Matrices3.1 El concepto de matriz3.2 Operaciones con matrices3.3 Propiedades de las operaciones con matrices3.4 La inversa de una matriz3.5 Aplicación: Distribución de poblaciónmatrices1
3.1El concepto de matrizComo se vio en el capítulo anterior, la solución de sistemas de ecuaciones lineales puede hallarse eficientemente utilizando solamente los coeficientes de las incógnitas asociadas a los sistemas lineales. Este ordenamiento de números se conoce como una matriz, y los elementos de esta matriz se llaman entradasde la matriz. Ejemplos de matrices son:El tamaño o dimensión de una matriz de define como el número de filas por el número de columnas. En el ejemplo, la primera matriz es de dimensión 3x2, la segunda es de 3x3, la tercera es de 1x4 y la cuarta es de 4x1. Si una matriz es de dimensión 1xn, como en el tercer ejemplo, se llamará un vector fila, mientras que una matriz nx1, como en el cuarto ejemplo, se llamará un vector columna. En general se usarán las primeras letras mayúsculas del alfabeto para denotar una matriz, es decir, se escribirán como A, B, C, etc.. Las entradas de una matriz se denotarán como aijy representarán la entrada que se encuentra en la fila i-ésima y la columna j-ésima.matrices2
Entonces, en general una matriz de dimensión mxn se puede representar comoSi la matriz es de dimensión nxn, se llama matriz cuadrada de orden n, y las entradas a11, a22, ....,ann se dice que están sobre la diagonal principal de A.Dos matrices son iguales si tienen la misma dimensión y las entradas correspondientes son iguales. Una matriz es cero, denotada con O, si todas sus entradas son idénticamente igual a cero.matrices3
3.2 Operaciones con matricesDefinición (Suma de matrices): Sean A={aij} y  B={bij}  matrices de la misma dimensión  mxn. La sumaA+B es la matriz C={cij} de dimensión mxn, dondecij= aij + bij ,esto es, la suma de las entradas correspondientes.Ejemplo:Definición (Producto de una matriz por un escalar): Sea A={aij} una matriz mxn y r un escalar. El producto rA del escalar r y la matriz A es la matriz B={bij} de la misma dimensión de A tal que bij = r aijEjemplo:matrices4
Definición (Matriz transpuesta): Sea A={aij} una matriz mxn. La matriz transpuesta, denotada como AT, es la matriz cuyas columnas son las filas de A. Una matriz simétrica es aquella que es igual a su transpuesta, es decir, A=AT. Evidentemente una matriz simétrica tiene que ser cuadrada.Ejemplos:Definición (Matriz Identidad): La matriz identidad de dimensión nxn, denotada In , es la matriz cuyos elementos sobre la diagonal principal es igual a 1, y todas las otras entradas son iguales a cero.Ejemplo:matrices5
Multiplicación de matrices:Como ya se había visto en el capítulo anterior, un sistema de ecuaciones lineales, por ejemplo		2x1 - 3x2=7				3x1 - x2=2,tiene asociado una matriz A correspondiente a las incógnitas, y un vector b correspondiente a los términos independientes, es decir, Si ahora se escriben las incógnitas como un vector se puede denotar el sistema de ecuaciones lineales como     Ax=b,es decirEsta última ecuación sugiere la noción de multiplicación de una matriz A por un vector columna x. Como noción preliminar, se introducirá el concepto de producto escalar o producto punto de dos vectores.matrices6
Definición (Producto punto o escalar):Sean a un vector 1xn  y b un vector nx1, es decir, entonces el producto punto o escalar, denotado como a.b o <a,b> se define comoEjemplo:matrices7
Columna 3Fila 2Posición c23Definición (Multiplicación de matrices):Sean A={aik} una matriz de dimensión mxn y  B={bkj}  una matriz de dimensión nxs. El productoAB es la matriz C={cij} de dimensión mxs, donde la entrada cij de C es el producto punto de la i-ésima fila de A y la j-ésima columna de B.Nota: Obsérvese que el producto de dos matrices está definido solamente cuando el número de columnas de A es igual al número de filas de B.Ejemplo:		(-3)(5) + (5)(0) + (8)(2) = 1matrices8
En general, el elemento cij está dado porPor ejemplo, si A3x4 , B4x7 , C7x3 , los productos AB3x7, BC4x3 y CA7x4 están definidos, mientras que no es posible multiplicar BA, AC y CB. Debe observarse que el producto de matrices en general no es conmutativa, esto es, aún cuando los productos AB y BA están definidos, no es necesariamente cierto que AB=BA, como muestra el siguiente ejemplomatrices9
Algunas veces es deseable calcular una fila o una columna particular del producto AB. El siguiente resultado permite obtenerlas:* La j-ésima columna del producto AB=A[j-ésima columna de la matriz B]* La i-ésima fila del producto AB=[i-ésima fila de la matriz A]BEjemplos:matrices10
De este último ejemplo se puede concluir que la j-ésima columna del producto AB puede verse como una combinación de las columnas de la matriz A con los coeficientes de la j-ésima columna de la matriz B.matrices11
3.3 Propiedades de las operaciones con matricesPropiedades del producto punto o escalara) Propiedad conmutativau . v = v . ub) Propiedad distributivau. (v + w) = u . v + u . wc) Propiedad homogénea		(ru) . v = u . (r v) = r (u . v)Propiedades de las transpuestasa) Transpuesta de la transpuesta		( AT )T  = Ab) Transpuesta de la suma		( A + B )T = AT + BTc) Transpuesta del producto		( AB )T  = BT ATmatrices12
Propiedades de la aritmética matriciala) Conmutatividad de la sumaA+B =B+Ab) Asociatividad de la suma	  	                     (A + B) + C = A + (B + C)c) Identidad para la sumaA + O = O + A = Ad) Ley distributiva izquierdar (A + B) = r A + r Be) Ley distributiva derecha			       (r + s) A = rA + sAf) Asociatividad del producto por un escalar	       (r.s) A = r (sA)g) Asociatividad del producto de matricesA(BC) = (AB)Ch) Producto por matriz identidadI A = A   y  B I = Bi) Ley distributiva izquierdaA (B + C) = AB + ACj) Ley distributiva derecha			       (A + B) C = AC + BCmatrices13
3.4 La inversa de una matrizRecordando que un sistema de n ecuaciones lineales con n incógnitas            x1 ,x2 ,....,xn se puede expresar en la forma matricialAx=bdonde A es la matriz de coeficientes de nxn, x es el vector columna de nx1y b es el vector columna de nx1 de valores constantes, se puede pensar que una manera de resolver esta ecuación sería hallar una matriz C tal que CA=I, de modo que C(Ax)=Cb (CA)x=Cb  Ix=Cb  x=CbLo cual muestra que la solución al vector de incógnitas x debe ser el vector columnaCb. La cuestión es saber cuándo existe una matrizCde nxn tal queCA=I.matrices14
Por ejemplo, para la matriz		no es difícil verificar que la matrizsatisface que Se dice entonces que la matriz C es unainversade la matriz A. Esto se define enseguida:Definición (Inversa de una matriz):Sea A una matriz nxn. Una matriz C de nxn es unainversade A si CA=AC=I.Teorema:Sea A una matriz nxn con inversa C  tal que CA=AC=I. Si D es otra matriz nxn tal que AD=I, entonces C=D.Demostración:Como la multiplicación de matrices es asociativa, se tiene que            C(AD)=(CA)D, de donde, como AD=I y CA=I, se tiene que            C(AD)=CI=C y (CA)D=ID=D, por tanto, C=D.matrices15
Se denotará la inversa de una matriz A, cuando exista, comoA-1. Entonces A A-1  = A-1 A = I.  Nótese que no se debe expresar A-1 como 1/A. Definición:Una matriz cuadrada que tiene inversa se llamainvertible. Una matriz cuadrada que no tiene inversa se llamasingular.Teorema:La matrizes invertible si ad - bc0, en cuyo caso la inversa está dada por la fórmulaTeorema:Sean A y B matrices invertibles nxn. Entonces:		a) AB es invertible		b) (AB)-1   = B-1  A-1matrices16
Definición:Si A es una matriz cuadrada, entonces se definen las potencias de A comoMás aún, si A es invertible, entoncesTeorema:Si A es una matriz cuadrada y r y s son enteros, entoncesTeorema:Si A es una matriz cuadrada invertible, entoncesa) A-1 es invertible y (A-1 )-1 = A.b) An es invertible y (An )-1  = (A-1 )n  para n=0,1,2,....c) Para cualquier escalar k>0, la matriz kA es invertible y (kA)-1 = (1/k)A-1.matrices17
Cálculo de las inversas:Sea A={aij}una matriz nxn. Para hallar A-1 si es que existe, se debe encontrar una matriz X={xij} nxn tal que AX=I, esto es, tal queEsto es un sistema de ecuaciones con n vectores de incógnitas, y entonces es posible aplicar el Método de Gauss-Jordan para encontrar la inversa de A. La idea es transformar, por medio de operaciones elementales por filas, la matriz aumentada del sistema (A,I) a un sistema (I, A-1)A-1(A,I)    (A-1  A,A-1 I)   (I, A-1)matrices18
O sea, lo siguiente:A                   IOperaciones elementales por filas (Método de Gauss-Jordan)I                   A-1matrices19
Solución del sistema de ecuaciones Ax=b¿Cuando el sistema de ecuaciones con el mismo número de incógnitas que ecuacionesAx=btiene solución única?Evidentemente, de la discusión anterior, la solución es única cuando la transformación de Gauss-Jordan lleva a una matriz identidad, en cuyo caso la solución es de la forma x=A-1b.En el caso de la ecuaciónAx=0,esta tiene solución única si y solo si A-1 existe. Sin embargo, en este último caso, si la reducción de Gauss-Jordan lleva a una fila con todos los elementos iguales a cero, entonces habrá infinitas soluciones. En el caso de que el elemento del vector b correspondiente sea diferente de cero, entonces no habrá solución.matrices20
Ejercicios: a) Determine si el producto de dos matrices simétricas es simétricab) Demuestre que si una matriz A es simétrica  e invertible, entonces la inversa es simétrica.c) Demuestre que si A y B son matrices simétricas, entonces la transpuesta de A es simétrica y que A+B y A-B son simétricas.d) ¿Cómo es la transpuesta de una matriz triangular superior?e) ¿Cuando una matriz triangular (superior o inferior) es invertible?¿cómo es la respectiva inversa?matrices21
Aplicación: Distribución de poblaciónConsideremos situaciones en las que se por alguna razón se divide un conjunto (una población) en varios subconjuntos de acuerdo a una regla dada. Tómese por ejemplo el caso de que se divide a los ciudadanos de un país de acuerdo con sus ingresos en pobres, ingreso medio y ricos. Otro ejemplo es la división de los habitantes de México de acuerdo con el clima en el que viven: caluroso, templado, frío. En general se hablará de la población (ciudadanos de un país, habitantes de México) y de los estados (pobres, ingresos medios, ricos; caluroso, templado, frío).Con frecuencia las poblaciones constan de personas, pero pueden constar de la población de automóviles, de presas-predadores, etc.El interés aquí consiste en determinar como la distribución de población puede cambiar de estado durante un período de tiempo (cuantos pobres se vuelven ricos, cuántos de ingresos medios se vuelven pobres y cuántos ricos, etc.). Las matrices pueden desempeñar un papel importante en este análisis.matrices22
La tendencia de una población a moverse entre n estados se puede describir mediante una matriz nxn. Considérese una población distribuida entre n=3 estados 1,2 y 3. Se asumirá que se conoce la proporción de la población que se encuentra en un estado jque se mueve al estado ien un determinado periodo de tiempo. Esto se denotará como tij. La matriz formada con todos los elementos tijse llamará una matriz de transición.Tomemos como ejemplo la clasificación de un país en los estados:Estado 1: PobresEstado 2: ingresos mediosEstado 3: RicosSupóngase que en un periodo de 20 años (alrededor de una generación), se tienen los siguientes datos para la población y su descendencia:a) De la gente pobre, el 19% pasó a ingresos medios y el 1% a ricosb) De la gente de ingresos medios, el 15% pasó a pobre y el 10% a ricos.c) De la gente rica, el 5% pasó a pobre, y el 30% a ingresos medios.Entonces se pueden escribir las siguientes transiciones:matrices23
mediopobrericopobremedioricot11 = .8  (80% permaneció pobre);t12 = .19 (19% de pobre a ingresos medios)t13 = .01 (1% de pobre a ricos)t21 = .15 (15% de ingresos medios a pobre )t22 = .75 (75% permaneció en ingresos medios)t23 = .10 (10% de ingresos medios a  ricos)t31 = .05 (5% de  ricos a pobres)t32 = .30 (30% de  ricos a ingresos medios)t33 = .19 (19% permaneció ricos)por lo cual la matriz de transición está dada porObsérvese que la suma de las entradas de cada columna es igual a 1, pues la suma refleja el movimiento de toda la población durante el periodo de tiempo.matrices24
Supóngase que las proporciones iniciales de toda la población están dadas en el vector x(0) de dimensión nx1, por ejemplo indicaría que el total de la población estaría inicialmente dividida por igual entre los estados. También la suma de las entradas de este vector x(0) debe ser igual a 1. Ahora bien, ¿cuál es la proporción de la población que se encuentra en el estado 1 después del periodo de 20 años? Para esto, la proporción de la población del estado 1 que permanece en el estado 1 es t11 , por lo que la contribución a la proporción de toda la población que se encontrará en el estado 1 después de 20 años es precisamente t11 x1(0). De la misma manera la contribución de los estados 2 y 3 será t12 x2(0) y t13 x3(0) respectivamente. Así, después de 20 años, la proporción del estado 1 es  t11 x1(0) + t12 x2(0) +  t13 x3(0),que es precisamente el primer elemento del producto matrices25
De manera similar se hallan las componentes de población del estado 2 y el estado 3 después de un periodo de tiempo.Supongamos ahora que la misma matriz de transición es válida para os siguientes 20 años, y también para los sucesivos periodos, esto es, existe una sucesión o cadena de periodos de 20 años para los cuales es válida la matriz de transición. Una situación así se llama una cadena de Markov.Definición: Una matriz de transición para una cadena de Markov de n estados es una matriz de nxn con todos las entradas no negativas y con la propiedad adicional de que la suma de las entradas de cada columna es igual a 1.Las cadenas de Markov aparecen de manera natural en biología, economía, psicología, y en muchas otras áreas. La entrada tij en una matriz de transición T se conoce como la probabilidad de pasar del estado j al estado i en un periodo de tiempo.Ejemplo: Analizar la matriz matrices26
Retomado el ejemplo anterior, si se quiere calcular el valor del estado después de un periodo, tomando como condición inicial el vector anterior, entonces este estado, que denotaremos como x(1), será:Asimismo, el estado x(2) después de otro periodo de 20 años será:Nótese que el vector de estados x(2) = T x(1), pero dado que x(1) = T x(0), entonces x(2)  puede también escribirse como x(2) = T2 x(0), con T2 dada pormatrices27
Esto se puede extender a m periodos, es decir, una cadena de Markov con matriz de transición T, tiene Tm como matriz de transición para m periodos, y el estado después de m periodos está dado por x(m)=Tmx(0).Definición:Una matriz de transición T es regular si para algún entero m, la matriz Tm no tiene ninguna entrada igual a cero. Una cadena de Markov con una matriz de transición regular se llama cadena regular.Ejemplo: Verificar la matriz de transición del ejemplo anterior.Es posible demostrar que si una cadena de Markov es regular, entonces después de muchos periodos de tiempo (o cuando el tiempo tiende al infinito) , la distribución de población entre los estados tiende a un valor fijo, o estado estacionario.Teorema: Sea T una matriz de transición  regular. Entonces existe un única vector columna s con entradas estrictamente positivas cuya suma es igual a 1 tal que satisfacea) Para m suficientemente grande, todas las columna de Tm tienden al vector sb) Ts = smatrices28
En conclusión, para obtener el estado estacionario es necesario resolver la ecuación			 Ts = so lo que es lo mismo, la ecuación (T - I) s = 0que puede resolverse usando el Método de Gauss-Jordan, verificando que la suma de las entradas del vector s sea igual a 1.En resumen, para resolver este tipo de problemas, hay que efectuar el procedimiento siguiente:Paso 1: Escribir la matriz de transición T.Paso 2: Verificar que la cadena de Markov es regular, esto es, Tm no tiene entradas cero para algún m.Paso 3: Resolver la ecuación  (T - I) s =0   con la restricción              s1 + s2 + ...+ sn = 1.matrices29
No carnecarneNo carnecarneEjemplo: Los habitantes de una comunidad con tendencias vegetarianas acuerdan las reglas siguientes:a) Nadie comerá carne dos días seguidosb) Una persona que no coma carne un día, lanzará una moneda legal al aire y comerá carne el día siguiente si y solo si, sale cruz.Determinar la proporción de la población que no comen carne y las que sí comen carne.Solución: La matriz de transición esAsimismo, 				por lo que la cadena de Markov es regular.Resolviendo la matriz aumentada		       se tiene que  s1 = 2t; s2 = t, lo que, junto con la restriccións1  + s2 = 1, resulta en 2t + t = 1, de donde t=1/3 y en consecuencia, el estado estacionario es matrices30

Unidad 2 matrices

  • 1.
    Matrices3.1 El conceptode matriz3.2 Operaciones con matrices3.3 Propiedades de las operaciones con matrices3.4 La inversa de una matriz3.5 Aplicación: Distribución de poblaciónmatrices1
  • 2.
    3.1El concepto dematrizComo se vio en el capítulo anterior, la solución de sistemas de ecuaciones lineales puede hallarse eficientemente utilizando solamente los coeficientes de las incógnitas asociadas a los sistemas lineales. Este ordenamiento de números se conoce como una matriz, y los elementos de esta matriz se llaman entradasde la matriz. Ejemplos de matrices son:El tamaño o dimensión de una matriz de define como el número de filas por el número de columnas. En el ejemplo, la primera matriz es de dimensión 3x2, la segunda es de 3x3, la tercera es de 1x4 y la cuarta es de 4x1. Si una matriz es de dimensión 1xn, como en el tercer ejemplo, se llamará un vector fila, mientras que una matriz nx1, como en el cuarto ejemplo, se llamará un vector columna. En general se usarán las primeras letras mayúsculas del alfabeto para denotar una matriz, es decir, se escribirán como A, B, C, etc.. Las entradas de una matriz se denotarán como aijy representarán la entrada que se encuentra en la fila i-ésima y la columna j-ésima.matrices2
  • 3.
    Entonces, en generaluna matriz de dimensión mxn se puede representar comoSi la matriz es de dimensión nxn, se llama matriz cuadrada de orden n, y las entradas a11, a22, ....,ann se dice que están sobre la diagonal principal de A.Dos matrices son iguales si tienen la misma dimensión y las entradas correspondientes son iguales. Una matriz es cero, denotada con O, si todas sus entradas son idénticamente igual a cero.matrices3
  • 4.
    3.2 Operaciones conmatricesDefinición (Suma de matrices): Sean A={aij} y B={bij} matrices de la misma dimensión mxn. La sumaA+B es la matriz C={cij} de dimensión mxn, dondecij= aij + bij ,esto es, la suma de las entradas correspondientes.Ejemplo:Definición (Producto de una matriz por un escalar): Sea A={aij} una matriz mxn y r un escalar. El producto rA del escalar r y la matriz A es la matriz B={bij} de la misma dimensión de A tal que bij = r aijEjemplo:matrices4
  • 5.
    Definición (Matriz transpuesta):Sea A={aij} una matriz mxn. La matriz transpuesta, denotada como AT, es la matriz cuyas columnas son las filas de A. Una matriz simétrica es aquella que es igual a su transpuesta, es decir, A=AT. Evidentemente una matriz simétrica tiene que ser cuadrada.Ejemplos:Definición (Matriz Identidad): La matriz identidad de dimensión nxn, denotada In , es la matriz cuyos elementos sobre la diagonal principal es igual a 1, y todas las otras entradas son iguales a cero.Ejemplo:matrices5
  • 6.
    Multiplicación de matrices:Comoya se había visto en el capítulo anterior, un sistema de ecuaciones lineales, por ejemplo 2x1 - 3x2=7 3x1 - x2=2,tiene asociado una matriz A correspondiente a las incógnitas, y un vector b correspondiente a los términos independientes, es decir, Si ahora se escriben las incógnitas como un vector se puede denotar el sistema de ecuaciones lineales como Ax=b,es decirEsta última ecuación sugiere la noción de multiplicación de una matriz A por un vector columna x. Como noción preliminar, se introducirá el concepto de producto escalar o producto punto de dos vectores.matrices6
  • 7.
    Definición (Producto puntoo escalar):Sean a un vector 1xn y b un vector nx1, es decir, entonces el producto punto o escalar, denotado como a.b o <a,b> se define comoEjemplo:matrices7
  • 8.
    Columna 3Fila 2Posiciónc23Definición (Multiplicación de matrices):Sean A={aik} una matriz de dimensión mxn y B={bkj} una matriz de dimensión nxs. El productoAB es la matriz C={cij} de dimensión mxs, donde la entrada cij de C es el producto punto de la i-ésima fila de A y la j-ésima columna de B.Nota: Obsérvese que el producto de dos matrices está definido solamente cuando el número de columnas de A es igual al número de filas de B.Ejemplo: (-3)(5) + (5)(0) + (8)(2) = 1matrices8
  • 9.
    En general, elelemento cij está dado porPor ejemplo, si A3x4 , B4x7 , C7x3 , los productos AB3x7, BC4x3 y CA7x4 están definidos, mientras que no es posible multiplicar BA, AC y CB. Debe observarse que el producto de matrices en general no es conmutativa, esto es, aún cuando los productos AB y BA están definidos, no es necesariamente cierto que AB=BA, como muestra el siguiente ejemplomatrices9
  • 10.
    Algunas veces esdeseable calcular una fila o una columna particular del producto AB. El siguiente resultado permite obtenerlas:* La j-ésima columna del producto AB=A[j-ésima columna de la matriz B]* La i-ésima fila del producto AB=[i-ésima fila de la matriz A]BEjemplos:matrices10
  • 11.
    De este últimoejemplo se puede concluir que la j-ésima columna del producto AB puede verse como una combinación de las columnas de la matriz A con los coeficientes de la j-ésima columna de la matriz B.matrices11
  • 12.
    3.3 Propiedades delas operaciones con matricesPropiedades del producto punto o escalara) Propiedad conmutativau . v = v . ub) Propiedad distributivau. (v + w) = u . v + u . wc) Propiedad homogénea (ru) . v = u . (r v) = r (u . v)Propiedades de las transpuestasa) Transpuesta de la transpuesta ( AT )T = Ab) Transpuesta de la suma ( A + B )T = AT + BTc) Transpuesta del producto ( AB )T = BT ATmatrices12
  • 13.
    Propiedades de laaritmética matriciala) Conmutatividad de la sumaA+B =B+Ab) Asociatividad de la suma (A + B) + C = A + (B + C)c) Identidad para la sumaA + O = O + A = Ad) Ley distributiva izquierdar (A + B) = r A + r Be) Ley distributiva derecha (r + s) A = rA + sAf) Asociatividad del producto por un escalar (r.s) A = r (sA)g) Asociatividad del producto de matricesA(BC) = (AB)Ch) Producto por matriz identidadI A = A y B I = Bi) Ley distributiva izquierdaA (B + C) = AB + ACj) Ley distributiva derecha (A + B) C = AC + BCmatrices13
  • 14.
    3.4 La inversade una matrizRecordando que un sistema de n ecuaciones lineales con n incógnitas x1 ,x2 ,....,xn se puede expresar en la forma matricialAx=bdonde A es la matriz de coeficientes de nxn, x es el vector columna de nx1y b es el vector columna de nx1 de valores constantes, se puede pensar que una manera de resolver esta ecuación sería hallar una matriz C tal que CA=I, de modo que C(Ax)=Cb (CA)x=Cb  Ix=Cb  x=CbLo cual muestra que la solución al vector de incógnitas x debe ser el vector columnaCb. La cuestión es saber cuándo existe una matrizCde nxn tal queCA=I.matrices14
  • 15.
    Por ejemplo, parala matriz no es difícil verificar que la matrizsatisface que Se dice entonces que la matriz C es unainversade la matriz A. Esto se define enseguida:Definición (Inversa de una matriz):Sea A una matriz nxn. Una matriz C de nxn es unainversade A si CA=AC=I.Teorema:Sea A una matriz nxn con inversa C tal que CA=AC=I. Si D es otra matriz nxn tal que AD=I, entonces C=D.Demostración:Como la multiplicación de matrices es asociativa, se tiene que C(AD)=(CA)D, de donde, como AD=I y CA=I, se tiene que C(AD)=CI=C y (CA)D=ID=D, por tanto, C=D.matrices15
  • 16.
    Se denotará lainversa de una matriz A, cuando exista, comoA-1. Entonces A A-1 = A-1 A = I. Nótese que no se debe expresar A-1 como 1/A. Definición:Una matriz cuadrada que tiene inversa se llamainvertible. Una matriz cuadrada que no tiene inversa se llamasingular.Teorema:La matrizes invertible si ad - bc0, en cuyo caso la inversa está dada por la fórmulaTeorema:Sean A y B matrices invertibles nxn. Entonces: a) AB es invertible b) (AB)-1 = B-1 A-1matrices16
  • 17.
    Definición:Si A esuna matriz cuadrada, entonces se definen las potencias de A comoMás aún, si A es invertible, entoncesTeorema:Si A es una matriz cuadrada y r y s son enteros, entoncesTeorema:Si A es una matriz cuadrada invertible, entoncesa) A-1 es invertible y (A-1 )-1 = A.b) An es invertible y (An )-1 = (A-1 )n para n=0,1,2,....c) Para cualquier escalar k>0, la matriz kA es invertible y (kA)-1 = (1/k)A-1.matrices17
  • 18.
    Cálculo de lasinversas:Sea A={aij}una matriz nxn. Para hallar A-1 si es que existe, se debe encontrar una matriz X={xij} nxn tal que AX=I, esto es, tal queEsto es un sistema de ecuaciones con n vectores de incógnitas, y entonces es posible aplicar el Método de Gauss-Jordan para encontrar la inversa de A. La idea es transformar, por medio de operaciones elementales por filas, la matriz aumentada del sistema (A,I) a un sistema (I, A-1)A-1(A,I)  (A-1 A,A-1 I)  (I, A-1)matrices18
  • 19.
    O sea, losiguiente:A IOperaciones elementales por filas (Método de Gauss-Jordan)I A-1matrices19
  • 20.
    Solución del sistemade ecuaciones Ax=b¿Cuando el sistema de ecuaciones con el mismo número de incógnitas que ecuacionesAx=btiene solución única?Evidentemente, de la discusión anterior, la solución es única cuando la transformación de Gauss-Jordan lleva a una matriz identidad, en cuyo caso la solución es de la forma x=A-1b.En el caso de la ecuaciónAx=0,esta tiene solución única si y solo si A-1 existe. Sin embargo, en este último caso, si la reducción de Gauss-Jordan lleva a una fila con todos los elementos iguales a cero, entonces habrá infinitas soluciones. En el caso de que el elemento del vector b correspondiente sea diferente de cero, entonces no habrá solución.matrices20
  • 21.
    Ejercicios: a) Determinesi el producto de dos matrices simétricas es simétricab) Demuestre que si una matriz A es simétrica e invertible, entonces la inversa es simétrica.c) Demuestre que si A y B son matrices simétricas, entonces la transpuesta de A es simétrica y que A+B y A-B son simétricas.d) ¿Cómo es la transpuesta de una matriz triangular superior?e) ¿Cuando una matriz triangular (superior o inferior) es invertible?¿cómo es la respectiva inversa?matrices21
  • 22.
    Aplicación: Distribución depoblaciónConsideremos situaciones en las que se por alguna razón se divide un conjunto (una población) en varios subconjuntos de acuerdo a una regla dada. Tómese por ejemplo el caso de que se divide a los ciudadanos de un país de acuerdo con sus ingresos en pobres, ingreso medio y ricos. Otro ejemplo es la división de los habitantes de México de acuerdo con el clima en el que viven: caluroso, templado, frío. En general se hablará de la población (ciudadanos de un país, habitantes de México) y de los estados (pobres, ingresos medios, ricos; caluroso, templado, frío).Con frecuencia las poblaciones constan de personas, pero pueden constar de la población de automóviles, de presas-predadores, etc.El interés aquí consiste en determinar como la distribución de población puede cambiar de estado durante un período de tiempo (cuantos pobres se vuelven ricos, cuántos de ingresos medios se vuelven pobres y cuántos ricos, etc.). Las matrices pueden desempeñar un papel importante en este análisis.matrices22
  • 23.
    La tendencia deuna población a moverse entre n estados se puede describir mediante una matriz nxn. Considérese una población distribuida entre n=3 estados 1,2 y 3. Se asumirá que se conoce la proporción de la población que se encuentra en un estado jque se mueve al estado ien un determinado periodo de tiempo. Esto se denotará como tij. La matriz formada con todos los elementos tijse llamará una matriz de transición.Tomemos como ejemplo la clasificación de un país en los estados:Estado 1: PobresEstado 2: ingresos mediosEstado 3: RicosSupóngase que en un periodo de 20 años (alrededor de una generación), se tienen los siguientes datos para la población y su descendencia:a) De la gente pobre, el 19% pasó a ingresos medios y el 1% a ricosb) De la gente de ingresos medios, el 15% pasó a pobre y el 10% a ricos.c) De la gente rica, el 5% pasó a pobre, y el 30% a ingresos medios.Entonces se pueden escribir las siguientes transiciones:matrices23
  • 24.
    mediopobrericopobremedioricot11 = .8 (80% permaneció pobre);t12 = .19 (19% de pobre a ingresos medios)t13 = .01 (1% de pobre a ricos)t21 = .15 (15% de ingresos medios a pobre )t22 = .75 (75% permaneció en ingresos medios)t23 = .10 (10% de ingresos medios a ricos)t31 = .05 (5% de ricos a pobres)t32 = .30 (30% de ricos a ingresos medios)t33 = .19 (19% permaneció ricos)por lo cual la matriz de transición está dada porObsérvese que la suma de las entradas de cada columna es igual a 1, pues la suma refleja el movimiento de toda la población durante el periodo de tiempo.matrices24
  • 25.
    Supóngase que lasproporciones iniciales de toda la población están dadas en el vector x(0) de dimensión nx1, por ejemplo indicaría que el total de la población estaría inicialmente dividida por igual entre los estados. También la suma de las entradas de este vector x(0) debe ser igual a 1. Ahora bien, ¿cuál es la proporción de la población que se encuentra en el estado 1 después del periodo de 20 años? Para esto, la proporción de la población del estado 1 que permanece en el estado 1 es t11 , por lo que la contribución a la proporción de toda la población que se encontrará en el estado 1 después de 20 años es precisamente t11 x1(0). De la misma manera la contribución de los estados 2 y 3 será t12 x2(0) y t13 x3(0) respectivamente. Así, después de 20 años, la proporción del estado 1 es t11 x1(0) + t12 x2(0) + t13 x3(0),que es precisamente el primer elemento del producto matrices25
  • 26.
    De manera similarse hallan las componentes de población del estado 2 y el estado 3 después de un periodo de tiempo.Supongamos ahora que la misma matriz de transición es válida para os siguientes 20 años, y también para los sucesivos periodos, esto es, existe una sucesión o cadena de periodos de 20 años para los cuales es válida la matriz de transición. Una situación así se llama una cadena de Markov.Definición: Una matriz de transición para una cadena de Markov de n estados es una matriz de nxn con todos las entradas no negativas y con la propiedad adicional de que la suma de las entradas de cada columna es igual a 1.Las cadenas de Markov aparecen de manera natural en biología, economía, psicología, y en muchas otras áreas. La entrada tij en una matriz de transición T se conoce como la probabilidad de pasar del estado j al estado i en un periodo de tiempo.Ejemplo: Analizar la matriz matrices26
  • 27.
    Retomado el ejemploanterior, si se quiere calcular el valor del estado después de un periodo, tomando como condición inicial el vector anterior, entonces este estado, que denotaremos como x(1), será:Asimismo, el estado x(2) después de otro periodo de 20 años será:Nótese que el vector de estados x(2) = T x(1), pero dado que x(1) = T x(0), entonces x(2) puede también escribirse como x(2) = T2 x(0), con T2 dada pormatrices27
  • 28.
    Esto se puedeextender a m periodos, es decir, una cadena de Markov con matriz de transición T, tiene Tm como matriz de transición para m periodos, y el estado después de m periodos está dado por x(m)=Tmx(0).Definición:Una matriz de transición T es regular si para algún entero m, la matriz Tm no tiene ninguna entrada igual a cero. Una cadena de Markov con una matriz de transición regular se llama cadena regular.Ejemplo: Verificar la matriz de transición del ejemplo anterior.Es posible demostrar que si una cadena de Markov es regular, entonces después de muchos periodos de tiempo (o cuando el tiempo tiende al infinito) , la distribución de población entre los estados tiende a un valor fijo, o estado estacionario.Teorema: Sea T una matriz de transición regular. Entonces existe un única vector columna s con entradas estrictamente positivas cuya suma es igual a 1 tal que satisfacea) Para m suficientemente grande, todas las columna de Tm tienden al vector sb) Ts = smatrices28
  • 29.
    En conclusión, paraobtener el estado estacionario es necesario resolver la ecuación Ts = so lo que es lo mismo, la ecuación (T - I) s = 0que puede resolverse usando el Método de Gauss-Jordan, verificando que la suma de las entradas del vector s sea igual a 1.En resumen, para resolver este tipo de problemas, hay que efectuar el procedimiento siguiente:Paso 1: Escribir la matriz de transición T.Paso 2: Verificar que la cadena de Markov es regular, esto es, Tm no tiene entradas cero para algún m.Paso 3: Resolver la ecuación (T - I) s =0 con la restricción s1 + s2 + ...+ sn = 1.matrices29
  • 30.
    No carnecarneNo carnecarneEjemplo:Los habitantes de una comunidad con tendencias vegetarianas acuerdan las reglas siguientes:a) Nadie comerá carne dos días seguidosb) Una persona que no coma carne un día, lanzará una moneda legal al aire y comerá carne el día siguiente si y solo si, sale cruz.Determinar la proporción de la población que no comen carne y las que sí comen carne.Solución: La matriz de transición esAsimismo, por lo que la cadena de Markov es regular.Resolviendo la matriz aumentada se tiene que s1 = 2t; s2 = t, lo que, junto con la restriccións1 + s2 = 1, resulta en 2t + t = 1, de donde t=1/3 y en consecuencia, el estado estacionario es matrices30