SlideShare una empresa de Scribd logo
Semiconductores elementales: Germanio (Ge) y Silicio (Si)
Compuestos IV: SiC y SiGe
Compuestos III-V:
Binarios: GaAs, GaP, GaSb, AlAs, AlP, AlSb, InAs, InP y InSb
Ternarios: GaAsP, AlGaAs
Cuaternarios: InGaAsP
Compuestos II-VI: ZnS, ZnSe, ZnTe, CdS, CdSe y CdTe
Son materiales de conductividad intermedia entre la
de los metales y la de los aislantes, que se modifica
en gran medida por la temperatura, la excitación
óptica y las impurezas.
Son materiales de conductividad intermedia entre la
de los metales y la de los aislantes, que se modifica
en gran medida por la temperatura, la excitación
óptica y las impurezas.
Materiales semiconductores
•Estructura atómica del Carbono (6 electrones)
1s2
2s2
2p2
•Estructura atómica del Silicio (14 electrones)
1s2
2s2
2p6
3s2
3p2
1s2
2s2
2p6
3s2
3p6
3d10
4s2
4p2
•Estructura atómica del Germanio (32 electrones)
4 electrones en la última capa4 electrones en la última capa
Materiales semiconductores
Distancia interatómica
Estados discretos
(átomos aislados)
Carbono gaseoso (6 electrones) 1s2
, 2s2
, 2p2
Materiales semiconductores
- 2s2-
Banda de estados
2p2
4 estados vacíos
- -
1s2--
Reducción de la distancia interatómica del Carbono
Materiales semiconductores
Distancia interatómica
Energía
--
- -
--
Grafito:
Hexagonal, negro,
blando y conductor
Grafito:
Hexagonal, negro,
blando y conductor
--
--
Diamante:
Cúbico, transparente,
duro y aislante
Diamante:
Cúbico, transparente,
duro y aislante
--
--
Si un electrón de la banda de valencia alcanzara la energía
necesaria para saltar a la banda de conducción, podría moverse al
estado vacío de la banda de conducción de otro átomo vecino,
generando corriente eléctrica. A temperatura ambiente casi ningún
electrón tiene esta energía.
Es un aislante.
Si un electrón de la banda de valencia alcanzara la energía
necesaria para saltar a la banda de conducción, podría moverse al
estado vacío de la banda de conducción de otro átomo vecino,
generando corriente eléctrica. A temperatura ambiente casi ningún
electrón tiene esta energía.
Es un aislante.
Banda prohibida
Eg=6eV
Diagramas de bandas
Diagrama de bandas del Carbono: diamante
Banda de valencia
4 electrones/átomo
-
-
-
-
Banda de conducción4 estados/átomo
Energía
No hay banda prohibida. Los electrones de la banda de
valencia tienen la misma energía que los estados vacíos
de la banda de conducción, por lo que pueden moverse
generando corriente eléctrica. A temperatura ambiente
es un buen conductor.
No hay banda prohibida. Los electrones de la banda de
valencia tienen la misma energía que los estados vacíos
de la banda de conducción, por lo que pueden moverse
generando corriente eléctrica. A temperatura ambiente
es un buen conductor.
Diagramas de bandas
Diagrama de bandas del Carbono: grafito
Banda de
valencia4 electrones/átomo
Banda de
conducción
4 estados/átomo
-
-
-
-
Energía
Si un electrón de la banda de valencia alcanza la energía necesaria
para saltar a la banda de conducción, puede moverse al estado
vacío de la banda de conducción de otro átomo vecino, generando
corriente eléctrica. A temperatura ambiente algunos electrones
tienen esta energía. Es un semiconductor.
Si un electrón de la banda de valencia alcanza la energía necesaria
para saltar a la banda de conducción, puede moverse al estado
vacío de la banda de conducción de otro átomo vecino, generando
corriente eléctrica. A temperatura ambiente algunos electrones
tienen esta energía. Es un semiconductor.
Diagramas de bandas
Diagrama de bandas del Ge
Eg=0,67eV Banda prohibida
Banda de valencia
4 electrones/átomo
-
-
-
-
Banda de conducción
4 estados/átomo
Energía
A 0ºK, tanto los aislantes como los semiconductores no
conducen, ya que ningún electrón tiene energía suficiente para
pasar de la banda de valencia a la de conducción. A 300ºK,
algunos electrones de los semiconductores alcanzan este nivel. Al
aumentar la temperatura aumenta la conducción en los
semiconductores (al contrario que en los metales).
A 0ºK, tanto los aislantes como los semiconductores no
conducen, ya que ningún electrón tiene energía suficiente para
pasar de la banda de valencia a la de conducción. A 300ºK,
algunos electrones de los semiconductores alcanzan este nivel. Al
aumentar la temperatura aumenta la conducción en los
semiconductores (al contrario que en los metales).
Eg
Banda de
valencia
Banda de
conducción
Aislante
Eg=5-10eV
Diagramas de bandas
Semiconductor
Eg=0,5-2eV
Eg
Banda de
valencia
Banda de
conducción
Banda de
valencia
Conductor
No hay Eg
Banda de
conducción
No hay enlaces covalentes rotos. Esto equivale a
que los electrones de la banda de valencia no
pueden saltar a la banda de conducción.
No hay enlaces covalentes rotos. Esto equivale a
que los electrones de la banda de valencia no
pueden saltar a la banda de conducción.
Representación plana del Germanio a 0º K
- - - - -
- - - - -
- - -
- - -
-
-
-
-
-
-
-
-
- - - -
G
e
G
e
G
e
G
e
Ge Ge Ge Ge
- - - -
•Hay 1 enlace roto por cada 1,7·109
átomos.
•Un electrón “libre” y una carga “+” por cada
enlace roto.
•Hay 1 enlace roto por cada 1,7·109
átomos.
•Un electrón “libre” y una carga “+” por cada
enlace roto.
Situación del Ge a 0ºK
G
e
G
e
G
e
G
e
G
e
G
e
G
e
G
e
- - - - -
- - - - -
- - -
- - -
-
-
- -
-
-
-
- - - -
- - - -
-
-
+
300º K
Situación del Ge a 300º K
G
e
G
e
G
e
G
e
G
e
G
e
G
e
G
e
- - - - -
- - - - -
- - -
- - -
-
-
- -
-
-
-
- - - -
- - - -
-
-
+
Generación
-
-
+
Recombinación
Generación
Siempre se están rompiendo (generación) y
reconstruyendo (recombinación) enlaces. La vida media
de un electrón puede ser del orden de milisegundos o
microsegundos.
Siempre se están rompiendo (generación) y
reconstruyendo (recombinación) enlaces. La vida media
de un electrón puede ser del orden de milisegundos o
microsegundos.
-
++
-
-
Recombinación
Generación
Muy
importante
+-
+++++++
-
-
-
-
-
-
-
-
G
e
G
e
G
e
G
e
G
e
G
e
G
e
G
e
- - - - -
- - - - -
- - -
- - -
-
-
- -
-
-
-
- - - -
- - - -
-
+
Aplicación de un campo externo
•El electrón libre se mueve por acción del campo.
•¿Y la carga ”+” ?.
•El electrón libre se mueve por acción del campo.
•¿Y la carga ”+” ?.
- - --
G
e
G
e
G
e
G
e
G
e
G
e
G
e
G
e
- - - - -
- - - - -
- - -
- - -
-
-
- -
-
-
-
- - - -
- - - -
-
-
+
+-
+++++++
-
-
-
-
-
-
-
Aplicación de un campo externo
-
+
-
-
•La carga “+” se mueve también. Es un nuevo
portador de carga, llamado “hueco”.
•La carga “+” se mueve también. Es un nuevo
portador de carga, llamado “hueco”.
Muy
importante
Mecanismo de conducción. Interpretación
en diagrama de bandas
-
-
-
-
Átomo 1
-
-
-
-
+
Átomo 2
-
-
-
-
Átomo 3
+- Campo eléctrico
+
-
-
jp
→
jn
→
Existe corriente eléctrica debida a los dos portadores de carga:
jp=q·µp·p·Ε es la densidad de corriente de huecos.
jn=q·µn·n·Ε es la densidad de corriente de electrones.
Existe corriente eléctrica debida a los dos portadores de carga:
jp=q·µp·p·Ε es la densidad de corriente de huecos.
jn=q·µn·n·Ε es la densidad de corriente de electrones.
→→
→→
Movimiento de cargas por un campo
eléctrico exterior
Ε
→
+++++
-
-
-
-
-
-
-
+
+
-
-
+
+
-
-
+
+
-
-
+
+
-
-
+
+
-
-
+
+
-
-
+
+
-
-
+
+
-
-
+
+
-
-
+
+
jp=q·µp·p·Ε jn=q·µn·n·Ε
→ → →→
Movimiento de cargas por un campo eléctrico
exterior
Ge
(cm2
/V·s)
Si
(cm2
/V·s)
As Ga
(cm2
/V·s)
µn 3900 1350 8500
µp 1900 480 400
q = carga del electrón
µp = movilidad de los huecos
µn = movilidad de los electrones
p = concentración de huecos
n = concentración de electrones
Ε = intensidad del campo eléctrico
Muy
importante
Todo lo comentado hasta ahora se refiere a los llamados
“Semiconductores Intrínsecos”, en los que:
•No hay ninguna impureza en la red cristalina.
•Hay igual número de electrones que de huecos n = p = ni
Ge: ni = 2·1013
portadores/cm3
Si: ni = 1010
portadores/cm3
AsGa: ni = 2·106
portadores/cm3
(a temperatura ambiente)
¿Pueden modificarse estos valores?
¿Puede desequilibrarse el número de electrones y de
huecos?
La respuesta son los Semiconductores Extrínsecos
¿Pueden modificarse estos valores?
¿Puede desequilibrarse el número de electrones y de
huecos?
La respuesta son los Semiconductores Extrínsecos
Semiconductores Intrínsecos
A 0ºK, habría un electrón
adicional ligado al átomo
de Sb
A 0ºK, habría un electrón
adicional ligado al átomo
de Sb
Tiene 5 electrones en la
última capa
Semiconductores Extrínsecos
Introducimos pequeñas cantidades de impurezas del grupo V
- - - - -
- - - - -
- - -
- -
-
-
- -
-
-
-
- - - -
G
e
G
e
G
e
G
e
G
e
G
e
G
e
- - - -
Sb
-
-
-1
2
3
4
5
0ºK
- - - - -
- - - - -
- - -
- -
-
-
- -
-
-
-
- - - -
G
e
G
e
G
e
Ge Ge Ge Ge
- - - -
Sb
-
-
-1
2
3
4
5 0ºK
Semiconductores Extrínsecos
300ºK
Sb+
5-
A 300ºK, todos electrones adicionales de los átomos de Sb están
desligados de su átomo (pueden desplazarse y originar corriente
eléctrica). El Sb es un donador y en el Ge hay más electrones
que huecos. Es un semiconductor tipo N.
A 300ºK, todos electrones adicionales de los átomos de Sb están
desligados de su átomo (pueden desplazarse y originar corriente
eléctrica). El Sb es un donador y en el Ge hay más electrones
que huecos. Es un semiconductor tipo N.
-
Energía
Eg=0,67eV
4 electr./atm.
4 est./atm.
0 electr./atm.
ESb=0,039eV
-
-
-
-
0ºK
El Sb genera un estado permitido en la banda
prohibida, muy cerca de la banda de conducción. La
energía necesaria para alcanzar la banda de
conducción se consigue a la temperatura ambiente.
El Sb genera un estado permitido en la banda
prohibida, muy cerca de la banda de conducción. La
energía necesaria para alcanzar la banda de
conducción se consigue a la temperatura ambiente.
Semiconductores Extrínsecos
Interpretación en diagrama de bandas de un
semiconductor extrínseco Tipo N
3 est./atm.
1 electr./atm.-
+
300ºK
A 0ºK, habría una “falta de
electrón” adicional ligado
al átomo de Al
A 0ºK, habría una “falta de
electrón” adicional ligado
al átomo de Al
Tiene 3 electrones en la
última capa
Semiconductores Extrínsecos
Introducimos pequeñas cantidades de impurezas del grupo III
- - - - -
- - - - -
- - -
- -
-
-
- -
-
-
-
- - - -
G
e
G
e
G
e
Ge Ge Ge Ge
- - - -
Al
-1
2
3
0ºK
A 300ºK, todas las “faltas” de electrón de los átomos de
Al están cubiertas con un electrón procedente de un
átomo de Ge, en el que se genera un hueco. El Al es un
aceptador y en el Ge hay más huecos que electrones. Es
un semiconductor tipo P.
A 300ºK, todas las “faltas” de electrón de los átomos de
Al están cubiertas con un electrón procedente de un
átomo de Ge, en el que se genera un hueco. El Al es un
aceptador y en el Ge hay más huecos que electrones. Es
un semiconductor tipo P.
Semiconductores Extrínsecos
- - - - -
- - - - -
- - -
- -
-
-
- -
-
-
-
- - - -
G
e
G
e
G
e
Ge Ge Ge Ge
- - - -
Al
-1
2
3
0ºK300ºK
Al-
+
-
4 (extra)
Energía
Eg=0,67eV
4 electr./atom.
0 huecos/atom.
4 est./atom.
EAl=0,067eV
-
-
-
-
0ºK
+
-
3 electr./atom.
1 hueco/atom.
300ºK
Interpretación en diagrama de bandas de un
semiconductor extrínseco Tipo P
Semiconductores Extrínsecos
El Al genera un estado permitido en la banda prohibida,
muy cerca de la banda de valencia. La energía necesaria
para que un electrón alcance este estado permitido se
consigue a la temperatura ambiente, generando un hueco
en la banda de valencia.
El Al genera un estado permitido en la banda prohibida,
muy cerca de la banda de valencia. La energía necesaria
para que un electrón alcance este estado permitido se
consigue a la temperatura ambiente, generando un hueco
en la banda de valencia.
Semiconductores intrínsecos:
•Igual número de huecos y de electrones
Semiconductores extrínsecos:
Tipo P:
•Más huecos (mayoritarios) que electrones (minoritarios)
•Impurezas del grupo III (aceptador)
•Todos los átomos de aceptador ionizados “-”.
Tipo N:
•Más electrones (mayoritarios) que huecos (minoritarios)
•Impurezas del grupo V (donador)
•Todos los átomos de donador ionizados “+”.
Resumen
Muy
importante

Más contenido relacionado

La actualidad más candente

Ejercicios resueltos con diodos
Ejercicios resueltos con diodosEjercicios resueltos con diodos
Ejercicios resueltos con diodos
vstiven18
 
Modelos equivalentes de pequeña señal de los transistores fet
Modelos equivalentes de pequeña señal de los transistores fetModelos equivalentes de pequeña señal de los transistores fet
Modelos equivalentes de pequeña señal de los transistores fet
Armando Bautista
 
Metodo de imagenes
Metodo de imagenesMetodo de imagenes
Metodo de imagenes
fenix10005
 
Campos Electromagneticos - Tema 5
Campos Electromagneticos - Tema 5Campos Electromagneticos - Tema 5
Campos Electromagneticos - Tema 5
Diomedes Ignacio Domínguez Ureña
 
Superconductores
SuperconductoresSuperconductores
Superconductores
Maur Del Gallego Naredo
 
Tema3 semiconductores
Tema3 semiconductoresTema3 semiconductores
Tema3 semiconductores
Camilo Castro
 
hydrogen emission spectrum.pptx
hydrogen emission spectrum.pptxhydrogen emission spectrum.pptx
hydrogen emission spectrum.pptx
SaiKalyani11
 
Rectificador en puente
Rectificador en puenteRectificador en puente
Rectificador en puente
Belén Cevallos Giler
 
Electronica polarizacion del fet
Electronica  polarizacion del fetElectronica  polarizacion del fet
Electronica polarizacion del fet
Velmuz Buzz
 
Problemas fuerza magnetica
Problemas fuerza magneticaProblemas fuerza magnetica
Problemas fuerza magnetica
ESPOL
 
Senoides y fasores presentacion ppt
Senoides  y fasores presentacion pptSenoides  y fasores presentacion ppt
Senoides y fasores presentacion ppt
Universidad Tecnológica de Puebla
 
Caracteristicas de los transitores
Caracteristicas de los transitoresCaracteristicas de los transitores
Caracteristicas de los transitores
alekroger
 
Problemas de aplicación de la ley de gaussf
Problemas de aplicación de la ley de gaussfProblemas de aplicación de la ley de gaussf
Problemas de aplicación de la ley de gaussf
hector
 
Estructura del silicio, germanio y galio
Estructura del silicio, germanio y galioEstructura del silicio, germanio y galio
Estructura del silicio, germanio y galio
mo_hacha
 
Informe 1 Electronica I Laboratorio
Informe 1 Electronica I  LaboratorioInforme 1 Electronica I  Laboratorio
Informe 1 Electronica I Laboratorio
Universidad de Tarapaca
 
Dieléctricos
DieléctricosDieléctricos
Dieléctricos
leiru274
 
Crystalline defects
Crystalline defectsCrystalline defects
Crystalline defects
Gulfam Hussain
 
4 problemas electrostatica_valor_en_frontera
4 problemas electrostatica_valor_en_frontera4 problemas electrostatica_valor_en_frontera
4 problemas electrostatica_valor_en_frontera
Francisco Sandoval
 
Campos Electromagneticos - Tema 1
Campos Electromagneticos - Tema 1Campos Electromagneticos - Tema 1
Campos Electromagneticos - Tema 1
Diomedes Ignacio Domínguez Ureña
 
Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"
Shuvan Prashant
 

La actualidad más candente (20)

Ejercicios resueltos con diodos
Ejercicios resueltos con diodosEjercicios resueltos con diodos
Ejercicios resueltos con diodos
 
Modelos equivalentes de pequeña señal de los transistores fet
Modelos equivalentes de pequeña señal de los transistores fetModelos equivalentes de pequeña señal de los transistores fet
Modelos equivalentes de pequeña señal de los transistores fet
 
Metodo de imagenes
Metodo de imagenesMetodo de imagenes
Metodo de imagenes
 
Campos Electromagneticos - Tema 5
Campos Electromagneticos - Tema 5Campos Electromagneticos - Tema 5
Campos Electromagneticos - Tema 5
 
Superconductores
SuperconductoresSuperconductores
Superconductores
 
Tema3 semiconductores
Tema3 semiconductoresTema3 semiconductores
Tema3 semiconductores
 
hydrogen emission spectrum.pptx
hydrogen emission spectrum.pptxhydrogen emission spectrum.pptx
hydrogen emission spectrum.pptx
 
Rectificador en puente
Rectificador en puenteRectificador en puente
Rectificador en puente
 
Electronica polarizacion del fet
Electronica  polarizacion del fetElectronica  polarizacion del fet
Electronica polarizacion del fet
 
Problemas fuerza magnetica
Problemas fuerza magneticaProblemas fuerza magnetica
Problemas fuerza magnetica
 
Senoides y fasores presentacion ppt
Senoides  y fasores presentacion pptSenoides  y fasores presentacion ppt
Senoides y fasores presentacion ppt
 
Caracteristicas de los transitores
Caracteristicas de los transitoresCaracteristicas de los transitores
Caracteristicas de los transitores
 
Problemas de aplicación de la ley de gaussf
Problemas de aplicación de la ley de gaussfProblemas de aplicación de la ley de gaussf
Problemas de aplicación de la ley de gaussf
 
Estructura del silicio, germanio y galio
Estructura del silicio, germanio y galioEstructura del silicio, germanio y galio
Estructura del silicio, germanio y galio
 
Informe 1 Electronica I Laboratorio
Informe 1 Electronica I  LaboratorioInforme 1 Electronica I  Laboratorio
Informe 1 Electronica I Laboratorio
 
Dieléctricos
DieléctricosDieléctricos
Dieléctricos
 
Crystalline defects
Crystalline defectsCrystalline defects
Crystalline defects
 
4 problemas electrostatica_valor_en_frontera
4 problemas electrostatica_valor_en_frontera4 problemas electrostatica_valor_en_frontera
4 problemas electrostatica_valor_en_frontera
 
Campos Electromagneticos - Tema 1
Campos Electromagneticos - Tema 1Campos Electromagneticos - Tema 1
Campos Electromagneticos - Tema 1
 
Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"
 

Similar a Sem01

Semiconduc telem
Semiconduc telemSemiconduc telem
Semiconduc telem
josechura1
 
Manejo de Diodos y circuitos con diodos.ppsx
Manejo de Diodos y circuitos con diodos.ppsxManejo de Diodos y circuitos con diodos.ppsx
Manejo de Diodos y circuitos con diodos.ppsx
madu1829
 
Semiconductores
Semiconductores   Semiconductores
Semiconductores
Paul Toralva
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
vemn
 
2. semiconductores
2. semiconductores2. semiconductores
2. semiconductores
AlejandroPalacios981514
 
Presentación2 1
Presentación2 1Presentación2 1
Presentación2 1
Victor Cheng
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
FMAUTINO
 
Semiconductores intrínsecos y los semiconductores dopados
Semiconductores intrínsecos y los semiconductores dopadosSemiconductores intrínsecos y los semiconductores dopados
Semiconductores intrínsecos y los semiconductores dopados
espinozachristian
 
electronicaanalogica-151126094331-lva1-app6892.pdf
electronicaanalogica-151126094331-lva1-app6892.pdfelectronicaanalogica-151126094331-lva1-app6892.pdf
electronicaanalogica-151126094331-lva1-app6892.pdf
HermesSotaquira
 
Semiconductores intrínsecos y semiconductores dopados
Semiconductores intrínsecos y semiconductores dopadosSemiconductores intrínsecos y semiconductores dopados
Semiconductores intrínsecos y semiconductores dopados
Romain Torre
 
SEMICONDUCTORES.pptx
SEMICONDUCTORES.pptxSEMICONDUCTORES.pptx
SEMICONDUCTORES.pptx
pastrana4
 
Semiconductores alberto orihuela sanabria
Semiconductores alberto orihuela sanabriaSemiconductores alberto orihuela sanabria
Semiconductores alberto orihuela sanabria
Albertorihuela Saorich
 
Propiedades electricas y semiconductores.pdf
Propiedades electricas y semiconductores.pdfPropiedades electricas y semiconductores.pdf
Propiedades electricas y semiconductores.pdf
EduardoCastellanos44
 
Semiconductores intrínsecos y dopados
Semiconductores intrínsecos y dopadosSemiconductores intrínsecos y dopados
Semiconductores intrínsecos y dopados
alfredojrv
 
DiodoSemiconductor.pdf
DiodoSemiconductor.pdfDiodoSemiconductor.pdf
DiodoSemiconductor.pdf
DiegoSoto93076
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
Jonathan Ruiz de Garibay
 
Electronica analogica
Electronica analogicaElectronica analogica
Electronica analogica
MiguelBG11
 
Electronica analogica
Electronica analogicaElectronica analogica
Electronica analogica
ClauFdzSrz
 
Electronica analogica
Electronica analogicaElectronica analogica
Electronica analogica
OlexX25l
 
Electronica analogica
Electronica analogicaElectronica analogica
Electronica analogica
joeltecno9
 

Similar a Sem01 (20)

Semiconduc telem
Semiconduc telemSemiconduc telem
Semiconduc telem
 
Manejo de Diodos y circuitos con diodos.ppsx
Manejo de Diodos y circuitos con diodos.ppsxManejo de Diodos y circuitos con diodos.ppsx
Manejo de Diodos y circuitos con diodos.ppsx
 
Semiconductores
Semiconductores   Semiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
2. semiconductores
2. semiconductores2. semiconductores
2. semiconductores
 
Presentación2 1
Presentación2 1Presentación2 1
Presentación2 1
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrínsecos y los semiconductores dopados
Semiconductores intrínsecos y los semiconductores dopadosSemiconductores intrínsecos y los semiconductores dopados
Semiconductores intrínsecos y los semiconductores dopados
 
electronicaanalogica-151126094331-lva1-app6892.pdf
electronicaanalogica-151126094331-lva1-app6892.pdfelectronicaanalogica-151126094331-lva1-app6892.pdf
electronicaanalogica-151126094331-lva1-app6892.pdf
 
Semiconductores intrínsecos y semiconductores dopados
Semiconductores intrínsecos y semiconductores dopadosSemiconductores intrínsecos y semiconductores dopados
Semiconductores intrínsecos y semiconductores dopados
 
SEMICONDUCTORES.pptx
SEMICONDUCTORES.pptxSEMICONDUCTORES.pptx
SEMICONDUCTORES.pptx
 
Semiconductores alberto orihuela sanabria
Semiconductores alberto orihuela sanabriaSemiconductores alberto orihuela sanabria
Semiconductores alberto orihuela sanabria
 
Propiedades electricas y semiconductores.pdf
Propiedades electricas y semiconductores.pdfPropiedades electricas y semiconductores.pdf
Propiedades electricas y semiconductores.pdf
 
Semiconductores intrínsecos y dopados
Semiconductores intrínsecos y dopadosSemiconductores intrínsecos y dopados
Semiconductores intrínsecos y dopados
 
DiodoSemiconductor.pdf
DiodoSemiconductor.pdfDiodoSemiconductor.pdf
DiodoSemiconductor.pdf
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Electronica analogica
Electronica analogicaElectronica analogica
Electronica analogica
 
Electronica analogica
Electronica analogicaElectronica analogica
Electronica analogica
 
Electronica analogica
Electronica analogicaElectronica analogica
Electronica analogica
 
Electronica analogica
Electronica analogicaElectronica analogica
Electronica analogica
 

Último

pueblos originarios de chile presentacion twinkl.pptx
pueblos originarios de chile presentacion twinkl.pptxpueblos originarios de chile presentacion twinkl.pptx
pueblos originarios de chile presentacion twinkl.pptx
RAMIREZNICOLE
 
Blogs_y_Educacion_Por Zaracho Lautaro_.pdf
Blogs_y_Educacion_Por Zaracho Lautaro_.pdfBlogs_y_Educacion_Por Zaracho Lautaro_.pdf
Blogs_y_Educacion_Por Zaracho Lautaro_.pdf
lautyzaracho4
 
Inteligencia Artificial para Docentes HIA Ccesa007.pdf
Inteligencia Artificial para Docentes  HIA  Ccesa007.pdfInteligencia Artificial para Docentes  HIA  Ccesa007.pdf
Inteligencia Artificial para Docentes HIA Ccesa007.pdf
Demetrio Ccesa Rayme
 
El Cerebro se Cambia a si Mismo-Norman Doidge.pdf
El Cerebro se Cambia a si Mismo-Norman Doidge.pdfEl Cerebro se Cambia a si Mismo-Norman Doidge.pdf
El Cerebro se Cambia a si Mismo-Norman Doidge.pdf
Robert Zuñiga Vargas
 
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Unidad de Espiritualidad Eudista
 
Lecciones 10 Esc. Sabática. El espiritismo desenmascarado docx
Lecciones 10 Esc. Sabática. El espiritismo desenmascarado docxLecciones 10 Esc. Sabática. El espiritismo desenmascarado docx
Lecciones 10 Esc. Sabática. El espiritismo desenmascarado docx
Alejandrino Halire Ccahuana
 
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdfFEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
Jose Luis Jimenez Rodriguez
 
p4s.co Ecosistema de Ecosistemas - Diagrama.pdf
p4s.co Ecosistema de Ecosistemas - Diagrama.pdfp4s.co Ecosistema de Ecosistemas - Diagrama.pdf
p4s.co Ecosistema de Ecosistemas - Diagrama.pdf
DavidCamiloMosquera
 
Examen de la EvAU 2024 en Navarra Latín.
Examen de la EvAU 2024 en Navarra Latín.Examen de la EvAU 2024 en Navarra Latín.
Examen de la EvAU 2024 en Navarra Latín.
amayaltc18
 
Maristella Svampa-La sociedad excluyente.pdf
Maristella Svampa-La sociedad excluyente.pdfMaristella Svampa-La sociedad excluyente.pdf
Maristella Svampa-La sociedad excluyente.pdf
belbarcala
 
Sesión: El espiritismo desenmascarado.pdf
Sesión: El espiritismo desenmascarado.pdfSesión: El espiritismo desenmascarado.pdf
Sesión: El espiritismo desenmascarado.pdf
https://gramadal.wordpress.com/
 
Respuesta del icfes pre saber verificadas
Respuesta del icfes pre saber verificadasRespuesta del icfes pre saber verificadas
Respuesta del icfes pre saber verificadas
KarenCaicedo28
 
Presentación de proyecto en acuarela moderna verde.pdf
Presentación de proyecto en acuarela moderna verde.pdfPresentación de proyecto en acuarela moderna verde.pdf
Presentación de proyecto en acuarela moderna verde.pdf
LuanaJaime1
 
Mundo ABC Examen 1 Grado- Tercer Trimestre.pdf
Mundo ABC Examen 1 Grado- Tercer Trimestre.pdfMundo ABC Examen 1 Grado- Tercer Trimestre.pdf
Mundo ABC Examen 1 Grado- Tercer Trimestre.pdf
ViriEsteva
 
Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinaria). UCLM
Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinaria). UCLMExamen de Selectividad. Geografía junio 2024 (Convocatoria Ordinaria). UCLM
Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinaria). UCLM
Juan Martín Martín
 
2° año LA VESTIMENTA-ciencias sociales 2 grado
2° año LA VESTIMENTA-ciencias sociales 2 grado2° año LA VESTIMENTA-ciencias sociales 2 grado
2° año LA VESTIMENTA-ciencias sociales 2 grado
GiselaBerrios3
 
Power Point: El espiritismo desenmascarado
Power Point: El espiritismo desenmascaradoPower Point: El espiritismo desenmascarado
Power Point: El espiritismo desenmascarado
https://gramadal.wordpress.com/
 
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZACORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
3° SES COMU LUN10 CUENTO DIA DEL PADRE 933623393 PROF YESSENIA (1).docx
3° SES COMU LUN10  CUENTO DIA DEL PADRE  933623393 PROF YESSENIA (1).docx3° SES COMU LUN10  CUENTO DIA DEL PADRE  933623393 PROF YESSENIA (1).docx
3° SES COMU LUN10 CUENTO DIA DEL PADRE 933623393 PROF YESSENIA (1).docx
rosannatasaycoyactay
 
Soluciones Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinar...
Soluciones Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinar...Soluciones Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinar...
Soluciones Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinar...
Juan Martín Martín
 

Último (20)

pueblos originarios de chile presentacion twinkl.pptx
pueblos originarios de chile presentacion twinkl.pptxpueblos originarios de chile presentacion twinkl.pptx
pueblos originarios de chile presentacion twinkl.pptx
 
Blogs_y_Educacion_Por Zaracho Lautaro_.pdf
Blogs_y_Educacion_Por Zaracho Lautaro_.pdfBlogs_y_Educacion_Por Zaracho Lautaro_.pdf
Blogs_y_Educacion_Por Zaracho Lautaro_.pdf
 
Inteligencia Artificial para Docentes HIA Ccesa007.pdf
Inteligencia Artificial para Docentes  HIA  Ccesa007.pdfInteligencia Artificial para Docentes  HIA  Ccesa007.pdf
Inteligencia Artificial para Docentes HIA Ccesa007.pdf
 
El Cerebro se Cambia a si Mismo-Norman Doidge.pdf
El Cerebro se Cambia a si Mismo-Norman Doidge.pdfEl Cerebro se Cambia a si Mismo-Norman Doidge.pdf
El Cerebro se Cambia a si Mismo-Norman Doidge.pdf
 
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
Triduo Eudista: Jesucristo, Sumo y Eterno Sacerdote; El Corazón de Jesús y el...
 
Lecciones 10 Esc. Sabática. El espiritismo desenmascarado docx
Lecciones 10 Esc. Sabática. El espiritismo desenmascarado docxLecciones 10 Esc. Sabática. El espiritismo desenmascarado docx
Lecciones 10 Esc. Sabática. El espiritismo desenmascarado docx
 
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdfFEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
 
p4s.co Ecosistema de Ecosistemas - Diagrama.pdf
p4s.co Ecosistema de Ecosistemas - Diagrama.pdfp4s.co Ecosistema de Ecosistemas - Diagrama.pdf
p4s.co Ecosistema de Ecosistemas - Diagrama.pdf
 
Examen de la EvAU 2024 en Navarra Latín.
Examen de la EvAU 2024 en Navarra Latín.Examen de la EvAU 2024 en Navarra Latín.
Examen de la EvAU 2024 en Navarra Latín.
 
Maristella Svampa-La sociedad excluyente.pdf
Maristella Svampa-La sociedad excluyente.pdfMaristella Svampa-La sociedad excluyente.pdf
Maristella Svampa-La sociedad excluyente.pdf
 
Sesión: El espiritismo desenmascarado.pdf
Sesión: El espiritismo desenmascarado.pdfSesión: El espiritismo desenmascarado.pdf
Sesión: El espiritismo desenmascarado.pdf
 
Respuesta del icfes pre saber verificadas
Respuesta del icfes pre saber verificadasRespuesta del icfes pre saber verificadas
Respuesta del icfes pre saber verificadas
 
Presentación de proyecto en acuarela moderna verde.pdf
Presentación de proyecto en acuarela moderna verde.pdfPresentación de proyecto en acuarela moderna verde.pdf
Presentación de proyecto en acuarela moderna verde.pdf
 
Mundo ABC Examen 1 Grado- Tercer Trimestre.pdf
Mundo ABC Examen 1 Grado- Tercer Trimestre.pdfMundo ABC Examen 1 Grado- Tercer Trimestre.pdf
Mundo ABC Examen 1 Grado- Tercer Trimestre.pdf
 
Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinaria). UCLM
Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinaria). UCLMExamen de Selectividad. Geografía junio 2024 (Convocatoria Ordinaria). UCLM
Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinaria). UCLM
 
2° año LA VESTIMENTA-ciencias sociales 2 grado
2° año LA VESTIMENTA-ciencias sociales 2 grado2° año LA VESTIMENTA-ciencias sociales 2 grado
2° año LA VESTIMENTA-ciencias sociales 2 grado
 
Power Point: El espiritismo desenmascarado
Power Point: El espiritismo desenmascaradoPower Point: El espiritismo desenmascarado
Power Point: El espiritismo desenmascarado
 
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZACORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
CORREOS SEGUNDO 2024 HONORIO DELGADO ESPINOZA
 
3° SES COMU LUN10 CUENTO DIA DEL PADRE 933623393 PROF YESSENIA (1).docx
3° SES COMU LUN10  CUENTO DIA DEL PADRE  933623393 PROF YESSENIA (1).docx3° SES COMU LUN10  CUENTO DIA DEL PADRE  933623393 PROF YESSENIA (1).docx
3° SES COMU LUN10 CUENTO DIA DEL PADRE 933623393 PROF YESSENIA (1).docx
 
Soluciones Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinar...
Soluciones Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinar...Soluciones Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinar...
Soluciones Examen de Selectividad. Geografía junio 2024 (Convocatoria Ordinar...
 

Sem01

  • 1. Semiconductores elementales: Germanio (Ge) y Silicio (Si) Compuestos IV: SiC y SiGe Compuestos III-V: Binarios: GaAs, GaP, GaSb, AlAs, AlP, AlSb, InAs, InP y InSb Ternarios: GaAsP, AlGaAs Cuaternarios: InGaAsP Compuestos II-VI: ZnS, ZnSe, ZnTe, CdS, CdSe y CdTe Son materiales de conductividad intermedia entre la de los metales y la de los aislantes, que se modifica en gran medida por la temperatura, la excitación óptica y las impurezas. Son materiales de conductividad intermedia entre la de los metales y la de los aislantes, que se modifica en gran medida por la temperatura, la excitación óptica y las impurezas. Materiales semiconductores
  • 2. •Estructura atómica del Carbono (6 electrones) 1s2 2s2 2p2 •Estructura atómica del Silicio (14 electrones) 1s2 2s2 2p6 3s2 3p2 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p2 •Estructura atómica del Germanio (32 electrones) 4 electrones en la última capa4 electrones en la última capa Materiales semiconductores
  • 3. Distancia interatómica Estados discretos (átomos aislados) Carbono gaseoso (6 electrones) 1s2 , 2s2 , 2p2 Materiales semiconductores - 2s2- Banda de estados 2p2 4 estados vacíos - - 1s2--
  • 4. Reducción de la distancia interatómica del Carbono Materiales semiconductores Distancia interatómica Energía -- - - -- Grafito: Hexagonal, negro, blando y conductor Grafito: Hexagonal, negro, blando y conductor -- -- Diamante: Cúbico, transparente, duro y aislante Diamante: Cúbico, transparente, duro y aislante -- --
  • 5. Si un electrón de la banda de valencia alcanzara la energía necesaria para saltar a la banda de conducción, podría moverse al estado vacío de la banda de conducción de otro átomo vecino, generando corriente eléctrica. A temperatura ambiente casi ningún electrón tiene esta energía. Es un aislante. Si un electrón de la banda de valencia alcanzara la energía necesaria para saltar a la banda de conducción, podría moverse al estado vacío de la banda de conducción de otro átomo vecino, generando corriente eléctrica. A temperatura ambiente casi ningún electrón tiene esta energía. Es un aislante. Banda prohibida Eg=6eV Diagramas de bandas Diagrama de bandas del Carbono: diamante Banda de valencia 4 electrones/átomo - - - - Banda de conducción4 estados/átomo Energía
  • 6. No hay banda prohibida. Los electrones de la banda de valencia tienen la misma energía que los estados vacíos de la banda de conducción, por lo que pueden moverse generando corriente eléctrica. A temperatura ambiente es un buen conductor. No hay banda prohibida. Los electrones de la banda de valencia tienen la misma energía que los estados vacíos de la banda de conducción, por lo que pueden moverse generando corriente eléctrica. A temperatura ambiente es un buen conductor. Diagramas de bandas Diagrama de bandas del Carbono: grafito Banda de valencia4 electrones/átomo Banda de conducción 4 estados/átomo - - - - Energía
  • 7. Si un electrón de la banda de valencia alcanza la energía necesaria para saltar a la banda de conducción, puede moverse al estado vacío de la banda de conducción de otro átomo vecino, generando corriente eléctrica. A temperatura ambiente algunos electrones tienen esta energía. Es un semiconductor. Si un electrón de la banda de valencia alcanza la energía necesaria para saltar a la banda de conducción, puede moverse al estado vacío de la banda de conducción de otro átomo vecino, generando corriente eléctrica. A temperatura ambiente algunos electrones tienen esta energía. Es un semiconductor. Diagramas de bandas Diagrama de bandas del Ge Eg=0,67eV Banda prohibida Banda de valencia 4 electrones/átomo - - - - Banda de conducción 4 estados/átomo Energía
  • 8. A 0ºK, tanto los aislantes como los semiconductores no conducen, ya que ningún electrón tiene energía suficiente para pasar de la banda de valencia a la de conducción. A 300ºK, algunos electrones de los semiconductores alcanzan este nivel. Al aumentar la temperatura aumenta la conducción en los semiconductores (al contrario que en los metales). A 0ºK, tanto los aislantes como los semiconductores no conducen, ya que ningún electrón tiene energía suficiente para pasar de la banda de valencia a la de conducción. A 300ºK, algunos electrones de los semiconductores alcanzan este nivel. Al aumentar la temperatura aumenta la conducción en los semiconductores (al contrario que en los metales). Eg Banda de valencia Banda de conducción Aislante Eg=5-10eV Diagramas de bandas Semiconductor Eg=0,5-2eV Eg Banda de valencia Banda de conducción Banda de valencia Conductor No hay Eg Banda de conducción
  • 9. No hay enlaces covalentes rotos. Esto equivale a que los electrones de la banda de valencia no pueden saltar a la banda de conducción. No hay enlaces covalentes rotos. Esto equivale a que los electrones de la banda de valencia no pueden saltar a la banda de conducción. Representación plana del Germanio a 0º K - - - - - - - - - - - - - - - - - - - - - - - - - - - - G e G e G e G e Ge Ge Ge Ge - - - -
  • 10. •Hay 1 enlace roto por cada 1,7·109 átomos. •Un electrón “libre” y una carga “+” por cada enlace roto. •Hay 1 enlace roto por cada 1,7·109 átomos. •Un electrón “libre” y una carga “+” por cada enlace roto. Situación del Ge a 0ºK G e G e G e G e G e G e G e G e - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + 300º K
  • 11. Situación del Ge a 300º K G e G e G e G e G e G e G e G e - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + Generación - - + Recombinación Generación Siempre se están rompiendo (generación) y reconstruyendo (recombinación) enlaces. La vida media de un electrón puede ser del orden de milisegundos o microsegundos. Siempre se están rompiendo (generación) y reconstruyendo (recombinación) enlaces. La vida media de un electrón puede ser del orden de milisegundos o microsegundos. - ++ - - Recombinación Generación Muy importante
  • 12. +- +++++++ - - - - - - - - G e G e G e G e G e G e G e G e - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + Aplicación de un campo externo •El electrón libre se mueve por acción del campo. •¿Y la carga ”+” ?. •El electrón libre se mueve por acción del campo. •¿Y la carga ”+” ?. - - --
  • 13. G e G e G e G e G e G e G e G e - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + +- +++++++ - - - - - - - Aplicación de un campo externo - + - - •La carga “+” se mueve también. Es un nuevo portador de carga, llamado “hueco”. •La carga “+” se mueve también. Es un nuevo portador de carga, llamado “hueco”. Muy importante
  • 14. Mecanismo de conducción. Interpretación en diagrama de bandas - - - - Átomo 1 - - - - + Átomo 2 - - - - Átomo 3 +- Campo eléctrico + - -
  • 15. jp → jn → Existe corriente eléctrica debida a los dos portadores de carga: jp=q·µp·p·Ε es la densidad de corriente de huecos. jn=q·µn·n·Ε es la densidad de corriente de electrones. Existe corriente eléctrica debida a los dos portadores de carga: jp=q·µp·p·Ε es la densidad de corriente de huecos. jn=q·µn·n·Ε es la densidad de corriente de electrones. →→ →→ Movimiento de cargas por un campo eléctrico exterior Ε → +++++ - - - - - - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + +
  • 16. jp=q·µp·p·Ε jn=q·µn·n·Ε → → →→ Movimiento de cargas por un campo eléctrico exterior Ge (cm2 /V·s) Si (cm2 /V·s) As Ga (cm2 /V·s) µn 3900 1350 8500 µp 1900 480 400 q = carga del electrón µp = movilidad de los huecos µn = movilidad de los electrones p = concentración de huecos n = concentración de electrones Ε = intensidad del campo eléctrico Muy importante
  • 17. Todo lo comentado hasta ahora se refiere a los llamados “Semiconductores Intrínsecos”, en los que: •No hay ninguna impureza en la red cristalina. •Hay igual número de electrones que de huecos n = p = ni Ge: ni = 2·1013 portadores/cm3 Si: ni = 1010 portadores/cm3 AsGa: ni = 2·106 portadores/cm3 (a temperatura ambiente) ¿Pueden modificarse estos valores? ¿Puede desequilibrarse el número de electrones y de huecos? La respuesta son los Semiconductores Extrínsecos ¿Pueden modificarse estos valores? ¿Puede desequilibrarse el número de electrones y de huecos? La respuesta son los Semiconductores Extrínsecos Semiconductores Intrínsecos
  • 18. A 0ºK, habría un electrón adicional ligado al átomo de Sb A 0ºK, habría un electrón adicional ligado al átomo de Sb Tiene 5 electrones en la última capa Semiconductores Extrínsecos Introducimos pequeñas cantidades de impurezas del grupo V - - - - - - - - - - - - - - - - - - - - - - - - - - G e G e G e G e G e G e G e - - - - Sb - - -1 2 3 4 5 0ºK
  • 19. - - - - - - - - - - - - - - - - - - - - - - - - - - G e G e G e Ge Ge Ge Ge - - - - Sb - - -1 2 3 4 5 0ºK Semiconductores Extrínsecos 300ºK Sb+ 5- A 300ºK, todos electrones adicionales de los átomos de Sb están desligados de su átomo (pueden desplazarse y originar corriente eléctrica). El Sb es un donador y en el Ge hay más electrones que huecos. Es un semiconductor tipo N. A 300ºK, todos electrones adicionales de los átomos de Sb están desligados de su átomo (pueden desplazarse y originar corriente eléctrica). El Sb es un donador y en el Ge hay más electrones que huecos. Es un semiconductor tipo N.
  • 20. - Energía Eg=0,67eV 4 electr./atm. 4 est./atm. 0 electr./atm. ESb=0,039eV - - - - 0ºK El Sb genera un estado permitido en la banda prohibida, muy cerca de la banda de conducción. La energía necesaria para alcanzar la banda de conducción se consigue a la temperatura ambiente. El Sb genera un estado permitido en la banda prohibida, muy cerca de la banda de conducción. La energía necesaria para alcanzar la banda de conducción se consigue a la temperatura ambiente. Semiconductores Extrínsecos Interpretación en diagrama de bandas de un semiconductor extrínseco Tipo N 3 est./atm. 1 electr./atm.- + 300ºK
  • 21. A 0ºK, habría una “falta de electrón” adicional ligado al átomo de Al A 0ºK, habría una “falta de electrón” adicional ligado al átomo de Al Tiene 3 electrones en la última capa Semiconductores Extrínsecos Introducimos pequeñas cantidades de impurezas del grupo III - - - - - - - - - - - - - - - - - - - - - - - - - - G e G e G e Ge Ge Ge Ge - - - - Al -1 2 3 0ºK
  • 22. A 300ºK, todas las “faltas” de electrón de los átomos de Al están cubiertas con un electrón procedente de un átomo de Ge, en el que se genera un hueco. El Al es un aceptador y en el Ge hay más huecos que electrones. Es un semiconductor tipo P. A 300ºK, todas las “faltas” de electrón de los átomos de Al están cubiertas con un electrón procedente de un átomo de Ge, en el que se genera un hueco. El Al es un aceptador y en el Ge hay más huecos que electrones. Es un semiconductor tipo P. Semiconductores Extrínsecos - - - - - - - - - - - - - - - - - - - - - - - - - - G e G e G e Ge Ge Ge Ge - - - - Al -1 2 3 0ºK300ºK Al- + - 4 (extra)
  • 23. Energía Eg=0,67eV 4 electr./atom. 0 huecos/atom. 4 est./atom. EAl=0,067eV - - - - 0ºK + - 3 electr./atom. 1 hueco/atom. 300ºK Interpretación en diagrama de bandas de un semiconductor extrínseco Tipo P Semiconductores Extrínsecos El Al genera un estado permitido en la banda prohibida, muy cerca de la banda de valencia. La energía necesaria para que un electrón alcance este estado permitido se consigue a la temperatura ambiente, generando un hueco en la banda de valencia. El Al genera un estado permitido en la banda prohibida, muy cerca de la banda de valencia. La energía necesaria para que un electrón alcance este estado permitido se consigue a la temperatura ambiente, generando un hueco en la banda de valencia.
  • 24. Semiconductores intrínsecos: •Igual número de huecos y de electrones Semiconductores extrínsecos: Tipo P: •Más huecos (mayoritarios) que electrones (minoritarios) •Impurezas del grupo III (aceptador) •Todos los átomos de aceptador ionizados “-”. Tipo N: •Más electrones (mayoritarios) que huecos (minoritarios) •Impurezas del grupo V (donador) •Todos los átomos de donador ionizados “+”. Resumen Muy importante