SlideShare una empresa de Scribd logo
1 de 30
UNIDAD III
MEDIDAS DE DISPERSIÓN
“Medidas de dispersión”
Miden qué tanto se dispersan las observaciones alrededor de su media.
MEDIDAS DE DISPERSIÓN
En algunos casos existen conjuntos de datos que tienen la misma media y la
misma mediana, pero esto no refleja qué tan dispersos están los elementos de
cada conjunto.
Ejemplo:
Conjunto 1. 80, 90, 100, 110, 120
Conjunto 2. 0, 50, 100, 150, 200
MEDIDAS DE DISPERSIÓN
100
5
1201101009080


Media
100
5
200150100500


Media
Conjunto 1
Conjunto 2
Observa que para ambos conjuntos la Mediana es igual a 100. También
nota que los datos del conjunto 2 están más dispersos con respecto a su
media que los datos del conjunto 1.
Existen diversas medidas estadísticas de dispersión, pero muchos autores
coinciden en que las principales son:
Rango
Varianza
Desviación estándar
Coeficiente de variación
MEDIDAS DE DISPERSIÓN
Mide la amplitud de los valores de la muestra y se calcula por diferencia entre el
valor más elevado (Límite superior) y el valor más bajo (Límite inferior).
RANGO
FÓRMULA
Ejemplo 1.
Ante la pregunta sobre número de hijos por familia, una muestra de 12 hogares,
marcó las siguientes respuestas:
2 1 2 4 1 3
2 3 2 0 5 1
Calcula el rango de la variable
Solución.
MAX MINRango X X 
5 0 5Rango   
Ejemplo 2.
Hay dos conjuntos sobre la cantidad de lluvia (mm) en Taipei y Seúl en un año.
Calcula el rango en cada una de las ciudades.
Solución.
Aplicando la fórmula correspondiente tenemos:
Taipei
Seúl
305 66 239Rango mm mm mm  
Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic
Taipei 86 135 178 170 231 290 231 305 244 122 66 71
Seúl 40 77 83 89 147 168 184 252 209 101 32 13
252 13 239Rango mm mm mm  
En este caso se puede
observar que el rango es el
mismo para ambos casos
aunque las cantidades sean
diferentes.
0
50
100
150
200
250
300
350
Cantidaddelluvia(mm)
Mes
Cantidad de lluvia en Taipei y Seúl 1998
Taipei
Seoul
Mide la distancia existente entre los valores de la serie y la media. Se calcula
como sumatoria de las diferencias al cuadrado entre cada valor y la media,
multiplicadas por el número de veces que se ha repetido cada valor. La
sumatoria obtenida se divide por el tamaño de la muestra.
VARIANZA (Datos no agrupados)
FÓRMULA
2
2 1
( )
1
n
i
i
x x
s
n





Muestral
Poblacional
2
2 1
( )
N
i x
i
x
N

 



La varianza siempre será mayor que cero. Mientras más se aproxima a cero,
más concentrados están los valores de la serie alrededor de la media. Por el
contrario, mientras mayor sea la varianza, más dispersos están.
Ejemplo 1.
Calcula la varianza para los siguientes datos
2 1 2 4 1 3 2 3 2 0 5 1
Solución.
Primero es necesario obtener la media. En este caso
Ahora aplicamos la fórmula correspondiente
2.16x 
2 2 2 2 2 2 2 2 2 2 2 2
2 (2 2.16) (1 2.16) (2 2.16) (4 2.16) (1 2.16) (3 2.16) (2 2.16) (3 2.16) (2 2.16) (0 2.16) (5 2.16) (1 2.16)
12 1
s
                      


2 21.6672
1.9697
11
s  
Ejemplo 2.
A continuación se muestran dos conjuntos de datos obtenidos a partir de un
experimento químico que realizaron dos estudiantes distintos. Calcular la
varianza.
Solución.
Primero es necesario obtener la media de cada conjunto de datos. En este caso
Estudiante A
Estudiante B
Ahora aplicamos la fórmula correspondiente
Volumen de ácido medido (cm^3)
Estudiante A 8 12 7 9 3 10 12 11 12 14
Estudiante B 7 6 7 15 12 11 9 9 13 11
8.9
10
1412111210397128


x
10
10
111399111215767


x
Solución (Continuación).
Estudiante A
Estudiante B
2 2 2 2 2 2 2 2 2 2
2 (8 9.8) (12 9.8) (7 9.8) (9 9.8) (3 9.8) (10 9.8) (12 9.8) (11 9.8) (12 9.8) (14 9.8)
10 1
s
                  


2 2 2 2 2 2 2 2 2 2
2 (7 10) (6 10) (7 10) (15 10) (12 10) (11 10) (9 10) (9 10) (13 10) (11 10)
10 1
s
                  


2 91.6
9.16
10
s  
2 76
7.6
10
s  
También llamada desviación típica, es una medida de dispersión usada en
estadística que nos dice cuánto tienden a alejarse los valores puntuales del
promedio en una distribución.
Específicamente, la desviación estándar es "el promedio de la distancia de cada
punto respecto del promedio". Se suele representar por una S o con la letra
sigma,σ, según se calcule en una muestra o en la población.
Una desviación estándar grande indica que los puntos están lejos de la media, y
una desviación pequeña indica que los datos están agrupados cerca de la
media.
DESVIACIÓN ESTÁNDAR (Datos no agrupados)
FÓRMULA
2
1
( )
1
n
i
i
x x
s
n





N
x
N
i
xi

 1
2
)( 

Muestral
Poblacional
Ejemplo 1.
Si retomamos el ejemplo 1 que corresponde a la varianza:
Calcula la desviación estándar para los siguientes datos
2 1 2 4 1 3 2 3 2 0 5 1
Solución.
Una vez que hemos calculado la media y la varianza, sólo resta calcular la raíz cuadrada de la
varianza.
2.16x 
2 21.6672
1.9697
11
s  
Ejemplo 2.
Considerando nuevamente el segundo ejemplo que estudiaste para calcular la varianza,
tenemos:
A continuación se muestran dos conjuntos de datos obtenidos a partir de un experimento
químico que realizaron dos estudiantes distintos. Calcular la varianza.
Solución.
Una vez que has calculado la media y la varianza, es necesario calcular la desviación
estándar a partir de la obtención de la raíz cuadrada de la varianza.
Estudiante A
Estudiante B
Volumen de ácido medido (cm^3)
Estudiante A 8 12 7 9 3 10 12 11 12 14
Estudiante B 7 6 7 15 12 11 9 9 13 11
2 91.6
9.16
10
s  
2 76
7.6
10
s  
Es una medida de dispersión que se utiliza para poder comparar las
desviaciones estándar de poblaciones con diferentes medias y se calcula como
cociente entre la desviación típica y la media.
COEFICIENTE DE VARIACIÓN
FÓRMULA
100%
S
CV
x
 
Muestral
Poblacional
100%CV


 
Ejemplo 1.
En dos cursos los promedios que sacaron sus alumnos fueron 6.1 y 4.3 y las
desviaciones estándar respectivas fueron 0.6 y 0.45 respectivamente. ¿En qué
curso hay mayor dispersión?
Solución
Para responder esto, debemos obtener el coeficiente de variación aplicando la
fórmula
Claramente, el curso A tiene una dispersión menor que el B, pese a presentar
una mayor desviación estándar.
%8.9%)100(
1.6
6.0
ACV
%4.10%)100(
3.4
45.0
BCV
100%
S
CV
x
 
Cuando los datos están agrupados en tablas de frecuencias, el significado de las
medidas de dispersión es el mismo, sin embargo la manera de calcularlas es
diferente.
Enseguida se muestra la fórmula para la varianza, pero recuerda que la
desviación estándar es igual a la raíz cuadrada de la primera.
VARIANZA Y DESVIACIÓN ESTÁNDAR (Datos agrupados)
FÓRMULA
11
)(
1
2
12
1
2
2














 


n
n
fx
xf
n
xxf
s
k
i
k
i
ii
ii
k
i
ii
21
2
1
2
2
)(


 




N
xf
N
xf
k
i
ii
k
i
ii
Muestral
Poblacional
Ejemplo 1.
Se han registrado durante 20 días, el número de viajeros que hacen
reservaciones a una agencia de viajes pero que no las hacen efectivas:
Calcula las medidas de dispersión de la variable en estudio. Interpreta
i
Número de viajeros
(xi )
Frecuencia
(fi)
1 12 3
2 13 3
3 14 6
4 15 3
5 16 5
Total 70 20
Solución.
Tal como lo indica la fórmula, primero es necesario multiplicar la
variable (xi ) por la frecuencia (fi) y añadirlo como una columna a la
tabla.
i
Número de viajeros
(xi )
Frecuencia
(fi)
xi fi
1 12 3 36
2 13 3 39
3 14 6 84
4 15 3 45
5 16 5 80
Total 70 20 284
...
...
...
1
2
1
2











k
i
k
i
ii fx
s
Solución (Continuación).
Después se obtiene el cuadrado de la variable x, o sea, (xi )2.
i
Número de viajeros
(xi )
Frecuenc
ia
(fi)
xi fi xi
2
1 12 3 36 144
2 13 3 39 169
3 14 6 84 196
4 15 3 45 225
5 16 5 80 256
Total 70 20 284 990
...
......
1
2
2


k
i
ix
s
Solución (Continuación).
Ahora se multiplica el cuadrado de la variable por la frecuencia, es
decir, (fixi
2).
i
Número de
viajeros
(xi )
Frecuencia
(fi)
xi fi xi
2 fixi
2
1 12 3 36 144 432
2 13 3 39 169 507
3 14 6 84 196 1176
4 15 3 45 225 675
5 16 5 80 256 1280
Total 70 20 284 990 4070
...
...
...
1
2
2



k
i
ii xf
s
Solución (Continuación).
Una vez obtenidos todos los datos anteriores, se procede a aplicar la
fórmula
i
Número de
viajeros
(xi )
Frecuencia
(fi)
xi fi xi
2 fixi
2
1 12 3 36 144 432
2 13 3 39 169 507
3 14 6 84 196 1176
4 15 3 45 225 675
5 16 5 80 256 1280
Total 70 20 284 990 4070
1
1
2
12
2













n
n
fx
xf
s
k
i
k
i
ii
ii
Solución (Continuación).
i
Número de
viajeros
(xi )
Frecuencia
(fi)
xi fi xi
2 fixi
2
1 12 3 36 144 432
2 13 3 39 169 507
3 14 6 84 196 1176
4 15 3 45 225 675
5 16 5 80 256 1280
Total 70 20 284 990 4070
3992.19579.1
9579.1
19
20
284
4070
2
2




s
s
Ejemplo 2.
De acuerdo a la siguiente tabla, calcula la varianza y la desviación estándar:
NOTA
x
FREC. ABSOLUTA
f
FREC. ABSOLUTA
ACUMULADA
FREC. RELATIVA %
FREC RELATIVA
ACUMULADA %
1.2 1 1 0.1 0.1
1.4 2 3 0.2 0.3
1.6 3 6 0.3 0.6
1.8 8 14 0.8 1.4
2.0 14 28 1.4 2.8
2.2 18 46 1.8 4.6
2.4 19 65 1.9 6.5
2.6 22 87 2.2 8.7
2.8 25 112 2.5 11.2
3.0 26 138 2.6 13.8
3.2 27 165 2.7 16.5
3.4 31 196 3.1 19.6
3.6 35 231 3.5 23.1
3.8 38 269 3.8 26.9
4.0 45 314 4.5 31.4
4.2 46 360 4.6 36.0
4.4 48 408 4.8 40.8
4.6 52 460 5.2 46.0
4.8 58 518 5.8 51.8
5.0 60 578 6.0 57.8
5.2 56 634 5.6 63.4
5.4 54 688 5.4 68.8
5.6 51 739 5.1 73.9
5.8 50 789 5.0 78.9
6.0 46 835 4.6 83.5
6.2 44 879 4.4 87.9
6.4 40 919 4.0 91.9
6.6 32 951 3.2 95.1
6.8 31 982 3.1 98.2
7.0 18 1000 1.8 100
TOTAL 1000 4717 23970.12
Solución.
El primer paso es calcular xi fi:
NOTA
x
FREC. ABSOLUTA
f
FREC. ABSOLUTA
ACUMULADA
FREC. RELATIVA %
FREC RELATIVA
ACUMULADA % xi fi
1.2 1 1 0.1 0.1 1.2
1.4 2 3 0.2 0.3 2.8
1.6 3 6 0.3 0.6 4.8
1.8 8 14 0.8 1.4 14.4
2.0 14 28 1.4 2.8 28
2.2 18 46 1.8 4.6 39.6
2.4 19 65 1.9 6.5 45.6
2.6 22 87 2.2 8.7 57.2
2.8 25 112 2.5 11.2 70
3.0 26 138 2.6 13.8 78
3.2 27 165 2.7 16.5 86.4
3.4 31 196 3.1 19.6 105.4
3.6 35 231 3.5 23.1 126
3.8 38 269 3.8 26.9 144.4
4.0 45 314 4.5 31.4 180
4.2 46 360 4.6 36.0 193.2
4.4 48 408 4.8 40.8 211.2
4.6 52 460 5.2 46.0 239.2
4.8 58 518 5.8 51.8 278.4
5.0 60 578 6.0 57.8 300
5.2 56 634 5.6 63.4 291.2
5.4 54 688 5.4 68.8 291.6
5.6 51 739 5.1 73.9 285.6
5.8 50 789 5.0 78.9 290
6.0 46 835 4.6 83.5 276
6.2 44 879 4.4 87.9 272.8
6.4 40 919 4.0 91.9 256
6.6 32 951 3.2 95.1 211.2
6.8 31 982 3.1 98.2 210.8
7.0 18 1000 1.8 100 126
TOTAL 1000 4717 23970.12
Solución (Continuación).
Después se obtiene el cuadrado de la variable x, o sea, (xi )2.
NOTA
x
FREC. ABSOLUTA
f
FREC. ABSOLUTA
ACUMULADA
FREC. RELATIVA %
FREC RELATIVA
ACUMULADA % xi fi xi
2
1.2 1 1 0.1 0.1 1.2 1.44
1.4 2 3 0.2 0.3 2.8 1.96
1.6 3 6 0.3 0.6 4.8 2.56
1.8 8 14 0.8 1.4 14.4 3.24
2.0 14 28 1.4 2.8 28 4
2.2 18 46 1.8 4.6 39.6 4.84
2.4 19 65 1.9 6.5 45.6 5.76
2.6 22 87 2.2 8.7 57.2 6.76
2.8 25 112 2.5 11.2 70 7.84
3.0 26 138 2.6 13.8 78 9
3.2 27 165 2.7 16.5 86.4 10.24
3.4 31 196 3.1 19.6 105.4 11.56
3.6 35 231 3.5 23.1 126 12.96
3.8 38 269 3.8 26.9 144.4 14.44
4.0 45 314 4.5 31.4 180 16
4.2 46 360 4.6 36.0 193.2 17.64
4.4 48 408 4.8 40.8 211.2 19.36
4.6 52 460 5.2 46.0 239.2 21.16
4.8 58 518 5.8 51.8 278.4 23.04
5.0 60 578 6.0 57.8 300 25
5.2 56 634 5.6 63.4 291.2 27.04
5.4 54 688 5.4 68.8 291.6 29.16
5.6 51 739 5.1 73.9 285.6 31.36
5.8 50 789 5.0 78.9 290 33.64
6.0 46 835 4.6 83.5 276 36
6.2 44 879 4.4 87.9 272.8 38.44
6.4 40 919 4.0 91.9 256 40.96
6.6 32 951 3.2 95.1 211.2 43.56
6.8 31 982 3.1 98.2 210.8 46.24
7.0 18 1000 1.8 100 126 49
TOTAL 1000 4717 23970.12
Solución (Continuación).
Ahora se multiplica el cuadrado de la variable por la frecuencia, es decir, (fixi
2).
NOTA
x
FREC. ABSOLUTA
f
FREC. ABSOLUTA
ACUMULADA
FREC. RELATIVA
%
FREC RELATIVA
ACUMULADA % xi fi xi
2 fixi
2
1.2 1 1 0.1 0.1 1.2 1.44 1.44
1.4 2 3 0.2 0.3 2.8 1.96 3.92
1.6 3 6 0.3 0.6 4.8 2.56 7.68
1.8 8 14 0.8 1.4 14.4 3.24 25.92
2.0 14 28 1.4 2.8 28 4 56
2.2 18 46 1.8 4.6 39.6 4.84 87.12
2.4 19 65 1.9 6.5 45.6 5.76 109.44
2.6 22 87 2.2 8.7 57.2 6.76 148.72
2.8 25 112 2.5 11.2 70 7.84 196
3.0 26 138 2.6 13.8 78 9 234
3.2 27 165 2.7 16.5 86.4 10.24 276.48
3.4 31 196 3.1 19.6 105.4 11.56 358.36
3.6 35 231 3.5 23.1 126 12.96 453.6
3.8 38 269 3.8 26.9 144.4 14.44 548.72
4.0 45 314 4.5 31.4 180 16 720
4.2 46 360 4.6 36.0 193.2 17.64 811.44
4.4 48 408 4.8 40.8 211.2 19.36 929.28
4.6 52 460 5.2 46.0 239.2 21.16 1100.32
4.8 58 518 5.8 51.8 278.4 23.04 1336.32
5.0 60 578 6.0 57.8 300 25 1500
5.2 56 634 5.6 63.4 291.2 27.04 1514.24
5.4 54 688 5.4 68.8 291.6 29.16 1574.64
5.6 51 739 5.1 73.9 285.6 31.36 1599.36
5.8 50 789 5.0 78.9 290 33.64 1682
6.0 46 835 4.6 83.5 276 36 1656
6.2 44 879 4.4 87.9 272.8 38.44 1691.36
6.4 40 919 4.0 91.9 256 40.96 1638.4
6.6 32 951 3.2 95.1 211.2 43.56 1393.92
6.8 31 982 3.1 98.2 210.8 46.24 1433.44
7.0 18 1000 1.8 100 126 49 882
TOTAL 1000 4717 23970.12 4717 23970.12
Solución (Continuación).
Una vez obtenidos todos los datos anteriores, se procede a aplicar la fórmula
1
1
2
12
2













n
n
fx
xf
s
k
i
k
i
ii
ii
7217.1
11000
1000
4717
12.23970
2
2



s
3121.17217.1 s
Varianza
Desviación estándar
Fuentes de información
• http://medicina.unimayab.edu.mx/propedeutico/2009/semana1/chpt04.ppt.
• http://beta.upc.edu.pe/matematica/mbcc/paginas/recursos/semana14/Clase01_Sem
ana14.ppt
• http://www.demre.cl/text/doc_tecnicos/p2009/estadistica_descriptiva.pdf
• http://www.cgonzalez.cl/archivos/estadistica2.ppt.
• http://repositorio.utpl.edu.ec/bitstream/123456789/3013/1/estadisticasegundobimestr
e-090305174953-phpapp02.ppt.
• netdrive.puiying.edu.hk/~ms/f7it/MATHS.PPT
Créditos
Título : Medidas de dispersión
Colaborador: M. en C. Mario Arturo Vilchis Rodríguez
Nombre de la Asignatura: Estadística aplicada a la mercadotecnia
Programa Académico Lic. Mercadotecnia

Más contenido relacionado

Similar a Medidas dispersión datos

Medidas_Dispersiondsfasdfsdfsfsfsdfffffff.pptx
Medidas_Dispersiondsfasdfsdfsfsfsdfffffff.pptxMedidas_Dispersiondsfasdfsdfsfsfsdfffffff.pptx
Medidas_Dispersiondsfasdfsdfsfsfsdfffffff.pptxSANTOS400018
 
Pres8 medidas de_dispersion
Pres8 medidas de_dispersionPres8 medidas de_dispersion
Pres8 medidas de_dispersionLeonardo Iriarte
 
Medidas de tencendia central
Medidas de tencendia centralMedidas de tencendia central
Medidas de tencendia centralinnovalabcun
 
00652520963IM07S11035705SESIoN4_MEDIDAS_DISPERSION__3_.pdf (1).pdf
00652520963IM07S11035705SESIoN4_MEDIDAS_DISPERSION__3_.pdf (1).pdf00652520963IM07S11035705SESIoN4_MEDIDAS_DISPERSION__3_.pdf (1).pdf
00652520963IM07S11035705SESIoN4_MEDIDAS_DISPERSION__3_.pdf (1).pdfAlexWatson190566
 
00652520963IM07S11035705SESIoN4_MEDIDAS_DISPERSION__3_.pdf.pdf
00652520963IM07S11035705SESIoN4_MEDIDAS_DISPERSION__3_.pdf.pdf00652520963IM07S11035705SESIoN4_MEDIDAS_DISPERSION__3_.pdf.pdf
00652520963IM07S11035705SESIoN4_MEDIDAS_DISPERSION__3_.pdf.pdfAlexWatson190566
 
Separata de medidas variabilidad o dispersion
Separata de medidas variabilidad o dispersionSeparata de medidas variabilidad o dispersion
Separata de medidas variabilidad o dispersionLuis Alberto Fernandez
 
Separata de medidas variabilidad o dispersion
Separata de medidas variabilidad o dispersionSeparata de medidas variabilidad o dispersion
Separata de medidas variabilidad o dispersionLuis Alberto Fernandez
 
P_Sem04_Ses08_Medidas_dispersión_no_agrupados con ejercicio con 2 muestras.pptx
P_Sem04_Ses08_Medidas_dispersión_no_agrupados con ejercicio con 2 muestras.pptxP_Sem04_Ses08_Medidas_dispersión_no_agrupados con ejercicio con 2 muestras.pptx
P_Sem04_Ses08_Medidas_dispersión_no_agrupados con ejercicio con 2 muestras.pptxpriscilaalaniayupari
 
Capitulo 04. Medidas de Variabilidad (2).pdf
Capitulo 04. Medidas de Variabilidad (2).pdfCapitulo 04. Medidas de Variabilidad (2).pdf
Capitulo 04. Medidas de Variabilidad (2).pdfJhonFelix3
 
UNIDAD 1 FASE 2_ESTADISTICA DESCRIPTIVA.docx
UNIDAD 1 FASE 2_ESTADISTICA DESCRIPTIVA.docxUNIDAD 1 FASE 2_ESTADISTICA DESCRIPTIVA.docx
UNIDAD 1 FASE 2_ESTADISTICA DESCRIPTIVA.docxKELLYYURANISANCHEZOR
 
Tema 4,DESCRIPCION DE CONJUNTOS DE DATOS
Tema 4,DESCRIPCION DE CONJUNTOS DE DATOSTema 4,DESCRIPCION DE CONJUNTOS DE DATOS
Tema 4,DESCRIPCION DE CONJUNTOS DE DATOSJORGE JIMENEZ
 
Clase 4 medidas de tendencia no central
Clase 4 medidas de tendencia no centralClase 4 medidas de tendencia no central
Clase 4 medidas de tendencia no centralLUZ ELENA GARCIA
 
Medidas de dispersión empleando excel
Medidas de dispersión empleando excelMedidas de dispersión empleando excel
Medidas de dispersión empleando excelvictor rojas rojas
 
Estadistica medidas de dispersion 2020 1
Estadistica medidas de dispersion  2020 1Estadistica medidas de dispersion  2020 1
Estadistica medidas de dispersion 2020 1franciscoe71
 

Similar a Medidas dispersión datos (20)

Medidas_Dispersiondsfasdfsdfsfsfsdfffffff.pptx
Medidas_Dispersiondsfasdfsdfsfsfsdfffffff.pptxMedidas_Dispersiondsfasdfsdfsfsfsdfffffff.pptx
Medidas_Dispersiondsfasdfsdfsfsfsdfffffff.pptx
 
Pres8 medidas de_dispersion
Pres8 medidas de_dispersionPres8 medidas de_dispersion
Pres8 medidas de_dispersion
 
Medidas de tencendia central
Medidas de tencendia centralMedidas de tencendia central
Medidas de tencendia central
 
00652520963IM07S11035705SESIoN4_MEDIDAS_DISPERSION__3_.pdf (1).pdf
00652520963IM07S11035705SESIoN4_MEDIDAS_DISPERSION__3_.pdf (1).pdf00652520963IM07S11035705SESIoN4_MEDIDAS_DISPERSION__3_.pdf (1).pdf
00652520963IM07S11035705SESIoN4_MEDIDAS_DISPERSION__3_.pdf (1).pdf
 
00652520963IM07S11035705SESIoN4_MEDIDAS_DISPERSION__3_.pdf.pdf
00652520963IM07S11035705SESIoN4_MEDIDAS_DISPERSION__3_.pdf.pdf00652520963IM07S11035705SESIoN4_MEDIDAS_DISPERSION__3_.pdf.pdf
00652520963IM07S11035705SESIoN4_MEDIDAS_DISPERSION__3_.pdf.pdf
 
Separata de medidas variabilidad o dispersion
Separata de medidas variabilidad o dispersionSeparata de medidas variabilidad o dispersion
Separata de medidas variabilidad o dispersion
 
Separata de medidas variabilidad o dispersion
Separata de medidas variabilidad o dispersionSeparata de medidas variabilidad o dispersion
Separata de medidas variabilidad o dispersion
 
P_Sem04_Ses08_Medidas_dispersión_no_agrupados con ejercicio con 2 muestras.pptx
P_Sem04_Ses08_Medidas_dispersión_no_agrupados con ejercicio con 2 muestras.pptxP_Sem04_Ses08_Medidas_dispersión_no_agrupados con ejercicio con 2 muestras.pptx
P_Sem04_Ses08_Medidas_dispersión_no_agrupados con ejercicio con 2 muestras.pptx
 
Capitulo 04. Medidas de Variabilidad (2).pdf
Capitulo 04. Medidas de Variabilidad (2).pdfCapitulo 04. Medidas de Variabilidad (2).pdf
Capitulo 04. Medidas de Variabilidad (2).pdf
 
UNIDAD 1 FASE 2_ESTADISTICA DESCRIPTIVA.docx
UNIDAD 1 FASE 2_ESTADISTICA DESCRIPTIVA.docxUNIDAD 1 FASE 2_ESTADISTICA DESCRIPTIVA.docx
UNIDAD 1 FASE 2_ESTADISTICA DESCRIPTIVA.docx
 
Tema 4,DESCRIPCION DE CONJUNTOS DE DATOS
Tema 4,DESCRIPCION DE CONJUNTOS DE DATOSTema 4,DESCRIPCION DE CONJUNTOS DE DATOS
Tema 4,DESCRIPCION DE CONJUNTOS DE DATOS
 
Py e 10
Py e 10Py e 10
Py e 10
 
Clase 4 medidas de tendencia no central
Clase 4 medidas de tendencia no centralClase 4 medidas de tendencia no central
Clase 4 medidas de tendencia no central
 
MODULO 1.pptx
MODULO 1.pptxMODULO 1.pptx
MODULO 1.pptx
 
Medidas de dispersión empleando excel
Medidas de dispersión empleando excelMedidas de dispersión empleando excel
Medidas de dispersión empleando excel
 
Py e 10
Py e 10Py e 10
Py e 10
 
Dispersion04
Dispersion04Dispersion04
Dispersion04
 
Estadistica medidas de dispersion 2020 1
Estadistica medidas de dispersion  2020 1Estadistica medidas de dispersion  2020 1
Estadistica medidas de dispersion 2020 1
 
Medidas de tendencia_2013
Medidas de tendencia_2013Medidas de tendencia_2013
Medidas de tendencia_2013
 
Medidas resumen
Medidas resumenMedidas resumen
Medidas resumen
 

Último

tipos de organización y sus objetivos y aplicación
tipos de organización y sus objetivos y aplicacióntipos de organización y sus objetivos y aplicación
tipos de organización y sus objetivos y aplicaciónJonathanAntonioMaldo
 
Los artistas mexicanos con más ventas de discos en la historia (2024).pdf
Los artistas mexicanos con más ventas de discos en la historia (2024).pdfLos artistas mexicanos con más ventas de discos en la historia (2024).pdf
Los artistas mexicanos con más ventas de discos en la historia (2024).pdfJC Díaz Herrera
 
Cuáles son las características biológicas que están marcadas en tu individual...
Cuáles son las características biológicas que están marcadas en tu individual...Cuáles son las características biológicas que están marcadas en tu individual...
Cuáles son las características biológicas que están marcadas en tu individual...israel garcia
 
bases-cye-2024(2) una sola descarga en base de feria de
bases-cye-2024(2) una sola descarga en base de feria debases-cye-2024(2) una sola descarga en base de feria de
bases-cye-2024(2) una sola descarga en base de feria deCalet Cáceres Vergara
 
Análisis de datos en acción: Optimizando el crecimiento de Cyclistic
Análisis de datos en acción: Optimizando el crecimiento de CyclisticAnálisis de datos en acción: Optimizando el crecimiento de Cyclistic
Análisis de datos en acción: Optimizando el crecimiento de CyclisticJamithGarcia1
 
La importancia de las pruebas de producto para tu empresa
La importancia de las pruebas de producto para tu empresaLa importancia de las pruebas de producto para tu empresa
La importancia de las pruebas de producto para tu empresamerca6
 
Las mujeres más ricas del mundo (2024).pdf
Las mujeres más ricas del mundo (2024).pdfLas mujeres más ricas del mundo (2024).pdf
Las mujeres más ricas del mundo (2024).pdfJC Díaz Herrera
 
Unidad 3 Elementos y compuestos. Física y química
Unidad 3 Elementos y compuestos. Física y químicaUnidad 3 Elementos y compuestos. Física y química
Unidad 3 Elementos y compuestos. Física y químicaSilvia García
 
Critica 1 Grupo 10 RodrigoBenitez_GinaGadea_AlexisGonzález.pdf
Critica 1 Grupo 10 RodrigoBenitez_GinaGadea_AlexisGonzález.pdfCritica 1 Grupo 10 RodrigoBenitez_GinaGadea_AlexisGonzález.pdf
Critica 1 Grupo 10 RodrigoBenitez_GinaGadea_AlexisGonzález.pdfRodrigoBenitez38
 
triptico-de-las-drogas en la adolescencia
triptico-de-las-drogas en la adolescenciatriptico-de-las-drogas en la adolescencia
triptico-de-las-drogas en la adolescenciaferg6120
 
Data Warehouse.gestion de bases de datos
Data Warehouse.gestion de bases de datosData Warehouse.gestion de bases de datos
Data Warehouse.gestion de bases de datosssuser948499
 
REPORTE DE INCIDENCIA DELICTIVA MARZO 2024.pdf
REPORTE DE INCIDENCIA DELICTIVA MARZO 2024.pdfREPORTE DE INCIDENCIA DELICTIVA MARZO 2024.pdf
REPORTE DE INCIDENCIA DELICTIVA MARZO 2024.pdfIrapuatoCmovamos
 
Qué es un Histograma estadístico teoria y problema
Qué es un Histograma estadístico teoria y problemaQué es un Histograma estadístico teoria y problema
Qué es un Histograma estadístico teoria y problemaJoellyAlejandraRodrg
 
obras-hidraulicas.docxfffffffffffffffffff
obras-hidraulicas.docxfffffffffffffffffffobras-hidraulicas.docxfffffffffffffffffff
obras-hidraulicas.docxfffffffffffffffffffJefersonBazalloCarri1
 
SUNEDU - Superintendencia Nacional de Educación superior Universitaria
SUNEDU - Superintendencia Nacional de Educación superior UniversitariaSUNEDU - Superintendencia Nacional de Educación superior Universitaria
SUNEDU - Superintendencia Nacional de Educación superior Universitariachayananazcosimeon
 
Ivu- taller de diseño arquitectonico l , adicion y sustraccion de cubos,
Ivu- taller de diseño arquitectonico l , adicion y sustraccion de cubos,Ivu- taller de diseño arquitectonico l , adicion y sustraccion de cubos,
Ivu- taller de diseño arquitectonico l , adicion y sustraccion de cubos,juberrodasflores
 
2 PROCESO ESTADISTICO PARA LA INVESTIGACION.pdf
2 PROCESO ESTADISTICO PARA LA INVESTIGACION.pdf2 PROCESO ESTADISTICO PARA LA INVESTIGACION.pdf
2 PROCESO ESTADISTICO PARA LA INVESTIGACION.pdfAnaBelindaArmellonHi
 
El Teatro musical (qué es, cuál es su historia y trayectoria...)
El Teatro musical (qué es, cuál es su historia y trayectoria...)El Teatro musical (qué es, cuál es su historia y trayectoria...)
El Teatro musical (qué es, cuál es su historia y trayectoria...)estebancitoherrera
 
REPORTE-HEMEROGRÁFICO-MARZO-2024-IRAPUATO-¿CÓMO VAMOS?.pdf
REPORTE-HEMEROGRÁFICO-MARZO-2024-IRAPUATO-¿CÓMO VAMOS?.pdfREPORTE-HEMEROGRÁFICO-MARZO-2024-IRAPUATO-¿CÓMO VAMOS?.pdf
REPORTE-HEMEROGRÁFICO-MARZO-2024-IRAPUATO-¿CÓMO VAMOS?.pdfIrapuatoCmovamos
 
Técnica palatina baja, anestesiología dental
Técnica palatina baja, anestesiología dentalTécnica palatina baja, anestesiología dental
Técnica palatina baja, anestesiología dentalIngrid459352
 

Último (20)

tipos de organización y sus objetivos y aplicación
tipos de organización y sus objetivos y aplicacióntipos de organización y sus objetivos y aplicación
tipos de organización y sus objetivos y aplicación
 
Los artistas mexicanos con más ventas de discos en la historia (2024).pdf
Los artistas mexicanos con más ventas de discos en la historia (2024).pdfLos artistas mexicanos con más ventas de discos en la historia (2024).pdf
Los artistas mexicanos con más ventas de discos en la historia (2024).pdf
 
Cuáles son las características biológicas que están marcadas en tu individual...
Cuáles son las características biológicas que están marcadas en tu individual...Cuáles son las características biológicas que están marcadas en tu individual...
Cuáles son las características biológicas que están marcadas en tu individual...
 
bases-cye-2024(2) una sola descarga en base de feria de
bases-cye-2024(2) una sola descarga en base de feria debases-cye-2024(2) una sola descarga en base de feria de
bases-cye-2024(2) una sola descarga en base de feria de
 
Análisis de datos en acción: Optimizando el crecimiento de Cyclistic
Análisis de datos en acción: Optimizando el crecimiento de CyclisticAnálisis de datos en acción: Optimizando el crecimiento de Cyclistic
Análisis de datos en acción: Optimizando el crecimiento de Cyclistic
 
La importancia de las pruebas de producto para tu empresa
La importancia de las pruebas de producto para tu empresaLa importancia de las pruebas de producto para tu empresa
La importancia de las pruebas de producto para tu empresa
 
Las mujeres más ricas del mundo (2024).pdf
Las mujeres más ricas del mundo (2024).pdfLas mujeres más ricas del mundo (2024).pdf
Las mujeres más ricas del mundo (2024).pdf
 
Unidad 3 Elementos y compuestos. Física y química
Unidad 3 Elementos y compuestos. Física y químicaUnidad 3 Elementos y compuestos. Física y química
Unidad 3 Elementos y compuestos. Física y química
 
Critica 1 Grupo 10 RodrigoBenitez_GinaGadea_AlexisGonzález.pdf
Critica 1 Grupo 10 RodrigoBenitez_GinaGadea_AlexisGonzález.pdfCritica 1 Grupo 10 RodrigoBenitez_GinaGadea_AlexisGonzález.pdf
Critica 1 Grupo 10 RodrigoBenitez_GinaGadea_AlexisGonzález.pdf
 
triptico-de-las-drogas en la adolescencia
triptico-de-las-drogas en la adolescenciatriptico-de-las-drogas en la adolescencia
triptico-de-las-drogas en la adolescencia
 
Data Warehouse.gestion de bases de datos
Data Warehouse.gestion de bases de datosData Warehouse.gestion de bases de datos
Data Warehouse.gestion de bases de datos
 
REPORTE DE INCIDENCIA DELICTIVA MARZO 2024.pdf
REPORTE DE INCIDENCIA DELICTIVA MARZO 2024.pdfREPORTE DE INCIDENCIA DELICTIVA MARZO 2024.pdf
REPORTE DE INCIDENCIA DELICTIVA MARZO 2024.pdf
 
Qué es un Histograma estadístico teoria y problema
Qué es un Histograma estadístico teoria y problemaQué es un Histograma estadístico teoria y problema
Qué es un Histograma estadístico teoria y problema
 
obras-hidraulicas.docxfffffffffffffffffff
obras-hidraulicas.docxfffffffffffffffffffobras-hidraulicas.docxfffffffffffffffffff
obras-hidraulicas.docxfffffffffffffffffff
 
SUNEDU - Superintendencia Nacional de Educación superior Universitaria
SUNEDU - Superintendencia Nacional de Educación superior UniversitariaSUNEDU - Superintendencia Nacional de Educación superior Universitaria
SUNEDU - Superintendencia Nacional de Educación superior Universitaria
 
Ivu- taller de diseño arquitectonico l , adicion y sustraccion de cubos,
Ivu- taller de diseño arquitectonico l , adicion y sustraccion de cubos,Ivu- taller de diseño arquitectonico l , adicion y sustraccion de cubos,
Ivu- taller de diseño arquitectonico l , adicion y sustraccion de cubos,
 
2 PROCESO ESTADISTICO PARA LA INVESTIGACION.pdf
2 PROCESO ESTADISTICO PARA LA INVESTIGACION.pdf2 PROCESO ESTADISTICO PARA LA INVESTIGACION.pdf
2 PROCESO ESTADISTICO PARA LA INVESTIGACION.pdf
 
El Teatro musical (qué es, cuál es su historia y trayectoria...)
El Teatro musical (qué es, cuál es su historia y trayectoria...)El Teatro musical (qué es, cuál es su historia y trayectoria...)
El Teatro musical (qué es, cuál es su historia y trayectoria...)
 
REPORTE-HEMEROGRÁFICO-MARZO-2024-IRAPUATO-¿CÓMO VAMOS?.pdf
REPORTE-HEMEROGRÁFICO-MARZO-2024-IRAPUATO-¿CÓMO VAMOS?.pdfREPORTE-HEMEROGRÁFICO-MARZO-2024-IRAPUATO-¿CÓMO VAMOS?.pdf
REPORTE-HEMEROGRÁFICO-MARZO-2024-IRAPUATO-¿CÓMO VAMOS?.pdf
 
Técnica palatina baja, anestesiología dental
Técnica palatina baja, anestesiología dentalTécnica palatina baja, anestesiología dental
Técnica palatina baja, anestesiología dental
 

Medidas dispersión datos

  • 1. UNIDAD III MEDIDAS DE DISPERSIÓN “Medidas de dispersión”
  • 2. Miden qué tanto se dispersan las observaciones alrededor de su media. MEDIDAS DE DISPERSIÓN
  • 3. En algunos casos existen conjuntos de datos que tienen la misma media y la misma mediana, pero esto no refleja qué tan dispersos están los elementos de cada conjunto. Ejemplo: Conjunto 1. 80, 90, 100, 110, 120 Conjunto 2. 0, 50, 100, 150, 200 MEDIDAS DE DISPERSIÓN 100 5 1201101009080   Media 100 5 200150100500   Media Conjunto 1 Conjunto 2 Observa que para ambos conjuntos la Mediana es igual a 100. También nota que los datos del conjunto 2 están más dispersos con respecto a su media que los datos del conjunto 1.
  • 4. Existen diversas medidas estadísticas de dispersión, pero muchos autores coinciden en que las principales son: Rango Varianza Desviación estándar Coeficiente de variación MEDIDAS DE DISPERSIÓN
  • 5. Mide la amplitud de los valores de la muestra y se calcula por diferencia entre el valor más elevado (Límite superior) y el valor más bajo (Límite inferior). RANGO FÓRMULA Ejemplo 1. Ante la pregunta sobre número de hijos por familia, una muestra de 12 hogares, marcó las siguientes respuestas: 2 1 2 4 1 3 2 3 2 0 5 1 Calcula el rango de la variable Solución. MAX MINRango X X  5 0 5Rango   
  • 6. Ejemplo 2. Hay dos conjuntos sobre la cantidad de lluvia (mm) en Taipei y Seúl en un año. Calcula el rango en cada una de las ciudades. Solución. Aplicando la fórmula correspondiente tenemos: Taipei Seúl 305 66 239Rango mm mm mm   Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic Taipei 86 135 178 170 231 290 231 305 244 122 66 71 Seúl 40 77 83 89 147 168 184 252 209 101 32 13 252 13 239Rango mm mm mm   En este caso se puede observar que el rango es el mismo para ambos casos aunque las cantidades sean diferentes.
  • 8. Mide la distancia existente entre los valores de la serie y la media. Se calcula como sumatoria de las diferencias al cuadrado entre cada valor y la media, multiplicadas por el número de veces que se ha repetido cada valor. La sumatoria obtenida se divide por el tamaño de la muestra. VARIANZA (Datos no agrupados) FÓRMULA 2 2 1 ( ) 1 n i i x x s n      Muestral Poblacional 2 2 1 ( ) N i x i x N      
  • 9. La varianza siempre será mayor que cero. Mientras más se aproxima a cero, más concentrados están los valores de la serie alrededor de la media. Por el contrario, mientras mayor sea la varianza, más dispersos están. Ejemplo 1. Calcula la varianza para los siguientes datos 2 1 2 4 1 3 2 3 2 0 5 1 Solución. Primero es necesario obtener la media. En este caso Ahora aplicamos la fórmula correspondiente 2.16x  2 2 2 2 2 2 2 2 2 2 2 2 2 (2 2.16) (1 2.16) (2 2.16) (4 2.16) (1 2.16) (3 2.16) (2 2.16) (3 2.16) (2 2.16) (0 2.16) (5 2.16) (1 2.16) 12 1 s                          2 21.6672 1.9697 11 s  
  • 10. Ejemplo 2. A continuación se muestran dos conjuntos de datos obtenidos a partir de un experimento químico que realizaron dos estudiantes distintos. Calcular la varianza. Solución. Primero es necesario obtener la media de cada conjunto de datos. En este caso Estudiante A Estudiante B Ahora aplicamos la fórmula correspondiente Volumen de ácido medido (cm^3) Estudiante A 8 12 7 9 3 10 12 11 12 14 Estudiante B 7 6 7 15 12 11 9 9 13 11 8.9 10 1412111210397128   x 10 10 111399111215767   x
  • 11. Solución (Continuación). Estudiante A Estudiante B 2 2 2 2 2 2 2 2 2 2 2 (8 9.8) (12 9.8) (7 9.8) (9 9.8) (3 9.8) (10 9.8) (12 9.8) (11 9.8) (12 9.8) (14 9.8) 10 1 s                      2 2 2 2 2 2 2 2 2 2 2 (7 10) (6 10) (7 10) (15 10) (12 10) (11 10) (9 10) (9 10) (13 10) (11 10) 10 1 s                      2 91.6 9.16 10 s   2 76 7.6 10 s  
  • 12. También llamada desviación típica, es una medida de dispersión usada en estadística que nos dice cuánto tienden a alejarse los valores puntuales del promedio en una distribución. Específicamente, la desviación estándar es "el promedio de la distancia de cada punto respecto del promedio". Se suele representar por una S o con la letra sigma,σ, según se calcule en una muestra o en la población. Una desviación estándar grande indica que los puntos están lejos de la media, y una desviación pequeña indica que los datos están agrupados cerca de la media. DESVIACIÓN ESTÁNDAR (Datos no agrupados) FÓRMULA 2 1 ( ) 1 n i i x x s n      N x N i xi   1 2 )(   Muestral Poblacional
  • 13. Ejemplo 1. Si retomamos el ejemplo 1 que corresponde a la varianza: Calcula la desviación estándar para los siguientes datos 2 1 2 4 1 3 2 3 2 0 5 1 Solución. Una vez que hemos calculado la media y la varianza, sólo resta calcular la raíz cuadrada de la varianza. 2.16x  2 21.6672 1.9697 11 s  
  • 14. Ejemplo 2. Considerando nuevamente el segundo ejemplo que estudiaste para calcular la varianza, tenemos: A continuación se muestran dos conjuntos de datos obtenidos a partir de un experimento químico que realizaron dos estudiantes distintos. Calcular la varianza. Solución. Una vez que has calculado la media y la varianza, es necesario calcular la desviación estándar a partir de la obtención de la raíz cuadrada de la varianza. Estudiante A Estudiante B Volumen de ácido medido (cm^3) Estudiante A 8 12 7 9 3 10 12 11 12 14 Estudiante B 7 6 7 15 12 11 9 9 13 11 2 91.6 9.16 10 s   2 76 7.6 10 s  
  • 15. Es una medida de dispersión que se utiliza para poder comparar las desviaciones estándar de poblaciones con diferentes medias y se calcula como cociente entre la desviación típica y la media. COEFICIENTE DE VARIACIÓN FÓRMULA 100% S CV x   Muestral Poblacional 100%CV    
  • 16. Ejemplo 1. En dos cursos los promedios que sacaron sus alumnos fueron 6.1 y 4.3 y las desviaciones estándar respectivas fueron 0.6 y 0.45 respectivamente. ¿En qué curso hay mayor dispersión? Solución Para responder esto, debemos obtener el coeficiente de variación aplicando la fórmula Claramente, el curso A tiene una dispersión menor que el B, pese a presentar una mayor desviación estándar. %8.9%)100( 1.6 6.0 ACV %4.10%)100( 3.4 45.0 BCV 100% S CV x  
  • 17. Cuando los datos están agrupados en tablas de frecuencias, el significado de las medidas de dispersión es el mismo, sin embargo la manera de calcularlas es diferente. Enseguida se muestra la fórmula para la varianza, pero recuerda que la desviación estándar es igual a la raíz cuadrada de la primera. VARIANZA Y DESVIACIÓN ESTÁNDAR (Datos agrupados) FÓRMULA 11 )( 1 2 12 1 2 2                   n n fx xf n xxf s k i k i ii ii k i ii 21 2 1 2 2 )(         N xf N xf k i ii k i ii Muestral Poblacional
  • 18. Ejemplo 1. Se han registrado durante 20 días, el número de viajeros que hacen reservaciones a una agencia de viajes pero que no las hacen efectivas: Calcula las medidas de dispersión de la variable en estudio. Interpreta i Número de viajeros (xi ) Frecuencia (fi) 1 12 3 2 13 3 3 14 6 4 15 3 5 16 5 Total 70 20
  • 19. Solución. Tal como lo indica la fórmula, primero es necesario multiplicar la variable (xi ) por la frecuencia (fi) y añadirlo como una columna a la tabla. i Número de viajeros (xi ) Frecuencia (fi) xi fi 1 12 3 36 2 13 3 39 3 14 6 84 4 15 3 45 5 16 5 80 Total 70 20 284 ... ... ... 1 2 1 2            k i k i ii fx s
  • 20. Solución (Continuación). Después se obtiene el cuadrado de la variable x, o sea, (xi )2. i Número de viajeros (xi ) Frecuenc ia (fi) xi fi xi 2 1 12 3 36 144 2 13 3 39 169 3 14 6 84 196 4 15 3 45 225 5 16 5 80 256 Total 70 20 284 990 ... ...... 1 2 2   k i ix s
  • 21. Solución (Continuación). Ahora se multiplica el cuadrado de la variable por la frecuencia, es decir, (fixi 2). i Número de viajeros (xi ) Frecuencia (fi) xi fi xi 2 fixi 2 1 12 3 36 144 432 2 13 3 39 169 507 3 14 6 84 196 1176 4 15 3 45 225 675 5 16 5 80 256 1280 Total 70 20 284 990 4070 ... ... ... 1 2 2    k i ii xf s
  • 22. Solución (Continuación). Una vez obtenidos todos los datos anteriores, se procede a aplicar la fórmula i Número de viajeros (xi ) Frecuencia (fi) xi fi xi 2 fixi 2 1 12 3 36 144 432 2 13 3 39 169 507 3 14 6 84 196 1176 4 15 3 45 225 675 5 16 5 80 256 1280 Total 70 20 284 990 4070 1 1 2 12 2              n n fx xf s k i k i ii ii
  • 23. Solución (Continuación). i Número de viajeros (xi ) Frecuencia (fi) xi fi xi 2 fixi 2 1 12 3 36 144 432 2 13 3 39 169 507 3 14 6 84 196 1176 4 15 3 45 225 675 5 16 5 80 256 1280 Total 70 20 284 990 4070 3992.19579.1 9579.1 19 20 284 4070 2 2     s s
  • 24. Ejemplo 2. De acuerdo a la siguiente tabla, calcula la varianza y la desviación estándar: NOTA x FREC. ABSOLUTA f FREC. ABSOLUTA ACUMULADA FREC. RELATIVA % FREC RELATIVA ACUMULADA % 1.2 1 1 0.1 0.1 1.4 2 3 0.2 0.3 1.6 3 6 0.3 0.6 1.8 8 14 0.8 1.4 2.0 14 28 1.4 2.8 2.2 18 46 1.8 4.6 2.4 19 65 1.9 6.5 2.6 22 87 2.2 8.7 2.8 25 112 2.5 11.2 3.0 26 138 2.6 13.8 3.2 27 165 2.7 16.5 3.4 31 196 3.1 19.6 3.6 35 231 3.5 23.1 3.8 38 269 3.8 26.9 4.0 45 314 4.5 31.4 4.2 46 360 4.6 36.0 4.4 48 408 4.8 40.8 4.6 52 460 5.2 46.0 4.8 58 518 5.8 51.8 5.0 60 578 6.0 57.8 5.2 56 634 5.6 63.4 5.4 54 688 5.4 68.8 5.6 51 739 5.1 73.9 5.8 50 789 5.0 78.9 6.0 46 835 4.6 83.5 6.2 44 879 4.4 87.9 6.4 40 919 4.0 91.9 6.6 32 951 3.2 95.1 6.8 31 982 3.1 98.2 7.0 18 1000 1.8 100 TOTAL 1000 4717 23970.12
  • 25. Solución. El primer paso es calcular xi fi: NOTA x FREC. ABSOLUTA f FREC. ABSOLUTA ACUMULADA FREC. RELATIVA % FREC RELATIVA ACUMULADA % xi fi 1.2 1 1 0.1 0.1 1.2 1.4 2 3 0.2 0.3 2.8 1.6 3 6 0.3 0.6 4.8 1.8 8 14 0.8 1.4 14.4 2.0 14 28 1.4 2.8 28 2.2 18 46 1.8 4.6 39.6 2.4 19 65 1.9 6.5 45.6 2.6 22 87 2.2 8.7 57.2 2.8 25 112 2.5 11.2 70 3.0 26 138 2.6 13.8 78 3.2 27 165 2.7 16.5 86.4 3.4 31 196 3.1 19.6 105.4 3.6 35 231 3.5 23.1 126 3.8 38 269 3.8 26.9 144.4 4.0 45 314 4.5 31.4 180 4.2 46 360 4.6 36.0 193.2 4.4 48 408 4.8 40.8 211.2 4.6 52 460 5.2 46.0 239.2 4.8 58 518 5.8 51.8 278.4 5.0 60 578 6.0 57.8 300 5.2 56 634 5.6 63.4 291.2 5.4 54 688 5.4 68.8 291.6 5.6 51 739 5.1 73.9 285.6 5.8 50 789 5.0 78.9 290 6.0 46 835 4.6 83.5 276 6.2 44 879 4.4 87.9 272.8 6.4 40 919 4.0 91.9 256 6.6 32 951 3.2 95.1 211.2 6.8 31 982 3.1 98.2 210.8 7.0 18 1000 1.8 100 126 TOTAL 1000 4717 23970.12
  • 26. Solución (Continuación). Después se obtiene el cuadrado de la variable x, o sea, (xi )2. NOTA x FREC. ABSOLUTA f FREC. ABSOLUTA ACUMULADA FREC. RELATIVA % FREC RELATIVA ACUMULADA % xi fi xi 2 1.2 1 1 0.1 0.1 1.2 1.44 1.4 2 3 0.2 0.3 2.8 1.96 1.6 3 6 0.3 0.6 4.8 2.56 1.8 8 14 0.8 1.4 14.4 3.24 2.0 14 28 1.4 2.8 28 4 2.2 18 46 1.8 4.6 39.6 4.84 2.4 19 65 1.9 6.5 45.6 5.76 2.6 22 87 2.2 8.7 57.2 6.76 2.8 25 112 2.5 11.2 70 7.84 3.0 26 138 2.6 13.8 78 9 3.2 27 165 2.7 16.5 86.4 10.24 3.4 31 196 3.1 19.6 105.4 11.56 3.6 35 231 3.5 23.1 126 12.96 3.8 38 269 3.8 26.9 144.4 14.44 4.0 45 314 4.5 31.4 180 16 4.2 46 360 4.6 36.0 193.2 17.64 4.4 48 408 4.8 40.8 211.2 19.36 4.6 52 460 5.2 46.0 239.2 21.16 4.8 58 518 5.8 51.8 278.4 23.04 5.0 60 578 6.0 57.8 300 25 5.2 56 634 5.6 63.4 291.2 27.04 5.4 54 688 5.4 68.8 291.6 29.16 5.6 51 739 5.1 73.9 285.6 31.36 5.8 50 789 5.0 78.9 290 33.64 6.0 46 835 4.6 83.5 276 36 6.2 44 879 4.4 87.9 272.8 38.44 6.4 40 919 4.0 91.9 256 40.96 6.6 32 951 3.2 95.1 211.2 43.56 6.8 31 982 3.1 98.2 210.8 46.24 7.0 18 1000 1.8 100 126 49 TOTAL 1000 4717 23970.12
  • 27. Solución (Continuación). Ahora se multiplica el cuadrado de la variable por la frecuencia, es decir, (fixi 2). NOTA x FREC. ABSOLUTA f FREC. ABSOLUTA ACUMULADA FREC. RELATIVA % FREC RELATIVA ACUMULADA % xi fi xi 2 fixi 2 1.2 1 1 0.1 0.1 1.2 1.44 1.44 1.4 2 3 0.2 0.3 2.8 1.96 3.92 1.6 3 6 0.3 0.6 4.8 2.56 7.68 1.8 8 14 0.8 1.4 14.4 3.24 25.92 2.0 14 28 1.4 2.8 28 4 56 2.2 18 46 1.8 4.6 39.6 4.84 87.12 2.4 19 65 1.9 6.5 45.6 5.76 109.44 2.6 22 87 2.2 8.7 57.2 6.76 148.72 2.8 25 112 2.5 11.2 70 7.84 196 3.0 26 138 2.6 13.8 78 9 234 3.2 27 165 2.7 16.5 86.4 10.24 276.48 3.4 31 196 3.1 19.6 105.4 11.56 358.36 3.6 35 231 3.5 23.1 126 12.96 453.6 3.8 38 269 3.8 26.9 144.4 14.44 548.72 4.0 45 314 4.5 31.4 180 16 720 4.2 46 360 4.6 36.0 193.2 17.64 811.44 4.4 48 408 4.8 40.8 211.2 19.36 929.28 4.6 52 460 5.2 46.0 239.2 21.16 1100.32 4.8 58 518 5.8 51.8 278.4 23.04 1336.32 5.0 60 578 6.0 57.8 300 25 1500 5.2 56 634 5.6 63.4 291.2 27.04 1514.24 5.4 54 688 5.4 68.8 291.6 29.16 1574.64 5.6 51 739 5.1 73.9 285.6 31.36 1599.36 5.8 50 789 5.0 78.9 290 33.64 1682 6.0 46 835 4.6 83.5 276 36 1656 6.2 44 879 4.4 87.9 272.8 38.44 1691.36 6.4 40 919 4.0 91.9 256 40.96 1638.4 6.6 32 951 3.2 95.1 211.2 43.56 1393.92 6.8 31 982 3.1 98.2 210.8 46.24 1433.44 7.0 18 1000 1.8 100 126 49 882 TOTAL 1000 4717 23970.12 4717 23970.12
  • 28. Solución (Continuación). Una vez obtenidos todos los datos anteriores, se procede a aplicar la fórmula 1 1 2 12 2              n n fx xf s k i k i ii ii 7217.1 11000 1000 4717 12.23970 2 2    s 3121.17217.1 s Varianza Desviación estándar
  • 29. Fuentes de información • http://medicina.unimayab.edu.mx/propedeutico/2009/semana1/chpt04.ppt. • http://beta.upc.edu.pe/matematica/mbcc/paginas/recursos/semana14/Clase01_Sem ana14.ppt • http://www.demre.cl/text/doc_tecnicos/p2009/estadistica_descriptiva.pdf • http://www.cgonzalez.cl/archivos/estadistica2.ppt. • http://repositorio.utpl.edu.ec/bitstream/123456789/3013/1/estadisticasegundobimestr e-090305174953-phpapp02.ppt. • netdrive.puiying.edu.hk/~ms/f7it/MATHS.PPT
  • 30. Créditos Título : Medidas de dispersión Colaborador: M. en C. Mario Arturo Vilchis Rodríguez Nombre de la Asignatura: Estadística aplicada a la mercadotecnia Programa Académico Lic. Mercadotecnia