SlideShare una empresa de Scribd logo
MOLECULAS ORGANICAS
Una molécula orgánica se denomina así ya que se creía que solo los organismos vivos podían sintetizarlas. Hoy en día se pueden sintetizar proteínas y ácidos nucleicos.
Molécula orgánica todas las que contienen C Una sola célula bacteriana más de cinco mil clases de moléculas. Una célula animal el doble Compuestas de C H N O P S Tipos: Carbohidratos, compuestos de azúcares Lípidos, moléculas no polares, muchas contienen ácidos grasos Proteínas, compuestas de aminoácidos Nucleótidos, moléculas complejas que desempeñan papeles centrales en los intercambios energéticos y que también pueden combinarse para formar moléculas muy grandes conocidas como ácidos nucleicos)
Todas las moléculas contienen C H y O. Las proteínas además contienen N y S Los nucleótidos y algunos lípidos contienen N y P Conocer 30 moléculas es suficiente,  Ejm. Azucares, glucosa y ribosa.
EL PAPEL CENTRAL DEL CARBONO 		  |	6PROTONES 		-C-	6NEUTRONES 		  |	 EQUILIBRIO ES CON 10 ELECTRONES Puede formar 4 enlaces covalentes con cuatro átomos diferentes y entre si Una molécula orgánica deriva su configuración final de la dispo-sición de sus átomos de C, esqueleto. De la configuración de-pende las propiedades y función dentro de los sistemas vivos. Hidrocarburos, compuestos formados solo por C e H, estructuralmente son el tipo más simple de moléculas orgánicas Derivan  de los restos de organismos que murieron hace millones de años. Son de poca importancia en organismos vivos, pero de estos sale gasolina, etanol etc.
GRUPOS FUNCIONALES Determinan las propiedades químicas de las moléculas orgánicas Unidos al esqueleto de C, reemplazando a uno o más de los H presentes en el hidrocarburo. Ejm. Grupo –OH (hidroxilo).  Conocer los grupos funcionales facilita reconocer moléculas particulares y predecir sus propiedades. Ej. Grupo carboxilo –COOH, propiedades de ácido Alcoholes, con sus grupos hidroxilos polares, tienden a ser solubles en agua Metilo, grupos funcionales no polares, insolubles en agua. Aldehído asociados con olores y sabores acres. Formaldehido. Mayoría de grupos funcionales son polares y confieren solubilidad en agua
ISOMEROS Y ACTIVIDAD BIOLÓGICA Isómeros = fórmula química, pero diferente en disposición de átomos Isómeros estructurales: = forma molecular, pero diferente forma de unión entre átomos. Estos difieren en sus propiedades químicas. Isómeros ópticos o enantiómeros: moléculas idénticas excepto en su geometría tridimensional, “espejo”. Todos los aa se presentan en dos formas, los dos isómeros ópticos, llamados forma L y forma D. Solo los aa L se encuentran comúnmente en las proteínas de los seres vivos
EL FACTOR ENERGÉTICO Los Enlaces covalentes que se encuentran comúnmente en las moléculas orgánicas, son enlaces fuertes y estables, sus e se mueven alrededor de dos o más núcleos atómicos. Estos enlaces pueden romperse por fuentes de energía, kilocalorías, y después pueden volver a formar la misma molécula o una diferente, lo cual depende de varios factores: la temperatura, la presión y los átomos que estén disponibles. Dependiendo de las fuerzas relativas de los enlaces rotos y de los formados se liberará o se obtendrá energía del medio circundante. Los seres vivos utilizan enzimas para minimizar el uso de energía.
CARBOHIDRATOS O GLÚCIDOS Los carbohidratos están formados por tres tipos de compuestos: azúcares, almidones y celulosa. Los dos primeros sirven como fuente de energía mientras que el tercero es estructural. Estos se clasifican según el número de azúcares que contienen en: Monosacáridos, una unidad de azúcar, ribosa, glucosa, fructosa. Disacáridos, dos unidades de azúcar unidas covalentemente, sacarosa, maltosa, lactosa. Polisacáridos, más de dos unidades de azúcar, celulosa, almidón. Glucosa(azúcar) Maltosa Almidón
MONOSACÁRIDOS ENERGÍA LISTA PARA LOS SERES VIVOS, como glucosa en vertebrados Sus componentes C H O. Fórmula (CH2O)n Compuestos de C de 3 a 8 átomos, C3H6O3 a C8H16O8. Se caracterizan por la presencia de grupos hidroxilo (OH) y un grupo aldehído, o cetona (carbonilo), que son muy solubles en agua. Los monosacáridos producen energía debido a su oxidación. Ocurre lo mismo que en el motor de un vehículo con los hidrocarburos; en el caso de las células, la molécula de glucosa más oxígeno produce CO2 más agua y energía. C6H12O6 + O2 = CO2 + H2O + energía Lo contrario sucede en la fotosíntesis partiendo de CO2 + H2O + energía solar se obtiene glucosa, de esta manera se almacena energía que es distribuida al resto de la planta C6H12O6 + O2 = CO2 + H2O + energía CO2 + H2O + E (SOL)= C6H12O6
DISACARIDOS Están formados por dos monosacáridos unidos entre si. Son fuentes de energía. En la formación de un disacárido se pierde agua, debido a la combinación del grupo hidróxido del un monosacárido con el hidrógeno del otro, este proceso se llama condensación. Cuando se escinde  en monosacáridos la molécula vuelve a añadirse, esto es hidrólisis. La hidrólisis libera E Sacarosa, (glucosa+fructosa) forma en la que el azúcar se transporta en las plantas Trehalosa, (glucosa+glucosa) azúcar en la sangre de insectos Lactosa, (glucosa+galactosa) azúcar en la leche Glucosa + Fructosa +
POLISACARIDOS Se originan gracias a la unión de más de dos monosacáridos, el número de estas pueden llegar a miles en una sola molécula, además poseen una arquitectura bastante compleja y diversa. Existen dos tipos: de almacenamiento y los estructurales. Polisacáridos de almacenamiento: Almidón y glucógeno ALMIDON: es la forma habitual de almacenamiento de carbohidratos en las plantas, es una molécula de hasta 1000 unidades de glucosa alfa. Tiene dos formas: amilosa (más pequeña) y amilopectina. Cuando la planta o la célula necesita energía, el almidón almacenado es hidrolizado liberando las unidades de glucosa. Los seres humanos y otros animales que se alimentan de plantas, poseen enzimas que ayudan a la digestión del almidón Arroz Aquí encontramos almidón
GLUCÓGENO: es la forma en que se almacena glucosa en los tejidos animales, a veces es llamado almidón animal. Es un polisacárido muy ramificado y más hidrosoluble que el almidón vegetal, el glucógeno se almacena sobre todo en las células del hígado y músculos. Si hay exceso de glucosa en el torrente sanguíneo el hígado forma glucógeno Si falta glucosa se produce la hormona glucagon que estimula al hígado para hidrolizar el glucógeno a glucosa. hígado Se almacena el glucógeno músculo
POLISACÁRIDOS ESTRUCTURALES CELULOSA, plantas Corresponde al 50% de los átomos de C de una planta, así la mitad de la madera es celulosa, y en el algodón el 90% es celulosa. Las paredes celulares de los vegetales están constituidas por celulosa, la cual les da la rigidez característica y forman la parte fibrosa de la pared de las células vegetales. Compuesto insoluble de muchas moléculas de glucosa beta unidos por enlaces beta, insolubilidad. (mientras que los polisacáridos de almacenamiento están formados por enlaces alfa, solubles) Los humanos por ejemplo, no poseemos las enzimas digestivas para degradarla, mientras que los rumiantes si y se nutren de esta. celulosa Pared celular
Ej LÍPIDOS Insolubles en agua Solubles en solventes orgánicos no polares (cloroformo, éter y benceno) Función: ,[object Object]
 estructural
 mensajeros químicosLas plantas no tienen limitación para almacenar almidón, mientras que los animales si sobrepasan su capacidad de almacenar glucógeno, este se transforma en grasa, que tienen mayor proporción de enlaces C-H y son más ricos en E que los carbohidratos Grasas son no polares, no atraen agua y no están embebidas Se conocen aprox. 70 ácidos grasos, difieren en la longitud de cadena, en si tiene enlace doble o no y la posición que ocupa
Las células los utilizan como combustible, componente de las membranas y como bloques de construcción de compuestos lipídicos; también suelen ser mensajeros químicos. Alrededor del 80% de las grasas son consumidas como trigliceroles (1 molécula de glicerol más 3 ácidos grasos) Los alimentos animales son generalmente ricos en grasas saturadas y en colesterol, mientras que los vegetales son ricos en grasas insaturadas. Por esta razón actualmente se está utilizando aceites vegetales (maíz, soya y girasol) en la dieta diaria. Los lípidos de importancia biológica se clasifican en: grasas neutras, fosfolípidos y pigmentos vegetales (esteroides y carotenoides)
GRASAS NEUTRAS, hidrofóbicas Son los lípidos más abundantes en los seres vivos, estos compuestos almacenan el doble de energía por gramo que un carbohidrato. Están compuestas por un glicerol unido a ácidos grasos Glicerol es un alcohol de 3 átomos de C con un grupo hidroxilo (OH) cada uno. Ácido graso es una cadena larga y recta de C con un grupo carboxilo (COOH) en un extremo. Según cuantos ácidos grasos estén combinados con el glicerol estos pueden ser monoacilglicéridos o monoglicéridos (1 ácido graso), diacilglicéridos o diglicéridos (2 ácidos grasos) o triacilglicéridos o triglicéridos (3 ácidos grasos). Además pueden ser saturados, insaturados o poliinsaturados. Los saturados poseen todos los átomos de hidrógenos posibles, los insaturados poseen un enlace doble o triple, los poliinsaturados más de tres enlaces dobles y triples. La yema contiene proteínas, grasas neutras, lecitinas, colesterol, hierro y vitamina
Aislantes y amortiguadores FOSFOLÍPIDOS Son lípidos anfipáticos que forman las membranas celulares. Compuestos por glicerol más 2 ácidos grasos y 1 grupo fosfato, además puede estar unido a un compuesto orgánico como la colina. El tercer C del glicerol ocupado por grupo fosfato. Las dos cabezas de los fosfolípidos difieren física y químicamente, la parte donde se encuentra el grupo fosfato es hidrofílica, mientras que los ácidos grasos son hidrofóbicos. Esta propiedad anfipática de los fosfolípidos les da la capacidad de semipermeabilidad a las células. Muy parecidos en función con los glucolípidos. El tercer C del glicerol ocupado por cadena de carbohidratos corta. CERAS (abejas-panales, plumas y pelaje-animales, hojas y frutos-plantas) ceras
ESTEROIDES  (Ej. COLESTEROL), insolubles en agua, tienen 4 anillos de C unidos y varios tienen una cola. Muchos poseen el grupo funcional OH. El colesterol está en la memb., da rigidez y evita su congelamiento. Otros ejemplos de esteroides son las hormonas sexuales y las de la corteza adrenal PIGMENTOS Los carotenos son pigmentos vegetales de color rojizo y amarillento, se encuentran  dentro de los lípidos ya que no son hidrosolubles y tienen una consistencia aceitosa. En las plantas estos pigmentos desempeñan una función importante en la fotosíntesis. En los animales el caroteno es precursor de la vitamina A que es un compuesto importante de la retina.
PROTEINAS O PROTIDOS Biomoléculas más abundantes (constituyen hasta el 50% o más del peso seco). Estructuradas básicamente por C, O, H y N; también con P, Fe, Mg, etc. Constituidas por grandes cadenas de aminoácidos (cadenas polipeptídicas) Existen 20 tipos de aa que en diversidad de combinaciones o asociados a diversos radicales o moléculas dan una variedad enorme de proteínas que cumplen roles específicos en los seres vivos: enzimas, hormonas, de almacenamiento (huevos de aves de reptiles y semillas), de transporte (hemoglobina), contractiles (en músculos), inmunoglobulinas (anticuerpos), de membrana y muchas estructurales, etc. Holoproteína, formada únicamente por aa. Heteropropteína, unida a otras moléculas Proteína
AMINOACIDOS Unidades estructurales de las proteínas Los aa se caracterizan por poseer un grupo carboxilo (-COOH) y un grupo amino (-NH2) unidos a una cadena estructural de C y también con un H. Los aa se unen entre si por enlaces peptídicos. El enlace peptídico lo forma el N del grupo amino de un aa con el C del grupo carboxilo de otro. Dipéptido, dos aa; tripéptido, tres aa; etc. Hasta 10 aa se llama oligopéptido, si es superior se llama polipéptido. Cuando son más de 100 aa es proteína.
La secuencia de aa determina la estructura primaria de la proteína, de dicha secuencia dependerá la función de esta.  La estructura secundaria es la disposición de esta secuencia de aa en el espacio, determinada por el ángulo de inclinación de cada enlace que le da la disposición helicoidal. La forma de esta estructura se mantiene por los puentes de H que se forman entre los aa de arriba y debajo de ella. La estructura terciaria es la configuración tridimensional que adopta la estructura secundaria Estructura cuaternaria, unión de estructuras terciarias Ambas estructuras se mantienen estables gracias a puentes de H y puentes disulfuro.
Funciones Estructurales de las Proteínas Proteínas fibrosas: Ej. Colágeno (diferentes tipos en fibras, en cuero, en corneas), queratina, seda, elastina (en tejido elástico de ligamentos) Proteínas globulares: presentes en microtúbulos. Se asocian para formar tubos largos y huecos. Hemoglobina, elaborada y transportada por los glóbulos rojos Hemoglobina seda

Más contenido relacionado

La actualidad más candente

Aparato de Golgi
Aparato de GolgiAparato de Golgi
Aparato de Golgi
Campos V
 
Carbohidratos
CarbohidratosCarbohidratos
Carbohidratos
María Mena
 
Los oligosacaridos por Andres Caceres
Los oligosacaridos por Andres CaceresLos oligosacaridos por Andres Caceres
Los oligosacaridos por Andres CaceresAndres_Caceres
 
Carbohidratos
CarbohidratosCarbohidratos
Carbohidratossaveland
 
Biomoléculas orgánicas con audio
Biomoléculas orgánicas con audioBiomoléculas orgánicas con audio
Biomoléculas orgánicas con audio
Monica Elizabeth Arias Gutierrez
 
Células eucariotas
Células eucariotasCélulas eucariotas
Células eucariotas
Yomi S Mtz
 
La Célula
La CélulaLa Célula
La Célula
Claudia Nicole
 
Exposicion de carbohidratos
Exposicion de carbohidratosExposicion de carbohidratos
Exposicion de carbohidratos
Juan Carlos Munévar
 
Carbohidratos 1
Carbohidratos 1Carbohidratos 1
Carbohidratos 1
Sisley Filos
 
La célula eucariota
La célula eucariotaLa célula eucariota
La célula eucariotamjurado14
 
Métodos de separación de mezclas
Métodos de separación de mezclasMétodos de separación de mezclas
Métodos de separación de mezclas
Cecy Maestra TESCI
 
Diferencias entre moléculas orgánicas e inorgánicas
Diferencias entre moléculas orgánicas e inorgánicasDiferencias entre moléculas orgánicas e inorgánicas
Diferencias entre moléculas orgánicas e inorgánicas
Mariana Neri
 
Quitina: Características, funciones y aplicaciones.
Quitina: Características, funciones y aplicaciones.Quitina: Características, funciones y aplicaciones.
Quitina: Características, funciones y aplicaciones.
AdrianaQuishpe2
 
Acilgliceridos
AcilgliceridosAcilgliceridos
Acilgliceridoslollyp092
 
Lípidos
LípidosLípidos
Lípidos
Eduardo Gómez
 

La actualidad más candente (20)

Aparato de Golgi
Aparato de GolgiAparato de Golgi
Aparato de Golgi
 
Carbohidratos
CarbohidratosCarbohidratos
Carbohidratos
 
Estructura de Lípidos.
Estructura de Lípidos.Estructura de Lípidos.
Estructura de Lípidos.
 
Diapositivas carbohidratos
Diapositivas carbohidratosDiapositivas carbohidratos
Diapositivas carbohidratos
 
Los oligosacaridos por Andres Caceres
Los oligosacaridos por Andres CaceresLos oligosacaridos por Andres Caceres
Los oligosacaridos por Andres Caceres
 
Carbohidratos
CarbohidratosCarbohidratos
Carbohidratos
 
Biomoléculas orgánicas con audio
Biomoléculas orgánicas con audioBiomoléculas orgánicas con audio
Biomoléculas orgánicas con audio
 
Células eucariotas
Células eucariotasCélulas eucariotas
Células eucariotas
 
Teoría celular
Teoría celularTeoría celular
Teoría celular
 
La Célula
La CélulaLa Célula
La Célula
 
Exposicion de carbohidratos
Exposicion de carbohidratosExposicion de carbohidratos
Exposicion de carbohidratos
 
Citoplasma
CitoplasmaCitoplasma
Citoplasma
 
Carbohidratos 1
Carbohidratos 1Carbohidratos 1
Carbohidratos 1
 
La célula eucariota
La célula eucariotaLa célula eucariota
La célula eucariota
 
Métodos de separación de mezclas
Métodos de separación de mezclasMétodos de separación de mezclas
Métodos de separación de mezclas
 
Diferencias entre moléculas orgánicas e inorgánicas
Diferencias entre moléculas orgánicas e inorgánicasDiferencias entre moléculas orgánicas e inorgánicas
Diferencias entre moléculas orgánicas e inorgánicas
 
Quitina: Características, funciones y aplicaciones.
Quitina: Características, funciones y aplicaciones.Quitina: Características, funciones y aplicaciones.
Quitina: Características, funciones y aplicaciones.
 
Acilgliceridos
AcilgliceridosAcilgliceridos
Acilgliceridos
 
Lípidos
LípidosLípidos
Lípidos
 
Ensayo bioquimica
Ensayo bioquimicaEnsayo bioquimica
Ensayo bioquimica
 

Destacado

Metabolismo del glicógeno y gluconeogénesis clase colegio
Metabolismo del glicógeno y gluconeogénesis clase colegioMetabolismo del glicógeno y gluconeogénesis clase colegio
Metabolismo del glicógeno y gluconeogénesis clase colegio
daniel zuñiga nunez
 
Niveles de organización de la materia
Niveles de organización de la materiaNiveles de organización de la materia
Niveles de organización de la materiagracielarosas86
 
Practica capacidad de disolucion del agua y otros disolventes
Practica capacidad de disolucion del agua y otros disolventesPractica capacidad de disolucion del agua y otros disolventes
Practica capacidad de disolucion del agua y otros disolventesSklemd
 
Regiones corporales
Regiones corporalesRegiones corporales
Regiones corporales
DMITRIX
 
Química para niños - Átomos y moléculas
Química para niños - Átomos y moléculasQuímica para niños - Átomos y moléculas
Química para niños - Átomos y moléculas
Leonardo Sanchez Coello
 
PRODUCCIÓN DE ATP
PRODUCCIÓN DE ATPPRODUCCIÓN DE ATP
Biomoléculas inorgánicas y orgánicas 1° medio
Biomoléculas inorgánicas y orgánicas 1° medioBiomoléculas inorgánicas y orgánicas 1° medio
Biomoléculas inorgánicas y orgánicas 1° medioUNAP
 
Estructura de la membrana celular. Modelo del mosaico fluido.
Estructura de la membrana celular. Modelo del mosaico fluido.Estructura de la membrana celular. Modelo del mosaico fluido.
Estructura de la membrana celular. Modelo del mosaico fluido.Ivan Lizarraga
 
Actividad integradora. Materia organizada. Módulo 14 Semana 1.
Actividad integradora. Materia organizada. Módulo 14 Semana 1.Actividad integradora. Materia organizada. Módulo 14 Semana 1.
Actividad integradora. Materia organizada. Módulo 14 Semana 1.
María Guadalupe Serrano Briseño
 

Destacado (15)

Metabolismo del glicógeno y gluconeogénesis clase colegio
Metabolismo del glicógeno y gluconeogénesis clase colegioMetabolismo del glicógeno y gluconeogénesis clase colegio
Metabolismo del glicógeno y gluconeogénesis clase colegio
 
Niveles de organización de la materia
Niveles de organización de la materiaNiveles de organización de la materia
Niveles de organización de la materia
 
Bases nitrogenadas
Bases nitrogenadasBases nitrogenadas
Bases nitrogenadas
 
Practica capacidad de disolucion del agua y otros disolventes
Practica capacidad de disolucion del agua y otros disolventesPractica capacidad de disolucion del agua y otros disolventes
Practica capacidad de disolucion del agua y otros disolventes
 
Unidad 4,tejido cartilaginoso y óseo
Unidad 4,tejido cartilaginoso y óseoUnidad 4,tejido cartilaginoso y óseo
Unidad 4,tejido cartilaginoso y óseo
 
Moléculas Orgánicas
Moléculas OrgánicasMoléculas Orgánicas
Moléculas Orgánicas
 
Regiones corporales
Regiones corporalesRegiones corporales
Regiones corporales
 
Propiedadescoligativas 1
Propiedadescoligativas 1Propiedadescoligativas 1
Propiedadescoligativas 1
 
1 clasedesoluciones
1 clasedesoluciones1 clasedesoluciones
1 clasedesoluciones
 
2 soluciones
2 soluciones2 soluciones
2 soluciones
 
Química para niños - Átomos y moléculas
Química para niños - Átomos y moléculasQuímica para niños - Átomos y moléculas
Química para niños - Átomos y moléculas
 
PRODUCCIÓN DE ATP
PRODUCCIÓN DE ATPPRODUCCIÓN DE ATP
PRODUCCIÓN DE ATP
 
Biomoléculas inorgánicas y orgánicas 1° medio
Biomoléculas inorgánicas y orgánicas 1° medioBiomoléculas inorgánicas y orgánicas 1° medio
Biomoléculas inorgánicas y orgánicas 1° medio
 
Estructura de la membrana celular. Modelo del mosaico fluido.
Estructura de la membrana celular. Modelo del mosaico fluido.Estructura de la membrana celular. Modelo del mosaico fluido.
Estructura de la membrana celular. Modelo del mosaico fluido.
 
Actividad integradora. Materia organizada. Módulo 14 Semana 1.
Actividad integradora. Materia organizada. Módulo 14 Semana 1.Actividad integradora. Materia organizada. Módulo 14 Semana 1.
Actividad integradora. Materia organizada. Módulo 14 Semana 1.
 

Similar a moleculas organicas

Moleculas Organicas
Moleculas OrganicasMoleculas Organicas
Moleculas Organicas
yanely lucia Perez Romero
 
Moleculas Organicas
Moleculas OrganicasMoleculas Organicas
Moleculas Organicas
Paola Elizabeth
 
3 Moleculas Organicas
3 Moleculas Organicas3 Moleculas Organicas
3 Moleculas Organicas
jessicacastillo
 
Moleculas Organicas
Moleculas OrganicasMoleculas Organicas
Moleculas Organicas
Paola Elizabeth
 
Moleculas Organicas
Moleculas OrganicasMoleculas Organicas
Moleculas Organicas
guest5981d0
 
Hidratos de Carbono & Lipidos
Hidratos de Carbono & LipidosHidratos de Carbono & Lipidos
Hidratos de Carbono & Lipidos
alex.eliasb
 
Carbohidratos y Lípidos .pptx
Carbohidratos y Lípidos .pptxCarbohidratos y Lípidos .pptx
Carbohidratos y Lípidos .pptx
VICTORDAVIDCIFUENTES
 
Biomoléculas orgánicas.
Biomoléculas orgánicas.Biomoléculas orgánicas.
Biomoléculas orgánicas.
Eliana Michel
 
Carbohidratos
Carbohidratos Carbohidratos
Carbohidratos
Kiike Aviila
 
Clase 4 Moleculas Organicas
Clase 4 Moleculas OrganicasClase 4 Moleculas Organicas
Clase 4 Moleculas OrganicasLoby
 
Clase 4 Moleculas Organicas
Clase 4 Moleculas OrganicasClase 4 Moleculas Organicas
Clase 4 Moleculas Organicasguest2235e4
 
3. glucidos
3. glucidos3. glucidos
3. glucidos
isabel
 
3. glucidos
3. glucidos3. glucidos
3. glucidosisabel
 
Moléculas orgánicas
Moléculas orgánicasMoléculas orgánicas
Moléculas orgánicasflori
 
Biomoléculas Orgánicas
Biomoléculas Orgánicas Biomoléculas Orgánicas
Biomoléculas Orgánicas
Alejandra Agila
 
Carbohidratos
CarbohidratosCarbohidratos
Carbohidratos
Raaf Arreola Franco
 
Glúcidos o Carbohidratos
Glúcidos o CarbohidratosGlúcidos o Carbohidratos
Glúcidos o Carbohidratos
AngelesTulcanaz
 

Similar a moleculas organicas (20)

Moleculas Organicas
Moleculas OrganicasMoleculas Organicas
Moleculas Organicas
 
Moleculas Organicas
Moleculas OrganicasMoleculas Organicas
Moleculas Organicas
 
3 Moleculas Organicas
3 Moleculas Organicas3 Moleculas Organicas
3 Moleculas Organicas
 
Moleculas Organicas
Moleculas OrganicasMoleculas Organicas
Moleculas Organicas
 
Moleculas Organicas
Moleculas OrganicasMoleculas Organicas
Moleculas Organicas
 
Hidratos de Carbono & Lipidos
Hidratos de Carbono & LipidosHidratos de Carbono & Lipidos
Hidratos de Carbono & Lipidos
 
Carbohidratos y Lípidos .pptx
Carbohidratos y Lípidos .pptxCarbohidratos y Lípidos .pptx
Carbohidratos y Lípidos .pptx
 
Biomoléculas orgánicas.
Biomoléculas orgánicas.Biomoléculas orgánicas.
Biomoléculas orgánicas.
 
Carbohidratos
Carbohidratos Carbohidratos
Carbohidratos
 
Clase 4 Moleculas Organicas
Clase 4 Moleculas OrganicasClase 4 Moleculas Organicas
Clase 4 Moleculas Organicas
 
Clase 4 Moleculas Organicas
Clase 4 Moleculas OrganicasClase 4 Moleculas Organicas
Clase 4 Moleculas Organicas
 
Carbohidratos
CarbohidratosCarbohidratos
Carbohidratos
 
3. glucidos
3. glucidos3. glucidos
3. glucidos
 
3. glucidos
3. glucidos3. glucidos
3. glucidos
 
Molculas orgnicas primero medio
Molculas orgnicas primero medioMolculas orgnicas primero medio
Molculas orgnicas primero medio
 
Moléculas orgánicas
Moléculas orgánicasMoléculas orgánicas
Moléculas orgánicas
 
Biomoléculas Orgánicas
Biomoléculas Orgánicas Biomoléculas Orgánicas
Biomoléculas Orgánicas
 
Carbohidratos
CarbohidratosCarbohidratos
Carbohidratos
 
Curtis 3
Curtis 3Curtis 3
Curtis 3
 
Glúcidos o Carbohidratos
Glúcidos o CarbohidratosGlúcidos o Carbohidratos
Glúcidos o Carbohidratos
 

Último

CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptxCLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
LilianaRivera778668
 
Fase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría AnalíticaFase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría Analítica
YasneidyGonzalez
 
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptxSemana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
LorenaCovarrubias12
 
Libro infantil sapo y sepo un año entero pdf
Libro infantil sapo y sepo un año entero pdfLibro infantil sapo y sepo un año entero pdf
Libro infantil sapo y sepo un año entero pdf
danitarb
 
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdfTestimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Txema Gs
 
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
rosannatasaycoyactay
 
Junio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividadesJunio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividades
cintiat3400
 
El Liberalismo económico en la sociedad y en el mundo
El Liberalismo económico en la sociedad y en el mundoEl Liberalismo económico en la sociedad y en el mundo
El Liberalismo económico en la sociedad y en el mundo
SandraBenitez52
 
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLAACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdfFORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
El Fortí
 
El fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docxEl fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docx
Alejandrino Halire Ccahuana
 
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de MadridHorarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
20minutos
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
https://gramadal.wordpress.com/
 
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCIONCAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
MasielPMP
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
auxsoporte
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
CESAR MIJAEL ESPINOZA SALAZAR
 
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdfHABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
DIANADIAZSILVA1
 
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdfINFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
Alejandrogarciapanta
 
Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitales
nievesjiesc03
 
Fase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometricoFase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometrico
YasneidyGonzalez
 

Último (20)

CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptxCLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
 
Fase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría AnalíticaFase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría Analítica
 
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptxSemana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
 
Libro infantil sapo y sepo un año entero pdf
Libro infantil sapo y sepo un año entero pdfLibro infantil sapo y sepo un año entero pdf
Libro infantil sapo y sepo un año entero pdf
 
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdfTestimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdf
 
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
 
Junio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividadesJunio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividades
 
El Liberalismo económico en la sociedad y en el mundo
El Liberalismo económico en la sociedad y en el mundoEl Liberalismo económico en la sociedad y en el mundo
El Liberalismo económico en la sociedad y en el mundo
 
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLAACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
 
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdfFORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
 
El fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docxEl fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docx
 
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de MadridHorarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
 
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCIONCAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
 
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdfHABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
 
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdfINFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
INFORME MINEDU DEL PRIMER SIMULACRO 2024.pdf
 
Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitales
 
Fase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometricoFase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometrico
 

moleculas organicas

  • 2. Una molécula orgánica se denomina así ya que se creía que solo los organismos vivos podían sintetizarlas. Hoy en día se pueden sintetizar proteínas y ácidos nucleicos.
  • 3. Molécula orgánica todas las que contienen C Una sola célula bacteriana más de cinco mil clases de moléculas. Una célula animal el doble Compuestas de C H N O P S Tipos: Carbohidratos, compuestos de azúcares Lípidos, moléculas no polares, muchas contienen ácidos grasos Proteínas, compuestas de aminoácidos Nucleótidos, moléculas complejas que desempeñan papeles centrales en los intercambios energéticos y que también pueden combinarse para formar moléculas muy grandes conocidas como ácidos nucleicos)
  • 4. Todas las moléculas contienen C H y O. Las proteínas además contienen N y S Los nucleótidos y algunos lípidos contienen N y P Conocer 30 moléculas es suficiente, Ejm. Azucares, glucosa y ribosa.
  • 5. EL PAPEL CENTRAL DEL CARBONO | 6PROTONES -C- 6NEUTRONES | EQUILIBRIO ES CON 10 ELECTRONES Puede formar 4 enlaces covalentes con cuatro átomos diferentes y entre si Una molécula orgánica deriva su configuración final de la dispo-sición de sus átomos de C, esqueleto. De la configuración de-pende las propiedades y función dentro de los sistemas vivos. Hidrocarburos, compuestos formados solo por C e H, estructuralmente son el tipo más simple de moléculas orgánicas Derivan de los restos de organismos que murieron hace millones de años. Son de poca importancia en organismos vivos, pero de estos sale gasolina, etanol etc.
  • 6. GRUPOS FUNCIONALES Determinan las propiedades químicas de las moléculas orgánicas Unidos al esqueleto de C, reemplazando a uno o más de los H presentes en el hidrocarburo. Ejm. Grupo –OH (hidroxilo). Conocer los grupos funcionales facilita reconocer moléculas particulares y predecir sus propiedades. Ej. Grupo carboxilo –COOH, propiedades de ácido Alcoholes, con sus grupos hidroxilos polares, tienden a ser solubles en agua Metilo, grupos funcionales no polares, insolubles en agua. Aldehído asociados con olores y sabores acres. Formaldehido. Mayoría de grupos funcionales son polares y confieren solubilidad en agua
  • 7. ISOMEROS Y ACTIVIDAD BIOLÓGICA Isómeros = fórmula química, pero diferente en disposición de átomos Isómeros estructurales: = forma molecular, pero diferente forma de unión entre átomos. Estos difieren en sus propiedades químicas. Isómeros ópticos o enantiómeros: moléculas idénticas excepto en su geometría tridimensional, “espejo”. Todos los aa se presentan en dos formas, los dos isómeros ópticos, llamados forma L y forma D. Solo los aa L se encuentran comúnmente en las proteínas de los seres vivos
  • 8. EL FACTOR ENERGÉTICO Los Enlaces covalentes que se encuentran comúnmente en las moléculas orgánicas, son enlaces fuertes y estables, sus e se mueven alrededor de dos o más núcleos atómicos. Estos enlaces pueden romperse por fuentes de energía, kilocalorías, y después pueden volver a formar la misma molécula o una diferente, lo cual depende de varios factores: la temperatura, la presión y los átomos que estén disponibles. Dependiendo de las fuerzas relativas de los enlaces rotos y de los formados se liberará o se obtendrá energía del medio circundante. Los seres vivos utilizan enzimas para minimizar el uso de energía.
  • 9. CARBOHIDRATOS O GLÚCIDOS Los carbohidratos están formados por tres tipos de compuestos: azúcares, almidones y celulosa. Los dos primeros sirven como fuente de energía mientras que el tercero es estructural. Estos se clasifican según el número de azúcares que contienen en: Monosacáridos, una unidad de azúcar, ribosa, glucosa, fructosa. Disacáridos, dos unidades de azúcar unidas covalentemente, sacarosa, maltosa, lactosa. Polisacáridos, más de dos unidades de azúcar, celulosa, almidón. Glucosa(azúcar) Maltosa Almidón
  • 10. MONOSACÁRIDOS ENERGÍA LISTA PARA LOS SERES VIVOS, como glucosa en vertebrados Sus componentes C H O. Fórmula (CH2O)n Compuestos de C de 3 a 8 átomos, C3H6O3 a C8H16O8. Se caracterizan por la presencia de grupos hidroxilo (OH) y un grupo aldehído, o cetona (carbonilo), que son muy solubles en agua. Los monosacáridos producen energía debido a su oxidación. Ocurre lo mismo que en el motor de un vehículo con los hidrocarburos; en el caso de las células, la molécula de glucosa más oxígeno produce CO2 más agua y energía. C6H12O6 + O2 = CO2 + H2O + energía Lo contrario sucede en la fotosíntesis partiendo de CO2 + H2O + energía solar se obtiene glucosa, de esta manera se almacena energía que es distribuida al resto de la planta C6H12O6 + O2 = CO2 + H2O + energía CO2 + H2O + E (SOL)= C6H12O6
  • 11. DISACARIDOS Están formados por dos monosacáridos unidos entre si. Son fuentes de energía. En la formación de un disacárido se pierde agua, debido a la combinación del grupo hidróxido del un monosacárido con el hidrógeno del otro, este proceso se llama condensación. Cuando se escinde en monosacáridos la molécula vuelve a añadirse, esto es hidrólisis. La hidrólisis libera E Sacarosa, (glucosa+fructosa) forma en la que el azúcar se transporta en las plantas Trehalosa, (glucosa+glucosa) azúcar en la sangre de insectos Lactosa, (glucosa+galactosa) azúcar en la leche Glucosa + Fructosa +
  • 12. POLISACARIDOS Se originan gracias a la unión de más de dos monosacáridos, el número de estas pueden llegar a miles en una sola molécula, además poseen una arquitectura bastante compleja y diversa. Existen dos tipos: de almacenamiento y los estructurales. Polisacáridos de almacenamiento: Almidón y glucógeno ALMIDON: es la forma habitual de almacenamiento de carbohidratos en las plantas, es una molécula de hasta 1000 unidades de glucosa alfa. Tiene dos formas: amilosa (más pequeña) y amilopectina. Cuando la planta o la célula necesita energía, el almidón almacenado es hidrolizado liberando las unidades de glucosa. Los seres humanos y otros animales que se alimentan de plantas, poseen enzimas que ayudan a la digestión del almidón Arroz Aquí encontramos almidón
  • 13. GLUCÓGENO: es la forma en que se almacena glucosa en los tejidos animales, a veces es llamado almidón animal. Es un polisacárido muy ramificado y más hidrosoluble que el almidón vegetal, el glucógeno se almacena sobre todo en las células del hígado y músculos. Si hay exceso de glucosa en el torrente sanguíneo el hígado forma glucógeno Si falta glucosa se produce la hormona glucagon que estimula al hígado para hidrolizar el glucógeno a glucosa. hígado Se almacena el glucógeno músculo
  • 14. POLISACÁRIDOS ESTRUCTURALES CELULOSA, plantas Corresponde al 50% de los átomos de C de una planta, así la mitad de la madera es celulosa, y en el algodón el 90% es celulosa. Las paredes celulares de los vegetales están constituidas por celulosa, la cual les da la rigidez característica y forman la parte fibrosa de la pared de las células vegetales. Compuesto insoluble de muchas moléculas de glucosa beta unidos por enlaces beta, insolubilidad. (mientras que los polisacáridos de almacenamiento están formados por enlaces alfa, solubles) Los humanos por ejemplo, no poseemos las enzimas digestivas para degradarla, mientras que los rumiantes si y se nutren de esta. celulosa Pared celular
  • 15.
  • 17. mensajeros químicosLas plantas no tienen limitación para almacenar almidón, mientras que los animales si sobrepasan su capacidad de almacenar glucógeno, este se transforma en grasa, que tienen mayor proporción de enlaces C-H y son más ricos en E que los carbohidratos Grasas son no polares, no atraen agua y no están embebidas Se conocen aprox. 70 ácidos grasos, difieren en la longitud de cadena, en si tiene enlace doble o no y la posición que ocupa
  • 18. Las células los utilizan como combustible, componente de las membranas y como bloques de construcción de compuestos lipídicos; también suelen ser mensajeros químicos. Alrededor del 80% de las grasas son consumidas como trigliceroles (1 molécula de glicerol más 3 ácidos grasos) Los alimentos animales son generalmente ricos en grasas saturadas y en colesterol, mientras que los vegetales son ricos en grasas insaturadas. Por esta razón actualmente se está utilizando aceites vegetales (maíz, soya y girasol) en la dieta diaria. Los lípidos de importancia biológica se clasifican en: grasas neutras, fosfolípidos y pigmentos vegetales (esteroides y carotenoides)
  • 19. GRASAS NEUTRAS, hidrofóbicas Son los lípidos más abundantes en los seres vivos, estos compuestos almacenan el doble de energía por gramo que un carbohidrato. Están compuestas por un glicerol unido a ácidos grasos Glicerol es un alcohol de 3 átomos de C con un grupo hidroxilo (OH) cada uno. Ácido graso es una cadena larga y recta de C con un grupo carboxilo (COOH) en un extremo. Según cuantos ácidos grasos estén combinados con el glicerol estos pueden ser monoacilglicéridos o monoglicéridos (1 ácido graso), diacilglicéridos o diglicéridos (2 ácidos grasos) o triacilglicéridos o triglicéridos (3 ácidos grasos). Además pueden ser saturados, insaturados o poliinsaturados. Los saturados poseen todos los átomos de hidrógenos posibles, los insaturados poseen un enlace doble o triple, los poliinsaturados más de tres enlaces dobles y triples. La yema contiene proteínas, grasas neutras, lecitinas, colesterol, hierro y vitamina
  • 20. Aislantes y amortiguadores FOSFOLÍPIDOS Son lípidos anfipáticos que forman las membranas celulares. Compuestos por glicerol más 2 ácidos grasos y 1 grupo fosfato, además puede estar unido a un compuesto orgánico como la colina. El tercer C del glicerol ocupado por grupo fosfato. Las dos cabezas de los fosfolípidos difieren física y químicamente, la parte donde se encuentra el grupo fosfato es hidrofílica, mientras que los ácidos grasos son hidrofóbicos. Esta propiedad anfipática de los fosfolípidos les da la capacidad de semipermeabilidad a las células. Muy parecidos en función con los glucolípidos. El tercer C del glicerol ocupado por cadena de carbohidratos corta. CERAS (abejas-panales, plumas y pelaje-animales, hojas y frutos-plantas) ceras
  • 21. ESTEROIDES (Ej. COLESTEROL), insolubles en agua, tienen 4 anillos de C unidos y varios tienen una cola. Muchos poseen el grupo funcional OH. El colesterol está en la memb., da rigidez y evita su congelamiento. Otros ejemplos de esteroides son las hormonas sexuales y las de la corteza adrenal PIGMENTOS Los carotenos son pigmentos vegetales de color rojizo y amarillento, se encuentran dentro de los lípidos ya que no son hidrosolubles y tienen una consistencia aceitosa. En las plantas estos pigmentos desempeñan una función importante en la fotosíntesis. En los animales el caroteno es precursor de la vitamina A que es un compuesto importante de la retina.
  • 22. PROTEINAS O PROTIDOS Biomoléculas más abundantes (constituyen hasta el 50% o más del peso seco). Estructuradas básicamente por C, O, H y N; también con P, Fe, Mg, etc. Constituidas por grandes cadenas de aminoácidos (cadenas polipeptídicas) Existen 20 tipos de aa que en diversidad de combinaciones o asociados a diversos radicales o moléculas dan una variedad enorme de proteínas que cumplen roles específicos en los seres vivos: enzimas, hormonas, de almacenamiento (huevos de aves de reptiles y semillas), de transporte (hemoglobina), contractiles (en músculos), inmunoglobulinas (anticuerpos), de membrana y muchas estructurales, etc. Holoproteína, formada únicamente por aa. Heteropropteína, unida a otras moléculas Proteína
  • 23. AMINOACIDOS Unidades estructurales de las proteínas Los aa se caracterizan por poseer un grupo carboxilo (-COOH) y un grupo amino (-NH2) unidos a una cadena estructural de C y también con un H. Los aa se unen entre si por enlaces peptídicos. El enlace peptídico lo forma el N del grupo amino de un aa con el C del grupo carboxilo de otro. Dipéptido, dos aa; tripéptido, tres aa; etc. Hasta 10 aa se llama oligopéptido, si es superior se llama polipéptido. Cuando son más de 100 aa es proteína.
  • 24. La secuencia de aa determina la estructura primaria de la proteína, de dicha secuencia dependerá la función de esta. La estructura secundaria es la disposición de esta secuencia de aa en el espacio, determinada por el ángulo de inclinación de cada enlace que le da la disposición helicoidal. La forma de esta estructura se mantiene por los puentes de H que se forman entre los aa de arriba y debajo de ella. La estructura terciaria es la configuración tridimensional que adopta la estructura secundaria Estructura cuaternaria, unión de estructuras terciarias Ambas estructuras se mantienen estables gracias a puentes de H y puentes disulfuro.
  • 25. Funciones Estructurales de las Proteínas Proteínas fibrosas: Ej. Colágeno (diferentes tipos en fibras, en cuero, en corneas), queratina, seda, elastina (en tejido elástico de ligamentos) Proteínas globulares: presentes en microtúbulos. Se asocian para formar tubos largos y huecos. Hemoglobina, elaborada y transportada por los glóbulos rojos Hemoglobina seda
  • 26. NUCLEÓTIDOS Los ácidos nucleicos están formados por cadenas largas de nucleótidos. Pasan y traducen la información genética de las células. Un nucleótido está formado por tres subunidades: un grupo fosfato, un azúcar de 5 C y 1 base nitrogenada. El azúcar puede ser ribosa o desoxiribosa, que contiene un átomo de oxígeno menos que la ribosa. Hay 5 bases nitrogenadas, adenina y guanina, con dos anillos (PURINAS); citosina, timina y uracilo, con anillo único (PIRIMIDINAS) A, G y C están en el DNA Y RNA T en el DNA U en el RNA
  • 27. Los ácidos nucleicos son el ADN (ácido desoxiribonucleico), constituyente primario de los cromosomas y portador del mensaje químico; y el ARN (ácido ribonucleico), que transcribe el mensaje genético del DNA y traduce para la síntesis de proteínas. Los nucleótidos además pueden unirse hasta con tres grupos fosfatos y trabajan como moléculas transportadoras de energía, ATP, la cual la almacenan o liberan formando o rompiendo respectivamente los enlaces entre fosfatos.