OBJETIVO
Aprender acerca de que son matrices y todas sus propiedades para así poder aplicar
esto en ejercicios posteriores dentro de la materia especifica
MATRICES
Una matriz es un arreglo rectangular, en donde colocamos elementos en filas y
columnas.
MATRIZ MxN
Una matriz A de m x n es un arreglo rectangular de mxn números dispuestos en
m renglones y n columnas
PROPIEDADES DE LAS
MATRICES
 Cada uno de los números de que consta la matriz se denomina elemento
 Tienen filas y columnas que pueden variar de tamaño.
 Un elemento se distingue de otro por la posición que ocupa, es decir, la fila y
la columna a la que pertenece.
 No podemos alterar los coeficientes en una matriz.
 Las operaciones que podemos realizar con matrices son:
Suma
Resta
Multiplicacion
OPERACIONES
CON MATRICES
SUMA DE MATRICES
 Para sumar matrices, ambas deben de tener el mismo número de columnas
y el mismo número de filas.
 Debemos de sumar cada de sumar los valores que tienen las misma posición
es decir el de la fila 1 columna 1 de la una matriz con el de la fila 1, columna
1 de la otra matriz.
 Debemos de respetar todos los signos para no alterar la matriz.
RESTA DE MATRICES
 Las reglas que se aplican para la resta son las mismas que las de la suma lo
único que cambia es la operación, es decir, de suma a resta. Como dijimos
debemos de ver que las dos matrices sean iguales en filas y columnas; que
se debe de restar en este caso los valores que tienen la misma posición y
que debemos de tener muy en cuenta los signos para no afectar a la matriz.
MULTIPLICACION DE MATRICES
En esta operación existen dos casos
1.- Cuando multiplicamos una matriz por un escalar
2.- Cuando multiplicamos una matriz por otra
MULTIPLICACION DE UNA
MATRIZ POR UN ESCALAR
Aquí el escalar multiplicara a todos los elementos que se encuentre dentro de la
matriz.
Por ejemplo:
MULTIPLICACION DE UNA
MATRIZ POR OTRA
Solo podemos multiplicar si el número de columnas de la una matriz coincide
con el número de filas de la otra matriz
Debemos multiplicar el primer elemento de la 1ª fila de la una matriz por el
primer elemento de la columna de la otra matriz. Este proceso lo empleamos en
todo el proceso, es decir el 2 elemento de la fila de una matriz con el segundo
elemento de la columna de la otra matriz, el tercer con el tercero el cuarto con
el cuarto y demás.
BIBLIOGRAFIA
 Libro de algebra lineal de Grossman 7 edicion
 http://www.aulafacil.com/matematicas-matrices-determinantes/curso/Lecc-
7.htm

Matrices. algebra

  • 1.
    OBJETIVO Aprender acerca deque son matrices y todas sus propiedades para así poder aplicar esto en ejercicios posteriores dentro de la materia especifica
  • 2.
    MATRICES Una matriz esun arreglo rectangular, en donde colocamos elementos en filas y columnas.
  • 3.
    MATRIZ MxN Una matrizA de m x n es un arreglo rectangular de mxn números dispuestos en m renglones y n columnas
  • 4.
    PROPIEDADES DE LAS MATRICES Cada uno de los números de que consta la matriz se denomina elemento  Tienen filas y columnas que pueden variar de tamaño.  Un elemento se distingue de otro por la posición que ocupa, es decir, la fila y la columna a la que pertenece.  No podemos alterar los coeficientes en una matriz.  Las operaciones que podemos realizar con matrices son: Suma Resta Multiplicacion
  • 5.
  • 6.
    SUMA DE MATRICES Para sumar matrices, ambas deben de tener el mismo número de columnas y el mismo número de filas.  Debemos de sumar cada de sumar los valores que tienen las misma posición es decir el de la fila 1 columna 1 de la una matriz con el de la fila 1, columna 1 de la otra matriz.  Debemos de respetar todos los signos para no alterar la matriz.
  • 8.
    RESTA DE MATRICES Las reglas que se aplican para la resta son las mismas que las de la suma lo único que cambia es la operación, es decir, de suma a resta. Como dijimos debemos de ver que las dos matrices sean iguales en filas y columnas; que se debe de restar en este caso los valores que tienen la misma posición y que debemos de tener muy en cuenta los signos para no afectar a la matriz.
  • 10.
    MULTIPLICACION DE MATRICES Enesta operación existen dos casos 1.- Cuando multiplicamos una matriz por un escalar 2.- Cuando multiplicamos una matriz por otra
  • 11.
    MULTIPLICACION DE UNA MATRIZPOR UN ESCALAR Aquí el escalar multiplicara a todos los elementos que se encuentre dentro de la matriz. Por ejemplo:
  • 12.
    MULTIPLICACION DE UNA MATRIZPOR OTRA Solo podemos multiplicar si el número de columnas de la una matriz coincide con el número de filas de la otra matriz Debemos multiplicar el primer elemento de la 1ª fila de la una matriz por el primer elemento de la columna de la otra matriz. Este proceso lo empleamos en todo el proceso, es decir el 2 elemento de la fila de una matriz con el segundo elemento de la columna de la otra matriz, el tercer con el tercero el cuarto con el cuarto y demás.
  • 14.
    BIBLIOGRAFIA  Libro dealgebra lineal de Grossman 7 edicion  http://www.aulafacil.com/matematicas-matrices-determinantes/curso/Lecc- 7.htm