SlideShare una empresa de Scribd logo
1 de 21
Descargar para leer sin conexión
ANTIDERIVADAS 
INTEGRANTE: VICTOR MASABE 
AGOSTO 2014
INTRODUCCION 
El Concepto operativo de integral se basa en una operación contraria a la derivada a tal razón se debe su nombre de: antiderivada. Las reglas de la derivación son la base que de cada operación de integral indefinida o antiderivada. 
En este sentido es importante tener en cuenta que cuando se invierte algo donde intervienen más de una operación, éstas han de invertirse pero en orden opuesto. Si se considera la operación de ponerse el calcetín y después el zapato, lo inverso será primero quitarse el zapato y luego el calcetín. Cuando tenemos xn, al derivar multiplicamos por el exponente y luego disminuimos éste en una unidad, lo inverso será, primero aumentar el exponente en una unidad y después dividir por el exponente, lo cual es el procedimiento que se toma al resolver una operación de antiderivada, también llamada integral indefinida o primitiva de una función. 
A la hora de hablar de antiderivadas intervienen más elementos como son los llamados máximos y mínimos que básicamente son las alturas a la que llega la curva trazada de una función, la cual puede ser cóncava. Otros de los elementos a mencionar son: la monotonía, valores extremos de una función.
DEFINICION DE ANTIDERIVADAS 
Una antiderivada de una función f(x) es una función cuya derivada es f(x). 
Ejemplos 
 Pues la derivada de x2+4 es 2x, una antiderivada de 2x es x2+4. 
 Pues la derivada de x2+30 es 2x también, una otra antiderivada de 2x es x2+30. 
 En forma parecida, una otra antiderivada de 2x es x2-49. 
 En forma parecida, una otra antiderivada de 2x es x2 + C, donde C es cualquier constante (positiva, negativa, o cero) 
In fact: 
Cada antiderivada de 2x tiene la forma x2 + C, donde C es constante. 
Principio del formulario 
P Pues la derivada de x4+C es 4x3, 
Integral indefinida 
Llamamos al conjunto de todas antiderivadas de una función la integral indefinida de la función. Escribimos la integral indefinida de la función f como 
f(x) dx 
y la leemos como "la integral indefinida de f(x) respecto a x" Por lo tanto, 
f(x) dx es una conjunto de funciones; no es una función sola, ni un número. La función f que se está integrando se llama el integrando, y la variable x se llama la variable de integración. 
Ejemplos 
2x dx = x2 + C 
La intgegral indefinida de 2x respecto a x es x2 + C 
4x3 dx = x4 + C 
La integral indefinida de 4x3 respecto a x es x4 + C 
Leyendo la formula 
Leemos la primera formula más arriba como sigue: 2x dx = x2 + C La antiderivada de 2x, respecto a x, es igual a x2 + C 
La constante de integración, C, nos recuerda que podemos añadir cualquiera constante y así obtener una otra antiderivada.
ORIGEN 
En la Antigua Grecia, los grandes matemáticos idearon un proceso mediante el cual podían hallar el área de cualquier figura, siempre y cuando ésta pudiese ser dividida en otras figuras geométricas más elementales (como triángulos); este era conocido como el Método Agotamiento. 
Este método era relativamente ingenioso, pero aún estaba lejos de la presentación formal de la integral, además de que presentaba fallas cuando se quería hallar el área de una figura curva. 
Los griegos competían con el fin de encontrar un método general de cuadraturas, un proceso mediante el cual pudieran hallar el área de cualquier figura curva, un proceso que les permitiera cuadrar cualquier forma bidimensional…No lo lograron. 
Aún sí, cabe destacar el logro de uno de dichos matemáticos: Arquímides de Siracusa (287a.C. – 212a.C.), quien mediante un ingenioso argumento geométrico, descubrió que el área del segmento de parábola desde x=0 hasta x=t es igual a (1/3)t^3. Hoy en día sabemos que esto es igual a la integral de 0 a t de la función x^2, que es la función que define una parábola. Él no lo sabía, su demostración fue puramente geométrica.
Más o menos a partir del siglo III d.C. (suceso relacionado con la destrucción de la Biblioteca de Alejandría) no pasó mucho con respecto al desarrollo del cálculo por un buen tiempo…Pero afortunadamente, después del Oscurantismo, a partir del Renacimiento y la Ilustración, momento en el que renacieron los ideales jónicos y en países como Holanda se abrazaron la ciencia y la técnica, el desarrollo de la Humanidad desde un punto de vista no místico, y se estimuló el factor psicológico de las sociedades hacia la admiración por el conocimiento, aparecieron personajes como Kepler, Pierre de Fermat, René Descartes, entre otros. Todos ellos hicieron aportes al descubrimiento del cálculo; por ejemplo Pierre de Fermat y René Descartes combinaron Álgebra y Geometría para expresar figuras geométricas con ecuaciones algebraicas, de ahí viene el plano cartesiano. 
Entre los siglos XVII y XVIII aparecieron los dos personajes que darían por fin solución al problema que plantearon los Antiguos Griegos: Sir Isaac Newton y Gottfried Leibniz. Desafortunadamente, este par nunca llegó a conocerse personalmente, aunque mantenían contacto por correspondencia, pero nunca trabajaron juntos, sino que se limitaron a competir entre ellos. Cada uno inventó su propia versión del cálculo (casi en paralelo), Newton se lo guardó todo durante unos treinta años, mientras que Leibniz publicó su trabajo sin tapujos. 
Por razones que me atrevo a calificar de excesivamente retrógradas y bañadas de un elitismo completamente innecesario, Leibniz fue juzgado como culpable ante la acusación de que había plagiado las ideas de Newton de las cartas que éste le enviaba. Se puede decir que esto llevó a Leibniz a morir de amargura (mientras tanto, Newton se vanagloriaba diciendo que había destrozado el corazón de Leibniz). 
Durante casi un siglo prevalecieron las notaciones de Isaac Newton para el Cálculo, basado principalmente en límites de razones, pero eventualmente se empezó a adoptar la notación del Cálculo de Leibniz, el cual, en ciertos aspectos, era mejor que el de Newton. Fue Leibniz quien ideó la notación que hoy en día usamos para las integrales, basándose en la palabra latina summa, que significa suma.
TEOREMAS O PROPIEDADES QUE LO SUSTENTAN 
Resolución de Integrales por Cambio de Variable 
Consiste en igualar una parte del integrando a una nueva variable, por ejemplo u, llamada variable auxiliar. Luego de esto, se debe calcular la derivada de la variable auxiliar y realizar las operaciones necesarias, para que ni en el integrando ni en el diferencial, aparezca alguna expresión en términos de la variable original. A esto se le denomina cambio de variable (CDV). 
Luego de hacer efectivo el CDV, por lo general, se obtienen integrales más sencillas que la original, las cuales se resuelven aplicando lo aprendido en el método anterior. Por esta razón, es necesario que el lector haya estudiado detalladamente dicho método puesto que en la solución de los ejemplos de esta parte de la obra, no se incluye una explicación específica de este contenido que ya debe ser parte de sus redes conceptuales. 
Es importante señalar que el resultado de la integración, debe estar en función de las variables originales por lo que se acostumbra a emplear el término “devolviendo el cambio de variable” para reseñar el proceso mediante el cual la variable auxiliar desaparece de la respuesta definitiva. 
A continuación se presenta un conjunto de ejemplos, cuya función es introducir este segundo método de integración. 
Ejemplo 1 
Resolver la siguiente integral: 
Solución 
 Método a emplear: Integración por cambio de variable. 
 Regla de integración: Ecuación 1.1 
Desarrollo: 
 En atención a la teoría expuesta, construir la siguiente igualdad: 
u= 2x+6 (1) 
 Debido a (1), la integral original se transforma, momentáneamente en: 
= (2)
 Como la integral a resolver no debe quedar en función de la variable original, se debe expresar adx, en función de du y para ello se: 
 Deriva ambos miembros de (1) para obtener: 
du=2dx 
 Divide la expresión anterior entre 2, obteniéndose: 
(3) 
 Si en (2), se reemplaza a dx por la expresión obtenida en (3) y además se aplica la propiedad 1 de los O.L , se obtiene: 
= = 
 Efectuado el CDV se obtiene una integral inmediata. Para su solución basta con aplicar laEcuación 1.1. Así: 
= 
 Devolviendo el CDV, u=2x+6 , se obtiene la respuesta final. Por tanto: 
Resolución de integrales por partes 
De la fórmula para la derivada del producto de dos funciones, se obtiene el método de integración por partes. Si f y g son funciones diferenciables, entonces: 
Ahora, si se aplican integrales a cada miembro de esta ecuación, se tiene que: 
Integrando, lo que es posible integrar, se obtiene:
La Ecuación (*) se llama fórmula para integración por partes. Frecuentemente, se utiliza una expresión equivalente a (*), la cual se obtiene al realizar los siguientes cambios de variable: 
y 
Al hacer las derivadas de u y v, respectivamente, se obtiene: 
y 
Así que la ecuación (*) se transforma en: 
(Ecuación 1.6) 
La Ecuación 1.6 expresa la integral en términos de otra integral, , la cual por lo general, se resuelve más fácilmente que la integral original. 
Para aplicar la integración por partes, es necesario elegir adecuadamente la parte del integrando que se va a tomar como u. Es importante resaltar que una vez hecha la elección de u, todo lo que queda dentro la integral es dv. Para efectos de hacer la mencionada elección, es conveniente tener en cuenta los dos criterios siguientes: 
1. la parte que se iguala a dv debe ser fácilmente integrable. 
2. no debe ser más complicada que 
En la práctica, el proceso de elegir una expresión para u y otra para dv no es siempre sencillo y no existe una técnica general para efectuar dicho proceso. Sin embargo, en el desarrollo de la presente obra se hará uso de una Regla EMPIRICA de gran ayuda pero de carácter NO GENERAL, denominada I.L.A.T.E., para hacer la mencionada elección. 
La única deficiencia de I.L.A.T.E., es que - en algunos casos - al hacer la elección de u, indicada por la mencionada regla, el proceso de desarrollo del ejercicio puede entrar
en un ciclo infinito, que no permite obtener la solución correspondiente. Si esto ocurre, se debe detener el proceso y hacer una elección contraria a la hecha originalmente. 
Las siglas de I.L.A.T.E., significan lo siguiente: 
I = Funciones Inversas. 
L = Funciones Logarítmicas. 
A = Funciones Algebraicas. 
T = Funciones Trigonométricas. 
E = Funciones Exponenciales. 
La regla I.L.A.T.E., se utiliza única y exclusivamente para realizar la mencionada elección, teniendo que recurrir a la ecuación 1.6 y los métodos ya expuestos, para resolver cualquier ejercicio relativo al presente tópico. Por esta razón, es conveniente que el lector haya estudiado - detalladamente - los dos métodos anteriores, puesto que en la solución de los ejemplos de esta parte de la obra, no se incluye una explicación específica de esos contenidos. 
Para ilustrar como se usa I.L.A.T.E., se presenta la siguiente situación: 
Supóngase que piden resolver la siguiente integral: 
Obsérvese que el integrando está compuesto por dos funciones, una Algebraica (x) y otra Exponencial (e-x). Se buscan las iniciales A y E en la palabra I.L.A.T.E. Como en ella, leyendo de izquierda a derecha, aparece primero la letra A, se elige como u la función Algebraica, es decir, u = x. Por lo tanto, lo que queda dentro de la integral es dv. Así: 
Resolución de integrales por partes 
De la fórmula para la derivada del producto de dos funciones, se obtiene el método de integración por partes. Si f y g son funciones diferenciables, entonces: 
Ahora, si se aplican integrales a cada miembro de esta ecuación, se tiene que:
Integrando, lo que es posible integrar, se obtiene: 
La Ecuación (*) se llama fórmula para integración por partes. Frecuentemente, se utiliza una expresión equivalente a (*), la cual se obtiene al realizar los siguientes cambios de variable: 
y 
Al hacer las derivadas de u y v, respectivamente, se obtiene: 
y 
Así que la ecuación (*) se transforma en: 
(Ecuación 1.6) 
La Ecuación 1.6 expresa la integral en términos de otra integral, , la cual por lo general, se resuelve más fácilmente que la integral original. 
Para aplicar la integración por partes, es necesario elegir adecuadamente la parte del integrando que se va a tomar como u. Es importante resaltar que una vez hecha la elección de u, todo lo que queda dentro la integral es dv. Para efectos de hacer la mencionada elección, es conveniente tener en cuenta los dos criterios siguientes: 
1. la parte que se iguala a dv debe ser fácilmente integrable. 
2. no debe ser más complicada que
En la práctica, el proceso de elegir una expresión para u y otra para dv no es siempre sencillo y no existe una técnica general para efectuar dicho proceso. Sin embargo, en el desarrollo de la presente obra se hará uso de una Regla EMPIRICA de gran ayuda pero de carácter NO GENERAL, denominada I.L.A.T.E., para hacer la mencionada elección. 
La única deficiencia de I.L.A.T.E., es que - en algunos casos - al hacer la elección de u, indicada por la mencionada regla, el proceso de desarrollo del ejercicio puede entrar en un ciclo infinito, que no permite obtener la solución correspondiente. Si esto ocurre, se debe detener el proceso y hacer una elección contraria a la hecha originalmente. 
Las siglas de I.L.A.T.E., significan lo siguiente: 
I = Funciones Inversas. 
L = Funciones Logarítmicas. 
A = Funciones Algebraicas. 
T = Funciones Trigonométricas. 
E = Funciones Exponenciales. 
La regla I.L.A.T.E., se utiliza única y exclusivamente para realizar la mencionada elección, teniendo que recurrir a la ecuación 1.6 y los métodos ya expuestos, para resolver cualquier ejercicio relativo al presente tópico. Por esta razón, es conveniente que el lector haya estudiado - detalladamente - los dos métodos anteriores, puesto que en la solución de los ejemplos de esta parte de la obra, no se incluye una explicación específica de esos contenidos. 
Para ilustrar como se usa I.L.A.T.E., se presenta la siguiente situación: 
Supóngase que piden resolver la siguiente integral: 
Obsérvese que el integrando está compuesto por dos funciones, una Algebraica (x) y otraExponencial (e-x). Se buscan las iniciales A y E en la palabra I.L.A.T.E. Como en ella, leyendo de izquierda a derecha, aparece primero la letra A, se elige como u la función Algebraica, es decir, u = x. Por lo tanto, lo que queda dentro de la integral es dv. Así:
Resolver la siguiente integral: 
Solución 
 Método a emplear: Integración por Partes. 
 Regla de integración: Ecuación 1.3 y 1.6 
Desarrollo: 
 Por la teoría expuesta, conviene hacer las siguientes elecciones: 
u = x (1) y (2) 
 Derivar ambos miembros de (1) para obtener: 
du=dx 
 Aplicar integrales a ambos miembros de (2), para obtener: 
(3) 
 Usando integración directa en el término de la izquierda y el método de CDV, en el término de la derecha de (3), para obtener: 
(4) 
 Reemplazar en la Ecuación 1.6, cada uno de sus factores por las expresiones obtenidas en (1), (2)y (4), para obtener: 
(5) 
 Para resolver la última integral, se efectúa un CDV y se obtiene una integral inmediata. Para su solución, se aplica la Ecuación 1.3. Así: 
= (6) 
 Sustituir (6) en (5) y ordenar el resultado usando factorización. Así: 
= 
 Por tanto, se concluye que:
Resolución De Integrales Por Fracciones Simples o Parciales 
 Este método permite descomponer una integral de la forma: 
 En integrales cuyo integrando, está constituido por expresiones fraccionarias, que por lo general son de fácil solución. 
 Al momento de intentar resolver este tipo de integrales, es importante tener en cuenta los siguientes criterios: 
 Criterio1: Si el numerador de la integral dada, es de menor grado que el denominador, se debe –si es posible- aplicar el proceso defactorización. 
 Criterio2: Si el grado del numerador es mayor o igual que el del denominador, se debe resolver primero la división de polinomios. 
 Para aplicar el Criterio2, es necesario recordar la siguiente información: 
 En una división, se relacionan el Dividendo (D), el divisor (d), el cociente (c) y el resto (r), mediante la siguiente expresión: 
(I) 
 Si se dividen ambos miembros de (I) entre “d” se obtiene: 
 
 Ahora bien, esta última expresión se puede particularizar para polinomios, así: 
 Si p(x) es el dividendo, q(x) el divisor, c(x) el cociente y r(x) el resto, entonces 
 
 
 Aplicando el símbolo integral a ambos miembros y los respectivos diferenciales, se obtiene:
Ecuación1.7 
Ahora, para poder aplicar el Criterio1, es necesario recordar la siguiente información: 
Una fracción simple es cualquier fracción propia de polinomios (el grado del numerador es estrictamente menor que el grado del denominador), cuyo denominador sea de la forma (ax + b)n ó (ax2 + bx + c)n si el polinomio ax2 + bx+ c no tiene raíces reales, y n es un número natural. 
Cuando se deba aplicar el Criterio1, se debe proceder del siguiente modo: 
1. Descomponer factorialmente el polinomio q(x), es decir, se hallan las raíces de la ecuación q(x) = 0. 
Es importante saber, que al realizar la mencionada descomposición, es posible encontrar resultados distintos y éstos se pueden clasificar en cuatro casos: 
Caso1: Factores en el denominador lineales distintos. La integral dada debe escribirse en función de un cociente compuesto por: Constantes (A,B,C, etc) en el numerador y dichos factores en el denominador, como se muestra a continuación: 
Caso2: Factores en el denominador lineales repetidos. La integral dada debe escribirse en función de un cociente compuesto por: Constantes (A,B,C,etc) en el numerador y dichos factores en el denominador, como se muestra a continuación:
Caso3: Factores en el denominador cuadráticos distintos. La integral dada debe escribirse en función de un cociente compuesto por: Polinomios de grado uno, en el numerador y dichos factores en el denominador, como se muestra a continuación: 
Caso4: Factores en el denominador cuadráticos repetidos. La integral dada debe escribirse en función de un cociente compuesto por: Polinomios de grado uno, en el numerador y dichos factores en el denominador, como se muestra a continuación: 
2. Se calculan las constantes que aparecen en cada denominador. Para ello, basta con aplicar cualquiera de los métodos que el lector ha manejado desde su formación pre-universitaria. Estos métodos no serán explicados en la presente obra, puesto que deben ser parte de las redes conceptuales previas del lector. Algunos de ellos son: Sustitución, eliminación, igualación, Coeficientes indeterminados, métodos matriciales (Por ejemplo Gauss-Jordan). 
Nota: Muchas veces la dificultad al resolver integrales por este método, estriba en el cálculo de las mencionadas constantes. El lector debe dominar, por lo menos, una técnica que le permita resolver los sistemas de ecuaciones, que se generan al momento de intentar calcular dichas constantes. 
3. Se integran los sumandos que resulten. Una vez determinadas las mencionadas constantes, se obtienen integrales que - por lo general – se resuelven aplicando los métodos ya expuestos. Por esta razón, es conveniente que el lector haya estudiado - responsablemente - los tres métodos anteriores, puesto que en la solución de los ejemplos de esta parte de la obra, no se incluye una explicación detallada de esos contenidos.
Ejemplo 
Solución 
 Método a emplear: Integración por Fracciones Parciales. 
Desarrollo: 
 De acuerdo al Criterio2, se debe efectuar la división de polinomios y aplicar la Ecuación 1.7se obtiene que: 
(1) 
 La primera integral es inmediata, al resolverla se obtiene: 
(2) 
 Para resolver la segunda integral, se aplica el Criterio1, es decir, se debe factorizar y aplicar el caso 1. Así se obtiene que: 
 Estas dos integrales ya fueron resueltas en el ejercicio anterior. De allí que ahora se pueda escribir, directamente, que: 
(3) 
 Reemplazando en (1), las expresiones (2) y (3), se tiene que:
 Haciendo c = c1+ c2, se concluye que: 
INTEGRACION POR TABLAS 
Solución 
 Método a emplear: Integración por Tablas. 
 Regla de integración: Fórmula # 1 de la Tabla de integrales dada. 
Desarrollo: 
 Al comparar la integral dada con las integrales de la Tabla de Integrales, se establece que la forma que más se adapta a la situación planteada, es la Fórmula #1, la cual viene dada por la siguiente expresión matemática: 
(1) 
 Para aplicar (1), basta con construir las siguientes igualdades: 
= (2) 
Donde: 
 Ahora para obtener una respuesta preliminar, se debe reemplazar en (2) lo establecido en (3), (4) y (5), para obtener: 
 Así, se concluye que:
EJEMPLO 
Resolver la siguiente integral: 
Solución 
 Método a emplear: Integración de la sumatoria de funciones e Integración inmediata de funcionespotenciales. 
 Reglas de integración: 
Ecuación 1.2 
y Ecuación1.1 
 Antes de presentar el desarrollo de la integral dada, es necesario recordar que la integral es unoperador lineal y por tanto cumple con las siguientes propiedades: 
1. Las constantes pueden ser extraídas del símbolo integral. 
2. Si el exponente del integrando es uno y está conformado por términos que se están sumando o restando entre si, la integral original puede separarse en tantas integrales como términos posea el integrando. 
Desarrollo: 
 Como el integrando tiene exponente 1 y está conformado por dos términos que se están restando, se puede aplicar la propiedad 2 de un operador lineal (O.L), es decir, la integral original puede ser reemplazada por dos integrales parciales, como se muestra a continuación: 
= 
Así, se ha simplificado el ejercicio original y bastará con resolver cada una de las integrales parciales para obtener la respuesta pedida. 
 En las integrales parciales, se observa la presencia de constantes por lo
cual, en atención a la propiedad 1 de un (O.L), se procede a extraer dichas constantes de cada uno de los símbolos integrales. Así: 
 El diferencial indica que se debe integrar con respecto a la variable y, razón por la cual, se hace pertinente transformar el radical en exponente fraccionario y a su vez, colocar en el numerador, cambiando el signo de su exponente de acuerdo a de las reglas de potenciación, sección2. Obteniéndose: 
 Ahora, basta con recordar y aplicar los pasos desarrollados en el ejercicio anterior para obtener: 
 Resolviendo las operaciones básicas indicadas en la expresión anterior, se tiene que: 
+ 
 Se tomará como norma de uniformidad la siguiente: 
“Los resultados finales de una integral, no deberán contener exponentes fraccionarios ni exponentes negativos” 
(Ver: redes conceptuales previas, seccion 1 y seccion 2) 
Aplicando este criterio, se obtiene:
CONCLUSIONES 
En referencia a las antiderivadas es una operación contraria que es originalmente una derivada. Para lograr resolver estas operaciones es necesario tomar en cuenta muchos recursos aritméticos, esto debido a que no hay un procedimiento específico por el cual se pueda llegar al resultado sino por medio de diferentes operaciones. 
La antiderivada de una función también puede recibir el nombre de integral indefinida o primitiva de una función; cada uno tiene su razón de ser, antiderivada viene dado por qué se hace una operación contraria para llegar a la función original; integral indefinida porque existe una constante C que puede dar como resultado una infinidad de trazados y primitiva porque es una operación que busca el génesis de la función. Todas aunque tienen diferentes nombre relativamente significan lo mismo. 
Una antiderivada se diferencia de una derivada por la existencia de un símbolo llamado integración 
Sus propiedades son muy similares a las de las derivadas, con solo la anexión una propiedad de linealidad. 
Al momento de situarse en la operación intervienen dos valores fundamentales que son máximos y mínimos sean estos relativos o absolutos, su importancia deriva de que mediante el cálculo de ellas se logra saber cuál es la altura máxima, media o mínima al momento de trazar la curva de una función, esto da lugar a la monotonía de la representación que busca la manera de determinar si una función es creciente o decreciente; también da lugar a la concavidad, de forma que este permite descubrir hacia qué dirección es cóncava la figura, mediante el signo de la función, esta puede ser cóncava hacia arriba y cóncava hacia abajo. 
Los valores extremos de una función vienen dados por medio del cálculo de la monotonía, y deja en descubierto la altura máxima y la minima disminución a la horade trazar una curva; dando también a altura medias. 
Es importante este tema porque es un mundo en el que se debe tener mucha concentración y dedicación para llegar a la solución de cada planteamiento.
REFERENCIAS CONSULTADAS 
2000. GRAN ENCICLOPEDIA SALVAT. Tomo 16. Salvat Editores. Leer más: http://www.monografias.com/trabajos73/antiderivadas/antiderivadas2.shtml#ixzz3BAm72XRP 
REFERENCIAS ELECTRONICAS 
Texto Electrónico para la enseñanza integral 
http://davinci.tach.ula.ve/vermig/integral/paginas/metodos/pag36.htm

Más contenido relacionado

La actualidad más candente

Transformaciones lineales
Transformaciones linealesTransformaciones lineales
Transformaciones lineales
Jairo Jaramillo
 
3.2.2 eliminacion gaussiana
3.2.2 eliminacion gaussiana3.2.2 eliminacion gaussiana
3.2.2 eliminacion gaussiana
Roger Burgos
 

La actualidad más candente (20)

S5 Operaciones con funciones
S5 Operaciones con funcionesS5 Operaciones con funciones
S5 Operaciones con funciones
 
Sustitucion de una variable en una integral definida.pptx
Sustitucion de una variable en una integral definida.pptxSustitucion de una variable en una integral definida.pptx
Sustitucion de una variable en una integral definida.pptx
 
Transformaciones lineales
Transformaciones linealesTransformaciones lineales
Transformaciones lineales
 
Aplicaciones de los números complejos
Aplicaciones de los números complejosAplicaciones de los números complejos
Aplicaciones de los números complejos
 
Calculo I La Regla De La Cadena
Calculo I La Regla De La CadenaCalculo I La Regla De La Cadena
Calculo I La Regla De La Cadena
 
Cálculo integral
Cálculo integralCálculo integral
Cálculo integral
 
4 guia 04 semestre 2 limites de funciones
4 guia 04 semestre 2 limites de funciones4 guia 04 semestre 2 limites de funciones
4 guia 04 semestre 2 limites de funciones
 
Limites indeterminados
Limites indeterminadosLimites indeterminados
Limites indeterminados
 
La Transformada De Laplace
La Transformada De LaplaceLa Transformada De Laplace
La Transformada De Laplace
 
Concepto geométrico de la derivada
Concepto geométrico de la derivadaConcepto geométrico de la derivada
Concepto geométrico de la derivada
 
Valor absoluto de un numero real
Valor absoluto de un numero realValor absoluto de un numero real
Valor absoluto de un numero real
 
Unidad 5 calculo
Unidad 5 calculoUnidad 5 calculo
Unidad 5 calculo
 
Transformaciòn de funciones
Transformaciòn de funcionesTransformaciòn de funciones
Transformaciòn de funciones
 
Antiderivadas
AntiderivadasAntiderivadas
Antiderivadas
 
Limites, continuidad y derivadas
Limites, continuidad y derivadasLimites, continuidad y derivadas
Limites, continuidad y derivadas
 
3.2.2 eliminacion gaussiana
3.2.2 eliminacion gaussiana3.2.2 eliminacion gaussiana
3.2.2 eliminacion gaussiana
 
Metodo de biseccion
Metodo de biseccionMetodo de biseccion
Metodo de biseccion
 
Métodos numéricos método de la secante
Métodos numéricos   método de la secanteMétodos numéricos   método de la secante
Métodos numéricos método de la secante
 
Presentacion integrales
Presentacion   integralesPresentacion   integrales
Presentacion integrales
 
Integrales dobles
Integrales doblesIntegrales dobles
Integrales dobles
 

Destacado

Antiderivadas
AntiderivadasAntiderivadas
Antiderivadas
alb_bad96
 
Proyecto Final
Proyecto FinalProyecto Final
Proyecto Final
NickJBo
 
Tema 1 bis. introducción
Tema 1 bis. introducciónTema 1 bis. introducción
Tema 1 bis. introducción
alberto_sanchez
 
Pjx5260 pjwx5150-pjwx5140
Pjx5260 pjwx5150-pjwx5140Pjx5260 pjwx5150-pjwx5140
Pjx5260 pjwx5150-pjwx5140
Maxpromotion
 
Wwf puglia trivellazioni in adriatico, la position wwf
Wwf puglia trivellazioni in adriatico, la position wwfWwf puglia trivellazioni in adriatico, la position wwf
Wwf puglia trivellazioni in adriatico, la position wwf
redazione gioianet
 
Hp secap android
Hp secap androidHp secap android
Hp secap android
rajeshckr
 

Destacado (18)

Libro integrales-resueltas
Libro integrales-resueltasLibro integrales-resueltas
Libro integrales-resueltas
 
Constante de integración
Constante de integraciónConstante de integración
Constante de integración
 
Integral indefinida
Integral indefinidaIntegral indefinida
Integral indefinida
 
Antiderivada
AntiderivadaAntiderivada
Antiderivada
 
Formulas de integracion inmediata 2
Formulas de integracion inmediata 2Formulas de integracion inmediata 2
Formulas de integracion inmediata 2
 
Antiderivadas
AntiderivadasAntiderivadas
Antiderivadas
 
Company Profiel
Company ProfielCompany Profiel
Company Profiel
 
Lifelines at the National Library of New Zealand: A massive multi-touch table...
Lifelines at the National Library of New Zealand: A massive multi-touch table...Lifelines at the National Library of New Zealand: A massive multi-touch table...
Lifelines at the National Library of New Zealand: A massive multi-touch table...
 
Guía gratuita de Colombia
Guía gratuita de Colombia Guía gratuita de Colombia
Guía gratuita de Colombia
 
Apunts escalada
Apunts escaladaApunts escalada
Apunts escalada
 
GranáTula 1
GranáTula 1GranáTula 1
GranáTula 1
 
Proyecto Final
Proyecto FinalProyecto Final
Proyecto Final
 
Tema 1 bis. introducción
Tema 1 bis. introducciónTema 1 bis. introducción
Tema 1 bis. introducción
 
Programa Electoral 2011 - PSOE La Granja y Valsaín
Programa Electoral 2011 - PSOE La Granja y ValsaínPrograma Electoral 2011 - PSOE La Granja y Valsaín
Programa Electoral 2011 - PSOE La Granja y Valsaín
 
Pjx5260 pjwx5150-pjwx5140
Pjx5260 pjwx5150-pjwx5140Pjx5260 pjwx5150-pjwx5140
Pjx5260 pjwx5150-pjwx5140
 
Wwf puglia trivellazioni in adriatico, la position wwf
Wwf puglia trivellazioni in adriatico, la position wwfWwf puglia trivellazioni in adriatico, la position wwf
Wwf puglia trivellazioni in adriatico, la position wwf
 
Hp secap android
Hp secap androidHp secap android
Hp secap android
 
Central catalonia general presentation
Central catalonia   general presentationCentral catalonia   general presentation
Central catalonia general presentation
 

Similar a Definicion de antiderivadas victor

Calculo integrall
Calculo integrallCalculo integrall
Calculo integrall
cesariblog
 
Historia de la derivada
Historia de la derivadaHistoria de la derivada
Historia de la derivada
MeLy Vislao
 

Similar a Definicion de antiderivadas victor (20)

Definici+¦n de antiderivada radhames canigiani
Definici+¦n de antiderivada radhames canigianiDefinici+¦n de antiderivada radhames canigiani
Definici+¦n de antiderivada radhames canigiani
 
Derivadas Daniela Urbina Uribe Extensión San Cristóbal
Derivadas Daniela Urbina Uribe Extensión San Cristóbal Derivadas Daniela Urbina Uribe Extensión San Cristóbal
Derivadas Daniela Urbina Uribe Extensión San Cristóbal
 
INTEGRALES INDEFINIDAS POR CAMBIO DE VARIABLE
INTEGRALES INDEFINIDAS POR CAMBIO DE VARIABLEINTEGRALES INDEFINIDAS POR CAMBIO DE VARIABLE
INTEGRALES INDEFINIDAS POR CAMBIO DE VARIABLE
 
Metodospararesolverintegrales
Metodospararesolverintegrales Metodospararesolverintegrales
Metodospararesolverintegrales
 
Integraciondefunciones3
Integraciondefunciones3Integraciondefunciones3
Integraciondefunciones3
 
Integraciondefunciones
IntegraciondefuncionesIntegraciondefunciones
Integraciondefunciones
 
Guia de integración indefinida
Guia de integración indefinida  Guia de integración indefinida
Guia de integración indefinida
 
Guia de integración indefinida 2016 ii
Guia de integración indefinida   2016   iiGuia de integración indefinida   2016   ii
Guia de integración indefinida 2016 ii
 
Activity 2 1 geometric interpret derivative
Activity 2 1 geometric interpret derivativeActivity 2 1 geometric interpret derivative
Activity 2 1 geometric interpret derivative
 
Calculo integrall
Calculo integrallCalculo integrall
Calculo integrall
 
2 integracion
2 integracion2 integracion
2 integracion
 
Ensayo unidad 1
Ensayo unidad 1Ensayo unidad 1
Ensayo unidad 1
 
Simple Harmonic Oscillator.docx
Simple Harmonic Oscillator.docxSimple Harmonic Oscillator.docx
Simple Harmonic Oscillator.docx
 
Matematica. Arianna Morilla
Matematica. Arianna MorillaMatematica. Arianna Morilla
Matematica. Arianna Morilla
 
Historia de la derivada
Historia de la derivadaHistoria de la derivada
Historia de la derivada
 
Ecuaciones de la tangente, normal, subtangente, subnormal, máximos y mínimos ...
Ecuaciones de la tangente, normal, subtangente, subnormal, máximos y mínimos ...Ecuaciones de la tangente, normal, subtangente, subnormal, máximos y mínimos ...
Ecuaciones de la tangente, normal, subtangente, subnormal, máximos y mínimos ...
 
Cálculo del tipo de interés de la ecuación de la cuota periódica del préstamo...
Cálculo del tipo de interés de la ecuación de la cuota periódica del préstamo...Cálculo del tipo de interés de la ecuación de la cuota periódica del préstamo...
Cálculo del tipo de interés de la ecuación de la cuota periódica del préstamo...
 
Integrales
IntegralesIntegrales
Integrales
 
Alejandra tortolero brett trabajo de matematica
Alejandra tortolero brett trabajo de matematicaAlejandra tortolero brett trabajo de matematica
Alejandra tortolero brett trabajo de matematica
 
Integrales
IntegralesIntegrales
Integrales
 

Último

6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
Wilian24
 

Último (20)

Posición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxPosición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptx
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdf
 
Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024
 
activ4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfactiv4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdf
 
PP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomasPP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomas
 
Novena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan EudesNovena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan Eudes
 
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxLA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
 
Sesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdfSesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdf
 
Código Civil de la República Bolivariana de Venezuela
Código Civil de la República Bolivariana de VenezuelaCódigo Civil de la República Bolivariana de Venezuela
Código Civil de la República Bolivariana de Venezuela
 
Lecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigosLecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigos
 
Tema 11. Dinámica de la hidrosfera 2024
Tema 11.  Dinámica de la hidrosfera 2024Tema 11.  Dinámica de la hidrosfera 2024
Tema 11. Dinámica de la hidrosfera 2024
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
 
Power Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptxPower Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptx
 
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIASISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
 
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
 

Definicion de antiderivadas victor

  • 1. ANTIDERIVADAS INTEGRANTE: VICTOR MASABE AGOSTO 2014
  • 2. INTRODUCCION El Concepto operativo de integral se basa en una operación contraria a la derivada a tal razón se debe su nombre de: antiderivada. Las reglas de la derivación son la base que de cada operación de integral indefinida o antiderivada. En este sentido es importante tener en cuenta que cuando se invierte algo donde intervienen más de una operación, éstas han de invertirse pero en orden opuesto. Si se considera la operación de ponerse el calcetín y después el zapato, lo inverso será primero quitarse el zapato y luego el calcetín. Cuando tenemos xn, al derivar multiplicamos por el exponente y luego disminuimos éste en una unidad, lo inverso será, primero aumentar el exponente en una unidad y después dividir por el exponente, lo cual es el procedimiento que se toma al resolver una operación de antiderivada, también llamada integral indefinida o primitiva de una función. A la hora de hablar de antiderivadas intervienen más elementos como son los llamados máximos y mínimos que básicamente son las alturas a la que llega la curva trazada de una función, la cual puede ser cóncava. Otros de los elementos a mencionar son: la monotonía, valores extremos de una función.
  • 3. DEFINICION DE ANTIDERIVADAS Una antiderivada de una función f(x) es una función cuya derivada es f(x). Ejemplos  Pues la derivada de x2+4 es 2x, una antiderivada de 2x es x2+4.  Pues la derivada de x2+30 es 2x también, una otra antiderivada de 2x es x2+30.  En forma parecida, una otra antiderivada de 2x es x2-49.  En forma parecida, una otra antiderivada de 2x es x2 + C, donde C es cualquier constante (positiva, negativa, o cero) In fact: Cada antiderivada de 2x tiene la forma x2 + C, donde C es constante. Principio del formulario P Pues la derivada de x4+C es 4x3, Integral indefinida Llamamos al conjunto de todas antiderivadas de una función la integral indefinida de la función. Escribimos la integral indefinida de la función f como f(x) dx y la leemos como "la integral indefinida de f(x) respecto a x" Por lo tanto, f(x) dx es una conjunto de funciones; no es una función sola, ni un número. La función f que se está integrando se llama el integrando, y la variable x se llama la variable de integración. Ejemplos 2x dx = x2 + C La intgegral indefinida de 2x respecto a x es x2 + C 4x3 dx = x4 + C La integral indefinida de 4x3 respecto a x es x4 + C Leyendo la formula Leemos la primera formula más arriba como sigue: 2x dx = x2 + C La antiderivada de 2x, respecto a x, es igual a x2 + C La constante de integración, C, nos recuerda que podemos añadir cualquiera constante y así obtener una otra antiderivada.
  • 4. ORIGEN En la Antigua Grecia, los grandes matemáticos idearon un proceso mediante el cual podían hallar el área de cualquier figura, siempre y cuando ésta pudiese ser dividida en otras figuras geométricas más elementales (como triángulos); este era conocido como el Método Agotamiento. Este método era relativamente ingenioso, pero aún estaba lejos de la presentación formal de la integral, además de que presentaba fallas cuando se quería hallar el área de una figura curva. Los griegos competían con el fin de encontrar un método general de cuadraturas, un proceso mediante el cual pudieran hallar el área de cualquier figura curva, un proceso que les permitiera cuadrar cualquier forma bidimensional…No lo lograron. Aún sí, cabe destacar el logro de uno de dichos matemáticos: Arquímides de Siracusa (287a.C. – 212a.C.), quien mediante un ingenioso argumento geométrico, descubrió que el área del segmento de parábola desde x=0 hasta x=t es igual a (1/3)t^3. Hoy en día sabemos que esto es igual a la integral de 0 a t de la función x^2, que es la función que define una parábola. Él no lo sabía, su demostración fue puramente geométrica.
  • 5. Más o menos a partir del siglo III d.C. (suceso relacionado con la destrucción de la Biblioteca de Alejandría) no pasó mucho con respecto al desarrollo del cálculo por un buen tiempo…Pero afortunadamente, después del Oscurantismo, a partir del Renacimiento y la Ilustración, momento en el que renacieron los ideales jónicos y en países como Holanda se abrazaron la ciencia y la técnica, el desarrollo de la Humanidad desde un punto de vista no místico, y se estimuló el factor psicológico de las sociedades hacia la admiración por el conocimiento, aparecieron personajes como Kepler, Pierre de Fermat, René Descartes, entre otros. Todos ellos hicieron aportes al descubrimiento del cálculo; por ejemplo Pierre de Fermat y René Descartes combinaron Álgebra y Geometría para expresar figuras geométricas con ecuaciones algebraicas, de ahí viene el plano cartesiano. Entre los siglos XVII y XVIII aparecieron los dos personajes que darían por fin solución al problema que plantearon los Antiguos Griegos: Sir Isaac Newton y Gottfried Leibniz. Desafortunadamente, este par nunca llegó a conocerse personalmente, aunque mantenían contacto por correspondencia, pero nunca trabajaron juntos, sino que se limitaron a competir entre ellos. Cada uno inventó su propia versión del cálculo (casi en paralelo), Newton se lo guardó todo durante unos treinta años, mientras que Leibniz publicó su trabajo sin tapujos. Por razones que me atrevo a calificar de excesivamente retrógradas y bañadas de un elitismo completamente innecesario, Leibniz fue juzgado como culpable ante la acusación de que había plagiado las ideas de Newton de las cartas que éste le enviaba. Se puede decir que esto llevó a Leibniz a morir de amargura (mientras tanto, Newton se vanagloriaba diciendo que había destrozado el corazón de Leibniz). Durante casi un siglo prevalecieron las notaciones de Isaac Newton para el Cálculo, basado principalmente en límites de razones, pero eventualmente se empezó a adoptar la notación del Cálculo de Leibniz, el cual, en ciertos aspectos, era mejor que el de Newton. Fue Leibniz quien ideó la notación que hoy en día usamos para las integrales, basándose en la palabra latina summa, que significa suma.
  • 6. TEOREMAS O PROPIEDADES QUE LO SUSTENTAN Resolución de Integrales por Cambio de Variable Consiste en igualar una parte del integrando a una nueva variable, por ejemplo u, llamada variable auxiliar. Luego de esto, se debe calcular la derivada de la variable auxiliar y realizar las operaciones necesarias, para que ni en el integrando ni en el diferencial, aparezca alguna expresión en términos de la variable original. A esto se le denomina cambio de variable (CDV). Luego de hacer efectivo el CDV, por lo general, se obtienen integrales más sencillas que la original, las cuales se resuelven aplicando lo aprendido en el método anterior. Por esta razón, es necesario que el lector haya estudiado detalladamente dicho método puesto que en la solución de los ejemplos de esta parte de la obra, no se incluye una explicación específica de este contenido que ya debe ser parte de sus redes conceptuales. Es importante señalar que el resultado de la integración, debe estar en función de las variables originales por lo que se acostumbra a emplear el término “devolviendo el cambio de variable” para reseñar el proceso mediante el cual la variable auxiliar desaparece de la respuesta definitiva. A continuación se presenta un conjunto de ejemplos, cuya función es introducir este segundo método de integración. Ejemplo 1 Resolver la siguiente integral: Solución  Método a emplear: Integración por cambio de variable.  Regla de integración: Ecuación 1.1 Desarrollo:  En atención a la teoría expuesta, construir la siguiente igualdad: u= 2x+6 (1)  Debido a (1), la integral original se transforma, momentáneamente en: = (2)
  • 7.  Como la integral a resolver no debe quedar en función de la variable original, se debe expresar adx, en función de du y para ello se:  Deriva ambos miembros de (1) para obtener: du=2dx  Divide la expresión anterior entre 2, obteniéndose: (3)  Si en (2), se reemplaza a dx por la expresión obtenida en (3) y además se aplica la propiedad 1 de los O.L , se obtiene: = =  Efectuado el CDV se obtiene una integral inmediata. Para su solución basta con aplicar laEcuación 1.1. Así: =  Devolviendo el CDV, u=2x+6 , se obtiene la respuesta final. Por tanto: Resolución de integrales por partes De la fórmula para la derivada del producto de dos funciones, se obtiene el método de integración por partes. Si f y g son funciones diferenciables, entonces: Ahora, si se aplican integrales a cada miembro de esta ecuación, se tiene que: Integrando, lo que es posible integrar, se obtiene:
  • 8. La Ecuación (*) se llama fórmula para integración por partes. Frecuentemente, se utiliza una expresión equivalente a (*), la cual se obtiene al realizar los siguientes cambios de variable: y Al hacer las derivadas de u y v, respectivamente, se obtiene: y Así que la ecuación (*) se transforma en: (Ecuación 1.6) La Ecuación 1.6 expresa la integral en términos de otra integral, , la cual por lo general, se resuelve más fácilmente que la integral original. Para aplicar la integración por partes, es necesario elegir adecuadamente la parte del integrando que se va a tomar como u. Es importante resaltar que una vez hecha la elección de u, todo lo que queda dentro la integral es dv. Para efectos de hacer la mencionada elección, es conveniente tener en cuenta los dos criterios siguientes: 1. la parte que se iguala a dv debe ser fácilmente integrable. 2. no debe ser más complicada que En la práctica, el proceso de elegir una expresión para u y otra para dv no es siempre sencillo y no existe una técnica general para efectuar dicho proceso. Sin embargo, en el desarrollo de la presente obra se hará uso de una Regla EMPIRICA de gran ayuda pero de carácter NO GENERAL, denominada I.L.A.T.E., para hacer la mencionada elección. La única deficiencia de I.L.A.T.E., es que - en algunos casos - al hacer la elección de u, indicada por la mencionada regla, el proceso de desarrollo del ejercicio puede entrar
  • 9. en un ciclo infinito, que no permite obtener la solución correspondiente. Si esto ocurre, se debe detener el proceso y hacer una elección contraria a la hecha originalmente. Las siglas de I.L.A.T.E., significan lo siguiente: I = Funciones Inversas. L = Funciones Logarítmicas. A = Funciones Algebraicas. T = Funciones Trigonométricas. E = Funciones Exponenciales. La regla I.L.A.T.E., se utiliza única y exclusivamente para realizar la mencionada elección, teniendo que recurrir a la ecuación 1.6 y los métodos ya expuestos, para resolver cualquier ejercicio relativo al presente tópico. Por esta razón, es conveniente que el lector haya estudiado - detalladamente - los dos métodos anteriores, puesto que en la solución de los ejemplos de esta parte de la obra, no se incluye una explicación específica de esos contenidos. Para ilustrar como se usa I.L.A.T.E., se presenta la siguiente situación: Supóngase que piden resolver la siguiente integral: Obsérvese que el integrando está compuesto por dos funciones, una Algebraica (x) y otra Exponencial (e-x). Se buscan las iniciales A y E en la palabra I.L.A.T.E. Como en ella, leyendo de izquierda a derecha, aparece primero la letra A, se elige como u la función Algebraica, es decir, u = x. Por lo tanto, lo que queda dentro de la integral es dv. Así: Resolución de integrales por partes De la fórmula para la derivada del producto de dos funciones, se obtiene el método de integración por partes. Si f y g son funciones diferenciables, entonces: Ahora, si se aplican integrales a cada miembro de esta ecuación, se tiene que:
  • 10. Integrando, lo que es posible integrar, se obtiene: La Ecuación (*) se llama fórmula para integración por partes. Frecuentemente, se utiliza una expresión equivalente a (*), la cual se obtiene al realizar los siguientes cambios de variable: y Al hacer las derivadas de u y v, respectivamente, se obtiene: y Así que la ecuación (*) se transforma en: (Ecuación 1.6) La Ecuación 1.6 expresa la integral en términos de otra integral, , la cual por lo general, se resuelve más fácilmente que la integral original. Para aplicar la integración por partes, es necesario elegir adecuadamente la parte del integrando que se va a tomar como u. Es importante resaltar que una vez hecha la elección de u, todo lo que queda dentro la integral es dv. Para efectos de hacer la mencionada elección, es conveniente tener en cuenta los dos criterios siguientes: 1. la parte que se iguala a dv debe ser fácilmente integrable. 2. no debe ser más complicada que
  • 11. En la práctica, el proceso de elegir una expresión para u y otra para dv no es siempre sencillo y no existe una técnica general para efectuar dicho proceso. Sin embargo, en el desarrollo de la presente obra se hará uso de una Regla EMPIRICA de gran ayuda pero de carácter NO GENERAL, denominada I.L.A.T.E., para hacer la mencionada elección. La única deficiencia de I.L.A.T.E., es que - en algunos casos - al hacer la elección de u, indicada por la mencionada regla, el proceso de desarrollo del ejercicio puede entrar en un ciclo infinito, que no permite obtener la solución correspondiente. Si esto ocurre, se debe detener el proceso y hacer una elección contraria a la hecha originalmente. Las siglas de I.L.A.T.E., significan lo siguiente: I = Funciones Inversas. L = Funciones Logarítmicas. A = Funciones Algebraicas. T = Funciones Trigonométricas. E = Funciones Exponenciales. La regla I.L.A.T.E., se utiliza única y exclusivamente para realizar la mencionada elección, teniendo que recurrir a la ecuación 1.6 y los métodos ya expuestos, para resolver cualquier ejercicio relativo al presente tópico. Por esta razón, es conveniente que el lector haya estudiado - detalladamente - los dos métodos anteriores, puesto que en la solución de los ejemplos de esta parte de la obra, no se incluye una explicación específica de esos contenidos. Para ilustrar como se usa I.L.A.T.E., se presenta la siguiente situación: Supóngase que piden resolver la siguiente integral: Obsérvese que el integrando está compuesto por dos funciones, una Algebraica (x) y otraExponencial (e-x). Se buscan las iniciales A y E en la palabra I.L.A.T.E. Como en ella, leyendo de izquierda a derecha, aparece primero la letra A, se elige como u la función Algebraica, es decir, u = x. Por lo tanto, lo que queda dentro de la integral es dv. Así:
  • 12. Resolver la siguiente integral: Solución  Método a emplear: Integración por Partes.  Regla de integración: Ecuación 1.3 y 1.6 Desarrollo:  Por la teoría expuesta, conviene hacer las siguientes elecciones: u = x (1) y (2)  Derivar ambos miembros de (1) para obtener: du=dx  Aplicar integrales a ambos miembros de (2), para obtener: (3)  Usando integración directa en el término de la izquierda y el método de CDV, en el término de la derecha de (3), para obtener: (4)  Reemplazar en la Ecuación 1.6, cada uno de sus factores por las expresiones obtenidas en (1), (2)y (4), para obtener: (5)  Para resolver la última integral, se efectúa un CDV y se obtiene una integral inmediata. Para su solución, se aplica la Ecuación 1.3. Así: = (6)  Sustituir (6) en (5) y ordenar el resultado usando factorización. Así: =  Por tanto, se concluye que:
  • 13. Resolución De Integrales Por Fracciones Simples o Parciales  Este método permite descomponer una integral de la forma:  En integrales cuyo integrando, está constituido por expresiones fraccionarias, que por lo general son de fácil solución.  Al momento de intentar resolver este tipo de integrales, es importante tener en cuenta los siguientes criterios:  Criterio1: Si el numerador de la integral dada, es de menor grado que el denominador, se debe –si es posible- aplicar el proceso defactorización.  Criterio2: Si el grado del numerador es mayor o igual que el del denominador, se debe resolver primero la división de polinomios.  Para aplicar el Criterio2, es necesario recordar la siguiente información:  En una división, se relacionan el Dividendo (D), el divisor (d), el cociente (c) y el resto (r), mediante la siguiente expresión: (I)  Si se dividen ambos miembros de (I) entre “d” se obtiene:   Ahora bien, esta última expresión se puede particularizar para polinomios, así:  Si p(x) es el dividendo, q(x) el divisor, c(x) el cociente y r(x) el resto, entonces    Aplicando el símbolo integral a ambos miembros y los respectivos diferenciales, se obtiene:
  • 14. Ecuación1.7 Ahora, para poder aplicar el Criterio1, es necesario recordar la siguiente información: Una fracción simple es cualquier fracción propia de polinomios (el grado del numerador es estrictamente menor que el grado del denominador), cuyo denominador sea de la forma (ax + b)n ó (ax2 + bx + c)n si el polinomio ax2 + bx+ c no tiene raíces reales, y n es un número natural. Cuando se deba aplicar el Criterio1, se debe proceder del siguiente modo: 1. Descomponer factorialmente el polinomio q(x), es decir, se hallan las raíces de la ecuación q(x) = 0. Es importante saber, que al realizar la mencionada descomposición, es posible encontrar resultados distintos y éstos se pueden clasificar en cuatro casos: Caso1: Factores en el denominador lineales distintos. La integral dada debe escribirse en función de un cociente compuesto por: Constantes (A,B,C, etc) en el numerador y dichos factores en el denominador, como se muestra a continuación: Caso2: Factores en el denominador lineales repetidos. La integral dada debe escribirse en función de un cociente compuesto por: Constantes (A,B,C,etc) en el numerador y dichos factores en el denominador, como se muestra a continuación:
  • 15. Caso3: Factores en el denominador cuadráticos distintos. La integral dada debe escribirse en función de un cociente compuesto por: Polinomios de grado uno, en el numerador y dichos factores en el denominador, como se muestra a continuación: Caso4: Factores en el denominador cuadráticos repetidos. La integral dada debe escribirse en función de un cociente compuesto por: Polinomios de grado uno, en el numerador y dichos factores en el denominador, como se muestra a continuación: 2. Se calculan las constantes que aparecen en cada denominador. Para ello, basta con aplicar cualquiera de los métodos que el lector ha manejado desde su formación pre-universitaria. Estos métodos no serán explicados en la presente obra, puesto que deben ser parte de las redes conceptuales previas del lector. Algunos de ellos son: Sustitución, eliminación, igualación, Coeficientes indeterminados, métodos matriciales (Por ejemplo Gauss-Jordan). Nota: Muchas veces la dificultad al resolver integrales por este método, estriba en el cálculo de las mencionadas constantes. El lector debe dominar, por lo menos, una técnica que le permita resolver los sistemas de ecuaciones, que se generan al momento de intentar calcular dichas constantes. 3. Se integran los sumandos que resulten. Una vez determinadas las mencionadas constantes, se obtienen integrales que - por lo general – se resuelven aplicando los métodos ya expuestos. Por esta razón, es conveniente que el lector haya estudiado - responsablemente - los tres métodos anteriores, puesto que en la solución de los ejemplos de esta parte de la obra, no se incluye una explicación detallada de esos contenidos.
  • 16. Ejemplo Solución  Método a emplear: Integración por Fracciones Parciales. Desarrollo:  De acuerdo al Criterio2, se debe efectuar la división de polinomios y aplicar la Ecuación 1.7se obtiene que: (1)  La primera integral es inmediata, al resolverla se obtiene: (2)  Para resolver la segunda integral, se aplica el Criterio1, es decir, se debe factorizar y aplicar el caso 1. Así se obtiene que:  Estas dos integrales ya fueron resueltas en el ejercicio anterior. De allí que ahora se pueda escribir, directamente, que: (3)  Reemplazando en (1), las expresiones (2) y (3), se tiene que:
  • 17.  Haciendo c = c1+ c2, se concluye que: INTEGRACION POR TABLAS Solución  Método a emplear: Integración por Tablas.  Regla de integración: Fórmula # 1 de la Tabla de integrales dada. Desarrollo:  Al comparar la integral dada con las integrales de la Tabla de Integrales, se establece que la forma que más se adapta a la situación planteada, es la Fórmula #1, la cual viene dada por la siguiente expresión matemática: (1)  Para aplicar (1), basta con construir las siguientes igualdades: = (2) Donde:  Ahora para obtener una respuesta preliminar, se debe reemplazar en (2) lo establecido en (3), (4) y (5), para obtener:  Así, se concluye que:
  • 18. EJEMPLO Resolver la siguiente integral: Solución  Método a emplear: Integración de la sumatoria de funciones e Integración inmediata de funcionespotenciales.  Reglas de integración: Ecuación 1.2 y Ecuación1.1  Antes de presentar el desarrollo de la integral dada, es necesario recordar que la integral es unoperador lineal y por tanto cumple con las siguientes propiedades: 1. Las constantes pueden ser extraídas del símbolo integral. 2. Si el exponente del integrando es uno y está conformado por términos que se están sumando o restando entre si, la integral original puede separarse en tantas integrales como términos posea el integrando. Desarrollo:  Como el integrando tiene exponente 1 y está conformado por dos términos que se están restando, se puede aplicar la propiedad 2 de un operador lineal (O.L), es decir, la integral original puede ser reemplazada por dos integrales parciales, como se muestra a continuación: = Así, se ha simplificado el ejercicio original y bastará con resolver cada una de las integrales parciales para obtener la respuesta pedida.  En las integrales parciales, se observa la presencia de constantes por lo
  • 19. cual, en atención a la propiedad 1 de un (O.L), se procede a extraer dichas constantes de cada uno de los símbolos integrales. Así:  El diferencial indica que se debe integrar con respecto a la variable y, razón por la cual, se hace pertinente transformar el radical en exponente fraccionario y a su vez, colocar en el numerador, cambiando el signo de su exponente de acuerdo a de las reglas de potenciación, sección2. Obteniéndose:  Ahora, basta con recordar y aplicar los pasos desarrollados en el ejercicio anterior para obtener:  Resolviendo las operaciones básicas indicadas en la expresión anterior, se tiene que: +  Se tomará como norma de uniformidad la siguiente: “Los resultados finales de una integral, no deberán contener exponentes fraccionarios ni exponentes negativos” (Ver: redes conceptuales previas, seccion 1 y seccion 2) Aplicando este criterio, se obtiene:
  • 20. CONCLUSIONES En referencia a las antiderivadas es una operación contraria que es originalmente una derivada. Para lograr resolver estas operaciones es necesario tomar en cuenta muchos recursos aritméticos, esto debido a que no hay un procedimiento específico por el cual se pueda llegar al resultado sino por medio de diferentes operaciones. La antiderivada de una función también puede recibir el nombre de integral indefinida o primitiva de una función; cada uno tiene su razón de ser, antiderivada viene dado por qué se hace una operación contraria para llegar a la función original; integral indefinida porque existe una constante C que puede dar como resultado una infinidad de trazados y primitiva porque es una operación que busca el génesis de la función. Todas aunque tienen diferentes nombre relativamente significan lo mismo. Una antiderivada se diferencia de una derivada por la existencia de un símbolo llamado integración Sus propiedades son muy similares a las de las derivadas, con solo la anexión una propiedad de linealidad. Al momento de situarse en la operación intervienen dos valores fundamentales que son máximos y mínimos sean estos relativos o absolutos, su importancia deriva de que mediante el cálculo de ellas se logra saber cuál es la altura máxima, media o mínima al momento de trazar la curva de una función, esto da lugar a la monotonía de la representación que busca la manera de determinar si una función es creciente o decreciente; también da lugar a la concavidad, de forma que este permite descubrir hacia qué dirección es cóncava la figura, mediante el signo de la función, esta puede ser cóncava hacia arriba y cóncava hacia abajo. Los valores extremos de una función vienen dados por medio del cálculo de la monotonía, y deja en descubierto la altura máxima y la minima disminución a la horade trazar una curva; dando también a altura medias. Es importante este tema porque es un mundo en el que se debe tener mucha concentración y dedicación para llegar a la solución de cada planteamiento.
  • 21. REFERENCIAS CONSULTADAS 2000. GRAN ENCICLOPEDIA SALVAT. Tomo 16. Salvat Editores. Leer más: http://www.monografias.com/trabajos73/antiderivadas/antiderivadas2.shtml#ixzz3BAm72XRP REFERENCIAS ELECTRONICAS Texto Electrónico para la enseñanza integral http://davinci.tach.ula.ve/vermig/integral/paginas/metodos/pag36.htm