras que el
resto de su molécula interacciona con
las zonas lipófilas de estas moléculas.
El colesterol es muy abundante en el
organismo, y es la molécula base que
sirve para la síntesis de casi todos los
esteroides.
58
Eduardo Gómez
Eduardo Gómez 59
Los ácidos biliares son un grupo de moléculas producidas en el hígado a
partir del colesterol, y de las que derivan las sales biliares, que se
encargan de la emulsión de las grasas en el intestino, lo que favorece la
acción de las lipasas y su posterior absorción intestinal.
60
Eduardo Gómez
El grupo de las vitaminas D esta formado
por un conjunto de esteroles que regulan el
metabolismo del calcio y fósforo y su
absorción intestinal. Cada vitamina D
proviene de un esterol diferente. La síntesis
de estas vitaminas es inducida en la piel por
los rayos ultravioleta. Su carencia origina
raquitismo en los niños y osteomalacia en
los adultos.
61
Eduardo Gómez
El estradiol es un derivado del
colesterol, es la hormona encargada
de regular la aparición de los
caracteres sexuales secundarios
femeninos y de controlar el ciclo
ovárico.
62
Eduardo Gómez
Hormonas esteroideas. Derivan del colesterol, y son hidrofóbicas (por eso
pueden atravesar fácilmente las membranas). Se caracterizan por la
presencia de un átomo de oxígeno unido al carbono 3 mediante un doble
enlace.
63
Eduardo Gómez
Tipo de hormona Nombre Función
Ecdisona Muda de artrópodos
Sexuales
Femeninas Progesterona
Regula el embarazo, el ciclo ovárico y
son precursores metabólicos de las
demás hormonas esteroideas
Estrógenos
(estradiol)
Fomenta el desarrollo sexual
femenino y mantiene los caracteres
sexuales femeninos
Masculinas Testosterona
Fomenta el desarrollo sexual
masculino y mantiene los caracteres
sexuales masculinos
Suparrenales
o corticoides
Glucocorticoides
Cortisol
Cortisona
Fomentan la gluconeogénesis y, a
dosis elevadas, son
inmunodepresores.
Mineralocorticoides
Aldosterona
Regula el equilibrio iónico en el
interior del organismo
PROSTAGLANDINAS
Las prostaglandinas son lípidos cuya molécula básica es el prostanoato
constituido por 20 carbonos que forman un anillo ciclopentano y dos cadenas
alifáticas. Su nombre procede de su descubrimiento en el líquido seminal y en la
próstata, aunque existe en gran cantidad de tejidos, tanto masculinos como
femeninos.
Este grupo de sustancias se sintetizan a partir de los ácidos grasos insaturados
que forman parte de los fosfolípidos de las membranas celulares. Las
prostaglandinas se sintetizan continuamente y actúan de forma local.
64
Eduardo Gómez
Las funciones de las prostaglandinas en el organismo son muy diversas.
1. La producción de las sustancias que regulan la coagulación de la sangre y
el cierre de las heridas;
2. La sensibilización de los receptores del dolor y la iniciación de la
vasodilatación de los capilares, lo que origina la inflamación después de
los golpes, heridas o infecciones;
3. La aparición de fiebre como defensa en las infecciones, la disminución de
la presión sanguínea al favorecer la eliminación de sustancias en el riñón;
4. La reducción de la secreción de jugos gástricos, facilitando la curación de
las úlceras de estómago,
5. La regulación del aparato reproductor femenino y la iniciación del parto.
65
Eduardo Gómez
El ácido salicílico (del Salix, sauce) inhibe
la síntesis de las prostaglandinas y de ahí
su efecto analgésico.
1. Función de reserva. Los lípidos son la principal reserva energética del
organismo. Un gramo de grasa produce 9.4 kilocalorías en las reacciones
metabólicas de oxidación (los glúcidos sólo producen 4,1 kcal/gr). La gran
cantidad de energía se debe a la oxidación de los ácidos grasos en las
mitocondrias.
66
Eduardo Gómez
Funciones de los lípidos
Reserva Estructural Biocatalizadora Transporte
2. Función estructural. Forman las bicapas lipídicas de las membranas
citoplasmáticas y de los orgánulos celulares. Cumplen esta función los
fosfolípidos, los glucolípidos, el colesterol, etc. En los órganos, recubren
estructuras y les dan consistencia, (ceras). Otros tienen función de
protección térmica, (acilglicéridos, en animales de climas fríos).
Finalmente, protección mecánica, como la de los tejidos adiposos que
están situados en la planta del pie y en la palma de la mano del hombre.
67
Eduardo Gómez
3. Función biocatalizadora. Los biocatalizadores son sustancias que
posibilitan o favorecen las reacciones químicas que se producen en
los seres vivos. Cumplen esta función las vitaminas lipídicas, las
hormonas esteroideas y las prostaglandinas.
4. Función transportadora. El transporte
de los lípidos desde el intestino hasta su
lugar de utilización o hasta el tejido
adiposo, donde se almacenan, se realiza
mediante la emulsión de los lípidos
gracias a los ácidos biliares y las
lipoproteínas, asociaciones de proteínas
específicas con triacilglicéridos,
colesterol, fosfolípidos etc., que permiten
su transporte por la sangre y la linfa.
68
Eduardo Gómez

Más contenido relacionado

Similar a lipidos-110404125032-phpapp01.pdf tipos de lipídios (20)

lipidos2021.pptx
lipidos2021.pptxlipidos2021.pptx
lipidos2021.pptx
 
Lípidos.pptx
Lípidos.pptxLípidos.pptx
Lípidos.pptx
 
Lipidos definitivo
Lipidos definitivoLipidos definitivo
Lipidos definitivo
 
Lipidos definitivo
Lipidos definitivoLipidos definitivo
Lipidos definitivo
 
4. lipidos
4. lipidos4. lipidos
4. lipidos
 
Lípidos
LípidosLípidos
Lípidos
 
Lipidos
LipidosLipidos
Lipidos
 
LIPIDOS
LIPIDOSLIPIDOS
LIPIDOS
 
Tema 3 Lípidos.pptx
Tema 3 Lípidos.pptxTema 3 Lípidos.pptx
Tema 3 Lípidos.pptx
 
Lipidos
LipidosLipidos
Lipidos
 
Lipidos
LipidosLipidos
Lipidos
 
Lìpidos
LìpidosLìpidos
Lìpidos
 
LIPIDOS
LIPIDOSLIPIDOS
LIPIDOS
 
Los lípidos
Los lípidosLos lípidos
Los lípidos
 
Los lípidos
Los lípidosLos lípidos
Los lípidos
 
Los lípidos
Los lípidosLos lípidos
Los lípidos
 
LÍPIDOS
LÍPIDOSLÍPIDOS
LÍPIDOS
 
Tema 1-Lípidos
Tema 1-LípidosTema 1-Lípidos
Tema 1-Lípidos
 
Bio3
Bio3Bio3
Bio3
 
Tema 2 biomoléculas orgánicas lipidos
Tema 2 biomoléculas orgánicas lipidosTema 2 biomoléculas orgánicas lipidos
Tema 2 biomoléculas orgánicas lipidos
 

Último

Sustancia P-SA-Tarjetas-Electro en esquemas ECG.pdf
Sustancia P-SA-Tarjetas-Electro en esquemas ECG.pdfSustancia P-SA-Tarjetas-Electro en esquemas ECG.pdf
Sustancia P-SA-Tarjetas-Electro en esquemas ECG.pdf
elianachavez162003
 
Jornada investigación e innovación en procesos de gestión hospitalaria
Jornada investigación e innovación en procesos de gestión hospitalariaJornada investigación e innovación en procesos de gestión hospitalaria
Jornada investigación e innovación en procesos de gestión hospitalaria
Safor Salut
 
FABRICACION DE SOLUCIONES PARENTERALES DE GRAN VOLUMEN-def.pdf
FABRICACION DE SOLUCIONES PARENTERALES DE GRAN VOLUMEN-def.pdfFABRICACION DE SOLUCIONES PARENTERALES DE GRAN VOLUMEN-def.pdf
FABRICACION DE SOLUCIONES PARENTERALES DE GRAN VOLUMEN-def.pdf
jeimypcy
 
Acciones Esenciales / Metas Internacionales para la Seguridad del Paciente
Acciones Esenciales / Metas Internacionales para la Seguridad del PacienteAcciones Esenciales / Metas Internacionales para la Seguridad del Paciente
Acciones Esenciales / Metas Internacionales para la Seguridad del Paciente
JordanCatzinAcosta
 

Último (20)

PALABRAS RELACIONADAS CON LA ODONTOLOGÍA
PALABRAS RELACIONADAS CON LA ODONTOLOGÍAPALABRAS RELACIONADAS CON LA ODONTOLOGÍA
PALABRAS RELACIONADAS CON LA ODONTOLOGÍA
 
La desnutricion infantil mata nuestros niños .pptx
La desnutricion infantil mata nuestros niños .pptxLa desnutricion infantil mata nuestros niños .pptx
La desnutricion infantil mata nuestros niños .pptx
 
Sustancia P-SA-Tarjetas-Electro en esquemas ECG.pdf
Sustancia P-SA-Tarjetas-Electro en esquemas ECG.pdfSustancia P-SA-Tarjetas-Electro en esquemas ECG.pdf
Sustancia P-SA-Tarjetas-Electro en esquemas ECG.pdf
 
Traumatismo Craneoencefalitoc, HEC, meningitis, Sx comatoso
Traumatismo Craneoencefalitoc, HEC, meningitis, Sx comatosoTraumatismo Craneoencefalitoc, HEC, meningitis, Sx comatoso
Traumatismo Craneoencefalitoc, HEC, meningitis, Sx comatoso
 
Revista Latinoamericana de Ginecología Regenerativa. 2024; 2(2)1-82. .pdf
Revista Latinoamericana de Ginecología Regenerativa. 2024; 2(2)1-82.  .pdfRevista Latinoamericana de Ginecología Regenerativa. 2024; 2(2)1-82.  .pdf
Revista Latinoamericana de Ginecología Regenerativa. 2024; 2(2)1-82. .pdf
 
CASO CLINICO FALLA CARDIACA - UCI CORONARIA.pptx
CASO CLINICO FALLA CARDIACA - UCI CORONARIA.pptxCASO CLINICO FALLA CARDIACA - UCI CORONARIA.pptx
CASO CLINICO FALLA CARDIACA - UCI CORONARIA.pptx
 
conocimiento en la cobertura de los medicamentos e insumos del plan de benefi...
conocimiento en la cobertura de los medicamentos e insumos del plan de benefi...conocimiento en la cobertura de los medicamentos e insumos del plan de benefi...
conocimiento en la cobertura de los medicamentos e insumos del plan de benefi...
 
Jornada investigación e innovación en procesos de gestión hospitalaria
Jornada investigación e innovación en procesos de gestión hospitalariaJornada investigación e innovación en procesos de gestión hospitalaria
Jornada investigación e innovación en procesos de gestión hospitalaria
 
Enfermedad Inflamatoria Pélvica Hospital Central de San Cristóbal
Enfermedad Inflamatoria Pélvica Hospital Central de San CristóbalEnfermedad Inflamatoria Pélvica Hospital Central de San Cristóbal
Enfermedad Inflamatoria Pélvica Hospital Central de San Cristóbal
 
FABRICACION DE SOLUCIONES PARENTERALES DE GRAN VOLUMEN-def.pdf
FABRICACION DE SOLUCIONES PARENTERALES DE GRAN VOLUMEN-def.pdfFABRICACION DE SOLUCIONES PARENTERALES DE GRAN VOLUMEN-def.pdf
FABRICACION DE SOLUCIONES PARENTERALES DE GRAN VOLUMEN-def.pdf
 
Pòster "La vivencia subjectiva de los usuarios que forman parte del programa ...
Pòster "La vivencia subjectiva de los usuarios que forman parte del programa ...Pòster "La vivencia subjectiva de los usuarios que forman parte del programa ...
Pòster "La vivencia subjectiva de los usuarios que forman parte del programa ...
 
Acciones Esenciales / Metas Internacionales para la Seguridad del Paciente
Acciones Esenciales / Metas Internacionales para la Seguridad del PacienteAcciones Esenciales / Metas Internacionales para la Seguridad del Paciente
Acciones Esenciales / Metas Internacionales para la Seguridad del Paciente
 
Anatomia quirurgica de cabeza y cuello.pdf
Anatomia quirurgica de cabeza y cuello.pdfAnatomia quirurgica de cabeza y cuello.pdf
Anatomia quirurgica de cabeza y cuello.pdf
 
Mapa Conceptual de La Estructura Del ADN.pptx
Mapa Conceptual de La Estructura Del ADN.pptxMapa Conceptual de La Estructura Del ADN.pptx
Mapa Conceptual de La Estructura Del ADN.pptx
 
clase 20 miologia de cuello y tronco (1ra Parte) 2024.pdf
clase 20 miologia  de cuello y tronco (1ra Parte) 2024.pdfclase 20 miologia  de cuello y tronco (1ra Parte) 2024.pdf
clase 20 miologia de cuello y tronco (1ra Parte) 2024.pdf
 
TDR Ingeniero SISCOSSR 2024 VIH Colombia
TDR Ingeniero SISCOSSR 2024 VIH ColombiaTDR Ingeniero SISCOSSR 2024 VIH Colombia
TDR Ingeniero SISCOSSR 2024 VIH Colombia
 
Clase 21 miologia de cuello y tronco (Segunda Parte) 2024.pdf
Clase 21 miologia  de cuello y tronco (Segunda Parte) 2024.pdfClase 21 miologia  de cuello y tronco (Segunda Parte) 2024.pdf
Clase 21 miologia de cuello y tronco (Segunda Parte) 2024.pdf
 
TdR Profesional en Estadística VIH Colombia
TdR  Profesional en Estadística VIH ColombiaTdR  Profesional en Estadística VIH Colombia
TdR Profesional en Estadística VIH Colombia
 
SGSSS-SISTEMA GENERAL DE SEGURIDAD SOCIAL EN SALUD.pptx
SGSSS-SISTEMA GENERAL DE SEGURIDAD SOCIAL EN SALUD.pptxSGSSS-SISTEMA GENERAL DE SEGURIDAD SOCIAL EN SALUD.pptx
SGSSS-SISTEMA GENERAL DE SEGURIDAD SOCIAL EN SALUD.pptx
 
Precálculo.pdf la preparacion pata un buen alumno
Precálculo.pdf la preparacion pata un buen alumnoPrecálculo.pdf la preparacion pata un buen alumno
Precálculo.pdf la preparacion pata un buen alumno
 

lipidos-110404125032-phpapp01.pdf tipos de lipídios

  • 1.
  • 2. 1. Concepto de lípido 2. Clasificación de los lípidos 3. Los ácidos grasos a. Características b. Clasificación c. Propiedades 4. Lípidos SAPONIFICABLES a. Lípidos simples i. Acilglicéridos ii. Ceras b. Lípidos complejos i. Fosfolípidos ii. Glucolípidos iii. Lipoproteínas 5. Lípidos INSAPONIFICABLES a. Terpenos b. Esteroides c. Prostaglandinas 6. Funciones de los lípidos 2 Eduardo Gómez
  • 3. Concepto de Lípido • Los lípidos son biomoléculas orgánicas formadas básicamente por carbono e hidrógeno y generalmente también oxígeno; pero en porcentajes mucho más bajos. • Además pueden contener también fósforo, nitrógeno y azufre . Todo lo que entra y sale de las células tiene que atravesar las barreras lipídicas que forman las membranas celulares. • Es un grupo de sustancias muy heterogéneas que sólo tienen en común estas características: • Son insolubles en agua u otros disolventes polares. • Son solubles en disolventes orgánicos (no polares), como éter, cloroformo, benceno, etc. • Son compuestos orgánicos reducidos que contienen gran cantidad de energía química que puede ser extraída por oxidación. 3 Eduardo Gómez
  • 5. Ácidos grasos • Los ácidos grasos son moléculas formadas por una larga cadena hidrocarbonada de tipo lineal. • Cuentan con un número par de átomos de carbono (entre 4 y 24). • Tienen en un extremo un grupo carboxilo (-COOH). • En la naturaleza es muy raro encontrarlos en estados libre. • Están formando parte de los lípidos y se obtienen a partir de ellos mediante la ruptura por hidrólisis. 5 Eduardo Gómez
  • 6. Se conocen unos 70 ácidos grasos que se pueden clasificar en dos grupos: 1. Ácidos grasos saturados 2. Ácidos grasos insaturados Los ácidos grasos saturados sólo tienen enlaces simples entre los átomos de carbono (mirístico (14C);el palmítico (16C) y el esteárico (18C)) . 6 Eduardo Gómez
  • 7. Ácidos grasos saturados Ácidos grasos insaturados 7 Eduardo Gómez
  • 8. • Los ácidos grasos insaturados tienen uno (monoinsaturados) o varios enlaces dobles (poliinsaturados). • Sus moléculas presentan codos dónde aparece un doble enlace. • Esto provoca variaciones en sus propiedades como el punto de fusión (cuanto mas larga es la cadena y más saturada, mayor es el punto de fusión). (oléico (18C, un doble enlace) y el linoleíco (18C y dos dobles enlaces)). 8 Eduardo Gómez
  • 9. • Los ácidos grasos esenciales son ácidos grasos poliinsaturados, que no pueden ser sintetizados por los animales y deben tomarse en la dieta. • El cuerpo humano es capaz de producir todos los ácidos grasos que necesita, excepto dos: el ácido linoléico, un ácido graso omega-6, y el ácido alfa-linolénico (ALA), un ácido graso omega-3, que deben ingerirse a través de la alimentación. • Se denominan, en conjunto, vitamina F (aunque no son una verdadera vitamina). • Son mas abundantes que los saturados, tanto en animales como en vegetales, pero especialmente en estos últimos. 9 Eduardo Gómez
  • 12. Propiedades químicas de los ácidos grasos. Los ácidos grasos se comportan como ácidos moderadamente fuertes, lo que les permite realizar reacciones de esterificación, saponificación y autooxidación. En la esterificación, un ácido graso se une a un alcohol mediante un enlace covalente, formando un éster y liberándose una molécula de agua. Mediante hidrólisis (hirviendo con ácidos o bases), el éster se rompe y da lugar de nuevo al ácido graso y al alcohol. 12 Eduardo Gómez
  • 14. La saponificación es una reacción típica de los ácidos grasos, en la cual reaccionan con bases (NaOH o KOH) y dan lugar a una sal de ácido graso, que se denomina jabón. Las moléculas de jabón presentan simultáneamente una zona lipófila o hidrófoba, que rehúye el contacto con el agua, y una zona hidrófila o polar, que tiende a contactar con ella. Esto se denomina comportamiento anfipático. 14 Eduardo Gómez
  • 15. El gran tamaño de la cadena hidrófoba, es responsable de la insolubilidad en el agua de estas moléculas que, en un medio acuoso, tienden a disponerse en forma de láminas o micelas En las micelas las zonas polares establecen puentes de hidrógeno con las moléculas de agua y las zonas hidrófobas permanecen alejadas de éstas. 15 Eduardo Gómez
  • 16. Fuerzas de Van der Waals Puentes de H 16 Eduardo Gómez
  • 17. Un jabón, por ejemplo, el palmitato sódico (CH3-(CH2)14-COONa), presenta una cadena hidrocarbonada que actúa como zona lipófila y por ello capaz de establecer enlaces de Van der Waals con moléculas lipófílas. La parte hidrófila (-COONa) se ioniza, estableciendo atracciones de tipo eléctrico con las moléculas del agua y otros grupos polares. Sus moléculas forman grupos llamados micelas, constituyendo dispersiones coloidales. Las micelas pueden ser monocapas, o bicapas si engloban agua en su interior. También tienen un efecto espumante cuando una micela monocapa atrapa aire, y efecto emulsionante o detergente cuando una micela monocapa contiene gotitas de lípidos. 17 Eduardo Gómez
  • 18. En condiciones de laboratorio se pueden conseguir bicapas lipídicas que encierren agua u otras sustancias y que sirven para transportar sustancias entre el interior y el exterior de la célula. Esto se puede utilizar para medicamentos, cosméticos o el intercambio de genes entre distintos organismos. Estas estructuras reciben el nombre de liposomas. 18 Eduardo Gómez
  • 19. La autooxidación de los ácidos grasos. La autooxidación o enranciamiento de los ácidos grasos insaturados se debe a la reacción de los dobles enlaces con moléculas de oxígeno. Por esta reacción, los dobles enlaces se rompen y la molécula de ácido graso se escinde, dando lugar a aldehídos. Se ha comprobado que la presencia de la vitamina E, evita la autooxidación de algunos tipos de lípidos como la vitamina A, lípidos de membrana, grasas, etc. La vitamina E se encuentra en las hojas verdes, semillas, aceites y en los huevos. Su actividad no ha sido comprobada en el hombre. CH3-(CH2)n-CH=CH-(CH2) n-COOH + O2 CH3-(CH2)n-CHO CHO-(CH2) n-COOH 19 Eduardo Gómez
  • 20. • El aceite de oliva refinado es extraído mediante disolventes orgánicos, proceso que requiere un tratamiento posterior de eliminación de impurezas en el que se pierde la vitamina E, por ello, este tipo de aceite se enrancia (autooxida) con facilidad. • El aceite de oliva denominado virgen es extraído por simple presión en frío de las olivas. • Este aceite contiene la suficiente vitamina E para evitar su autooxidación. • La mezcla de aceite refinado con aceite virgen se denomina aceite puro de oliva. 20 Eduardo Gómez
  • 21. Propiedades físicas de los ácidos grasos 1. solubilidad 2. punto de fusión. La solubilidad. Los ácidos de 4 o 6 carbonos son solubles en agua, pero a partir de 8 carbonos son prácticamente insolubles en ella. Esto se debe a que su grupo carboxilo (—COOH) se ioniza muy poco y por tanto su polo hidrófilo es muy débil. Cuanto más larga es la cadena hidrocarbonada, que es lipófila, más insolubles son en agua y más solubles son en disolventes apolares. 21 Eduardo Gómez
  • 22. El punto de fusión. Depende de la longitud de la cadena y del número de dobles enlaces. Los ácidos grasos se agrupan por los enlaces de Van der Waals entre las cadenas hidrocarbonadas Si forman un sólido, para fundirlo hay que romper esos enlaces y separar así sus moléculas.  En los ácidos grasos saturados, cuanto mayor es el número de carbonos, más enlaces hay que romper, más energía calorífica se ha de gastar y, por tanto, más alto es su punto de fusión.  En los ácidos grasos insaturados, la presencia de dobles y triples enlaces forma codos en las cadenas, y hace que sea más difícil la formación de enlaces de Van der Waals entre ellas y en consecuencia sus puntos de fusión son mucho más bajos que en un ácido graso saturado de peso molecular parecido 22 Eduardo Gómez
  • 25. LÍPIDOS CON ÁCIDOS GRASOS O SAPONIFICABLES • Los lípidos saponificables son aquellos que contienen ácidos grasos. • Todos los lípidos saponificables son esteres de ácidos grasos y un alcohol o un aminoalcohol. • Pertenecen a este grupo los lípidos simples u hololípidos y los lípidos complejos o heterolípidos. LIPIDOS SIMPLES Son lípidos saponificables en cuya composición química solo intervienen carbono, hidrógeno y oxígeno. Comprenden dos grupos de lípidos: 1. Acilglicéridos 2. Ceras 25 Eduardo Gómez
  • 26. ACILGLICÉRIDOS Son lípidos simples formados por la esterificación de una dos o tres moléculas de ácidos grasos con una molécula de glicerina (propanotriol). También reciben el nombre de glicéridos o grasas simples. Según el número de ácidos grasos que forman la molécula, se distinguen: 1. Monoacilglicéridos 2. Diacilglicéridos 3. Triacilglicéridos 26 Eduardo Gómez
  • 29. Si un acilglicérido presenta como mínimo un ácido graso insaturado, es líquido y recibe el nombre de aceite (el aceite de oliva es un éster de tres ácidos oleicos con una glicerina). Si todos los ácidos grasos son saturados, el acilglicérido es sólido y recibe el nombre de sebo (la grasa de buey, de caballo o de cabra). Si el acilglicérido es semisólido, recibe el nombre de manteca, como la grasa de cerdo. En los animales de sangre fría y en los vegetales hay aceites, y en los animales de sangre caliente hay sebos o mantecas. 29 Eduardo Gómez
  • 30.  Los acilglicéridos son moléculas insolubles en agua, sobre la que flotan debido a su baja densidad.  Los triacilglicéridos carecen de polaridad, (también se denominan grasas neutras).  Sólo los monoacilglicéridos y los diacilglicéridos poseen una débil polaridad debida a los radicales hidroxilo que dejan libres en la glicerina.  Los acilglicéridos frente a bases dan lugar a reacciones de saponificación en la que se producen moléculas de jabón.  Las grasas son sustancias de reserva alimenticia (energética) en el organismo. En los animales se almacenan en los adipocitos (células adiposas) del tejido adiposo. Su combustión metabólica produce 9,4 kilocalorías por gramo. 30 Eduardo Gómez
  • 31. Ceras Se obtienen por esterificación de un ácido graso con un alcohol monovalente de cadena larga (peso molecular elevado). Tienen un fuerte carácter hidrófobo y forman laminas impermeables que protegen muchos tejidos y formaciones dérmicas de animales y vegetales (cera de las abejas, grasa de la lana, cerumen del oído..) 31 Eduardo Gómez
  • 33. LÍPIDOS COMPLEJOS  Son lípidos saponificables en cuya estructura molecular, además de carbono, hidrógeno y oxígeno, hay también nitrógeno, fósforo, azufre o un glúcido.  Los lípidos complejos son las principales moléculas constitutivas de la doble capa lipídica de las membranas citoplasmáticas, por lo que también se los denomina lípidos de membrana.  Al igual que los jabones, estos lípidos tienen un comportamiento anfipático. En contacto con el agua, los lípidos complejos se disponen formando bicapas, en las que las zonas lipófílas quedan en la parte interior y las zonas hidrófilas en la exterior, enfrentadas a las moléculas de agua.  Los lípidos complejos se dividen en dos grupos los fosfolípidos y los glucolípidos. 33 Eduardo Gómez
  • 35. Fosfolípidos. Son lípidos complejos caracterizados por presentar un ácido ortofosfórico en su zona polar. Son las moléculas mas abundantes de la membrana citoplasmática. Se dividen en dos grupos:  fosfoglicéridos  Esfingolípidos 35 Eduardo Gómez
  • 36. Aminoalcohol Fosfoglicéridos Están formados por la esterificación de un ácido fosfatídico con un alcohol o un aminoalcohol. El ácido fosfatídico es el fosfolípido más sencillo, es una molécula formada por la unión por un enlace éster de un grupo fosfato con el carbono 3 de la glicerina. Los carbonos 1 y 2 están esterificados con dos ácidos grasos uno saturado y otro insaturado. Acido graso insaturado Acido graso saturado Glicerina P El resto de los fosfoglicéridos tiene por lo menos un grupo alcohol o amino unido al ácido fosfatídico. Los fosfoglicéridos más abundantes son la fosfatidilserina, la lecitina o fosfatidilcolina y la fosfatidiletanolamina, (abundantes en las membranas de las células eucariotas) 36 Eduardo Gómez
  • 39. Los fosfoesfíngolípidos Están formados por la unión de un aminoalcohol insaturado (esfingosina) y un ácido graso saturado o monoinsaturados de cadena larga. Este conjunto se denomina ceramida, al que se une un grupo fosfato y una molécula polar que es la que va a diferenciar los distintos tipos de esfingolípidos. 39 Eduardo Gómez
  • 40. El fosfoesfingolípido más abundante es la esfingomielina, (muy abundante en las vainas de mielina de las neuronas). El radical R es una molécula de ác. fosfórico esterificada con colina 40 Eduardo Gómez
  • 41. Glucolípidos. Son lípidos complejos formados por la unión de una ceramida y un glúcido. No tienen fosfato y en lugar de un alcohol, presentan un glúcido. Forman parte de las membranas celulares, especialmente las neuronas del cerebro. También se encuentran asociados a glucoproteínas formando el glucacálix de las membranas. Los glucolípidos pueden dividirse en dos grupos: 1. cerebrósidos 2. gangliósidos. 41 Eduardo Gómez
  • 43. Los cerebrósidos son moléculas en las que a la ceramida se une una cadena glucídica que puede tener entre uno y quince monosacáridos. Son abundantes en el cerebro y en el sistema nervioso. Los gangliósidos, son moléculas en las que la ceramida se une a un oligosacárido complejo en el que siempre aparece el ácido siálico. Esfingosina Acido Graso Glucosa o Galactosa Esfingosina Acido Graso Oligosacáridos cerebrósido gangliósido 43 Eduardo Gómez
  • 44. Los glucolípidos se sitúan en la cara externa de la membrana celular, en donde realizan una función de relación. Algunos gangliósidos actúan como receptores de membrana de toxinas (la causante del cólera) y de ciertos virus, permitiendo su entrada en la célula. Otros tiene que ver con la especificidad del grupo sanguíneo, o con la recepción del impulso nervioso a través de la sinapsis. 44 Eduardo Gómez
  • 45. Lipoproteínas. Son asociaciones de lípidos y proteínas cuya fracción proteica es específica. Tienen dos funciones: participan en los sistemas de membranas y actúan como sistemas de transporte por el plasma sanguíneo. Las lipoproteínas de transporte han adquirido mucha importancia por su influencia en el metabolismo del colesterol. Se clasifican en función de su densidad. 1. Quilomicrones: 2. VLDL (Very Low Density Lipoproteins) 3. LDL (Low Density Lipoproteins) 4. HDL (High Density Lipoproteins) 45 Eduardo Gómez
  • 47. • Se caracterizan por que no tienen ácidos grasos en la estructura. • En las células aparecen en menor cantidad que los otros tipos de lípidos. • Algunos que son sustancias biológicamente muy activas como hormonas y vitaminas. 47 Eduardo Gómez LÍPIDOS INSAPONIFICABLES TERPENOS O ISOPRENOIDES ESTEROIDES PROSTAGLANDINAS.
  • 49. Terpenos o Isoprenoides Los terpenos o isoprenoides son moléculas lineales o cíclicas formadas por la polimerización del isopreno o 2-metil-l,3-butadieno La clasificación de los terpenos se basa en el número de moléculas de isopreno que contienen. Carotenoides: Xantofila, β-caroteno 8 unidades Tetraterpeno Caucho natural. Más de 8 Politerpeno Escualeno 6 unidades Triterpeno Fitol, Vitaminas E y A 4 unidades Diterpeno Limoneno, Mentol Geraniol, 2 unidades. Monoterpeno 49 Eduardo Gómez
  • 50. 1. Entre los monoterpenos, algunas esencias vegetales como el mentol de la menta, el limoneno del limón y el geraniol del geranio. Son compuestos con aroma característico y en general, volátiles. 50 Eduardo Gómez limoneno geraniol
  • 51. 2. De los diterpenos, el fítol, alcohol que forma parte de la clorofila, y las vitaminas A, E (tocoferoles) y K. 51 Eduardo Gómez Los tocoferoles son poderosos agentes antioxidantes, y previenen las reacciones de peroxidación de lípidos característica del fenómeno de enranciamiento. El enranciamiento está ligado a procesos como el envejecimiento o el tristemente famoso síndrome tóxico provocado por aceite de colza desnaturalizado. Uno de los tocoferoles más abundantes es el α-tocoferol, que en ratas evita la esterilidad, y por eso se le llama vitamina E.
  • 53. 3. Entre los tetraterpenos, destacan los carotenoides, que son pigmentos fotosintéticos. • Se dividen en carotenos (color rojo) y xantofilas (color amarillo). • Los carotenoides son precursores de la vitamina A. Estos compuestos presentan en su estructura muchos dobles enlaces conjugados, lo que hace que los electrones estén muy deslocalizados y sean fácilmente excitables. De ahí su función como pigmentos fotosintéticos. 53 Eduardo Gómez
  • 54. 4. Entre los politerpenos, el caucho, que se obtiene del árbol Hevea brasiliensis. El caucho es un polímero formado por miles de moléculas de isopreno, dispuestas de forma lineal. 54 Eduardo Gómez
  • 55. ESTEROIDES Los esteroides comprenden dos grandes grupos de sustancias, derivados de la molecula ciclopentano perhidrofenantreno: los esteroles y las hormonas esteroideas. Esteroles. Son esteroides que poseen un grupo hidroxilo unido al carbono 3 y una cadena alifática en el carbono 17. Los esteróles son el grupo más numeroso de los esteroides. Los principales esteróles son el colesterol, los ácidos biliares, las vitaminas D y el estradiol. 55 Eduardo Gómez
  • 58. El colesterol forma parte estructural de las membranas de las células de los animales, a las que confiere estabilidad debido a que disminuye la movilidad de las moléculas de fosfolípidos, ya que se sitúa entre los fosfolípidos y fija a estas moléculas. El colesterol se une mediante su grupo polar con las zonas hidrófilas de los fosfolípidos contiguos, mientras que el resto de su molécula interacciona con las zonas lipófilas de estas moléculas. El colesterol es muy abundante en el organismo, y es la molécula base que sirve para la síntesis de casi todos los esteroides. 58 Eduardo Gómez
  • 60. Los ácidos biliares son un grupo de moléculas producidas en el hígado a partir del colesterol, y de las que derivan las sales biliares, que se encargan de la emulsión de las grasas en el intestino, lo que favorece la acción de las lipasas y su posterior absorción intestinal. 60 Eduardo Gómez
  • 61. El grupo de las vitaminas D esta formado por un conjunto de esteroles que regulan el metabolismo del calcio y fósforo y su absorción intestinal. Cada vitamina D proviene de un esterol diferente. La síntesis de estas vitaminas es inducida en la piel por los rayos ultravioleta. Su carencia origina raquitismo en los niños y osteomalacia en los adultos. 61 Eduardo Gómez
  • 62. El estradiol es un derivado del colesterol, es la hormona encargada de regular la aparición de los caracteres sexuales secundarios femeninos y de controlar el ciclo ovárico. 62 Eduardo Gómez
  • 63. Hormonas esteroideas. Derivan del colesterol, y son hidrofóbicas (por eso pueden atravesar fácilmente las membranas). Se caracterizan por la presencia de un átomo de oxígeno unido al carbono 3 mediante un doble enlace. 63 Eduardo Gómez Tipo de hormona Nombre Función Ecdisona Muda de artrópodos Sexuales Femeninas Progesterona Regula el embarazo, el ciclo ovárico y son precursores metabólicos de las demás hormonas esteroideas Estrógenos (estradiol) Fomenta el desarrollo sexual femenino y mantiene los caracteres sexuales femeninos Masculinas Testosterona Fomenta el desarrollo sexual masculino y mantiene los caracteres sexuales masculinos Suparrenales o corticoides Glucocorticoides Cortisol Cortisona Fomentan la gluconeogénesis y, a dosis elevadas, son inmunodepresores. Mineralocorticoides Aldosterona Regula el equilibrio iónico en el interior del organismo
  • 64. PROSTAGLANDINAS Las prostaglandinas son lípidos cuya molécula básica es el prostanoato constituido por 20 carbonos que forman un anillo ciclopentano y dos cadenas alifáticas. Su nombre procede de su descubrimiento en el líquido seminal y en la próstata, aunque existe en gran cantidad de tejidos, tanto masculinos como femeninos. Este grupo de sustancias se sintetizan a partir de los ácidos grasos insaturados que forman parte de los fosfolípidos de las membranas celulares. Las prostaglandinas se sintetizan continuamente y actúan de forma local. 64 Eduardo Gómez
  • 65. Las funciones de las prostaglandinas en el organismo son muy diversas. 1. La producción de las sustancias que regulan la coagulación de la sangre y el cierre de las heridas; 2. La sensibilización de los receptores del dolor y la iniciación de la vasodilatación de los capilares, lo que origina la inflamación después de los golpes, heridas o infecciones; 3. La aparición de fiebre como defensa en las infecciones, la disminución de la presión sanguínea al favorecer la eliminación de sustancias en el riñón; 4. La reducción de la secreción de jugos gástricos, facilitando la curación de las úlceras de estómago, 5. La regulación del aparato reproductor femenino y la iniciación del parto. 65 Eduardo Gómez El ácido salicílico (del Salix, sauce) inhibe la síntesis de las prostaglandinas y de ahí su efecto analgésico.
  • 66. 1. Función de reserva. Los lípidos son la principal reserva energética del organismo. Un gramo de grasa produce 9.4 kilocalorías en las reacciones metabólicas de oxidación (los glúcidos sólo producen 4,1 kcal/gr). La gran cantidad de energía se debe a la oxidación de los ácidos grasos en las mitocondrias. 66 Eduardo Gómez Funciones de los lípidos Reserva Estructural Biocatalizadora Transporte
  • 67. 2. Función estructural. Forman las bicapas lipídicas de las membranas citoplasmáticas y de los orgánulos celulares. Cumplen esta función los fosfolípidos, los glucolípidos, el colesterol, etc. En los órganos, recubren estructuras y les dan consistencia, (ceras). Otros tienen función de protección térmica, (acilglicéridos, en animales de climas fríos). Finalmente, protección mecánica, como la de los tejidos adiposos que están situados en la planta del pie y en la palma de la mano del hombre. 67 Eduardo Gómez
  • 68. 3. Función biocatalizadora. Los biocatalizadores son sustancias que posibilitan o favorecen las reacciones químicas que se producen en los seres vivos. Cumplen esta función las vitaminas lipídicas, las hormonas esteroideas y las prostaglandinas. 4. Función transportadora. El transporte de los lípidos desde el intestino hasta su lugar de utilización o hasta el tejido adiposo, donde se almacenan, se realiza mediante la emulsión de los lípidos gracias a los ácidos biliares y las lipoproteínas, asociaciones de proteínas específicas con triacilglicéridos, colesterol, fosfolípidos etc., que permiten su transporte por la sangre y la linfa. 68 Eduardo Gómez