SlideShare una empresa de Scribd logo
1 de 15
Motores térmicos.
Circuitos frigoríficos.
Unidad
6
http://cerezo.pntic.mec.es/rlopez33/bach/tecind2/Tema_3/index.html
6.1
El ingeniero francés Nicolas L. Sadi Carnot
fue el primero que abordó el problema
del η de un motor térmico,
prescindiendo de su funcionamiento,
llegando a la expresión:
El motor térmico tendrá mejor η cuando el
tubo que representa (Qc-Qf) sea lo
más ancho posible y el tubo que
representa el calor que cede por el
escape Qf sea lo más estrecho.
η = (Qc – Qf)/Qc = 1 – Qf/Qc
Motor térmico
1
Ciclo de Carnot
http://cerezo.pntic.mec.es/rlopez33/bach/tecind2/Tema_3/carnot.html
Suponemos un gas ideal y el motor funciona
entre dos focos de calor, el caliente a Tc y el frío
a Tf.
El ciclo se realiza en 4 tiempos mostrados en el
diagrama p-V de la fig.
•T1: Expansión isotérmica de M1 a M2 a la
temperatura Tc=T1=T2 (ºK). El W exterior
realizado será el área:
W1 = Qc = nRTc lnV2/V1
•T2: Expansión adiabática hasta la siguiente
isoterma Tf=T3=T4, no hay intercambio de Q con
el exterior y la ecuación de estado es:
T γ-1 γ-1
2/T3 = (V3/V2) o Tc/Tf = (V3/V2)
2
•T3: Compresión isoterma a Tf cediendo al
foco frío una cantidad de Qf, con un
consumo de W exterior:
W2 = Qf =nRTf ln V3/V4
•T4: Compresión adiabática de T4=Tf a
T1=Tc finalizando el ciclo. La ecuación de
estado es:
T γ-1 γ-1
1/T4 = (V4/V1) o Tc/Tf = (V4/V1)
Comparando T2 y T4 se puede establecer la
relación de volúmenes:
Tc/Tf = (V3/V2)γ-1
= (V4/V1)γ-1
→ V3/V2 = V4/V1 → V3/V4 = V2/V1
3
Sustituyendo en la ecuación del rendimiento:
4
El η del ciclo de Carnot depende únicamente de las
temperaturas del foco frío (Tf) y del caliente (Tc).
Para que tenga validez general, cualquier motor
térmico que tenga un ciclo reversible entre los
mismos focos de calor, tiene el mismo η.
η = 1 – (Qf/Qc) = 1 – (nRTf ln V3/V4)/(nRTc lnV2/V1) = 1 - Tf/Tc
Suponiendo entre dos focos (Tc>Tf) un motor de
Carnot (C) y otra máquina reversible (X). La
máquina C intercambia calores Qc y Qf, y la otra X,
qc y qf; hacemos que Qc=qc.
Como el ciclo de Carnot es reversible, ahora
funciona como frigorífico, la máquina C cede calor
Qc al foco caliente y la máquina X absorbe calor qc =
Qc del foco caliente; es como si el foco caliente no
interviene en el proceso y directamente la máquina
X absorbe el calor de la máquina de C.
El W neto no puede ser positivo w-W≤0 →w≤W
Para producir W hacen falta dos focos de calor, Qc y
Qf ,o lo que es lo mismo: el calor va del foco caliente
al foco frío (excepto si es un frigorífico)
5
Al ser Qc = qc, resulta:
w ≤ W → w/qc = W/Qc → (qc – qf)/qc = (Qc – Qf)/Qc→
1 – qf /qc ≤ 1 - Qf/Qc
El rendimiento de la otra máquina no puede ser
superior a la de Carnot.
El signo = máquina reversible.
El signo < máquina irreversible.
6
Clasificación de los motores térmicos
7
1. En función de donde se produce la combustión:
a) Combustión externa: el calor se transmite a un fluido
intermedio (vapor) y éste produce la energía mecánica
en una máquina alternativa o rotativa. (máquina y
turbina de vapor).
b) Combustión interna: el calor se produce en la cámara
interna del motor y, son los gases, los que producen la
energía mecánica. (motor explosión y diesel, turbina de
gas, turbohélice, etc.)
6.2
Un motor térmico tiene como misión transformar energía
térmica en energía mecánica que sea directamente utilizable
para producir trabajo.
8
2. En función de cómo se obtiene la energía
mecánica:
a) Motores alternativos: el fluido actúa sobre pistones alternativos.
b) Motores rotativos: el fluido actúa sobre pistones rotantes o
turbinas.
c) Motores de chorro: el fluido produce el empuje por el principio de
acción y reacción.
a) b) c)
A – Motor alternativo de combustión externa
Funcionamiento máq. de vapor:
•El cilindro se mueve de forma
alternativa por el vapor de la caldera,
transformando el movimiento lineal
en rotativo por la biela-manivela.
•El distribuidor, unido al volante, y de
sentido opuesto al émbolo, permite
que el vapor entre o salga del cilindro
y produciéndose el movimiento
alternativo continuo.
6.3
9
B – Motor rotativo de combustión externa
Funcionamiento turbina:
•Está formada por un rodete
donde se insertan los álabes
(paletas).
•El vapor pasa por unas toberas,
pierde presión y gana velocidad.
•El vapor choca con el álabe y
debido a su forma, se produce el
giro del mismo.
Turbina
10
Perfil de álabe
•El líquido sale de la bomba (5), se precalienta a
presión cte en la caldera hasta la saturación (1).
•Se calienta en la caldera hasta vapor saturado
(2).
•Cede el calor al motor (adiabática) (3) a menor
presión (condensador).
•Aquí, el vapor húmedo condensa hasta la
saturación (4).
•Se comprime de pa hasta pb, con un ligero
aumento de Tª (T5-T4). Por eso, el η es:
C – Ciclo del motor de combustión externa
http://cerezo.pntic.mec.es/rlopez33/bach/tecind2/Tema_3/rankine.html
11
A – Motor rotativo. Turbina de gas
Elementos:
•Compresor, pueden ser axial o
radial, comprimen el aire
convirtiendo la Ec del aire en E de
presión.
•Cámara de combustión, se
inyecta combustible y se lanza el
aire caliente a las toberas donde
obtenemos Ec.
•Turbina, el “gas” con su Ec se
lanza contra los álabes y se
convierte en E mecánica que
mueve el compresor y alternador.
6.4
12
B – Ciclo termodinámico Turbina de gas
Se llama ciclo de Brayton o
Joule:
• 1-2: entra aire a p1 y T1
ambiente, se comprime
adiabaticamente a p2 y T2.
• 2-3: p=cte, el aire eleva la T3
al quemar el combustible,
absorbe Q1=mcp(T3-T2).
• 3-4: expansión adiabática
descendiendo a T4 y p1,
cediendo W turbina.
• 4-5: p=cte, los gases ceden
calor atmósfera, T4 desciende
hasta T1, Q2=mcp(T4-T1).
http://cerezo.pntic.mec.es/rlopez33/bach/tecind2/Tema_3/brayton.html
2
13
3
1
p
r( 1)/
T T
 1
T4 T1
1
C-D – Motores de combustión interna
14

Más contenido relacionado

La actualidad más candente

Ciclo de brayton termoii-2013
Ciclo  de brayton termoii-2013Ciclo  de brayton termoii-2013
Ciclo de brayton termoii-2013
josedavid04
 
Maquina frigorífica, bomba de calor
Maquina frigorífica, bomba de calorMaquina frigorífica, bomba de calor
Maquina frigorífica, bomba de calor
josglods
 
Ciclos termodinamicos 2
Ciclos termodinamicos 2Ciclos termodinamicos 2
Ciclos termodinamicos 2
Joel Nunton
 
Tema05 Perdidas De Calor. Refrigeracion
Tema05 Perdidas De Calor. RefrigeracionTema05 Perdidas De Calor. Refrigeracion
Tema05 Perdidas De Calor. Refrigeracion
shoyas
 

La actualidad más candente (20)

Ciclo de otto
Ciclo de ottoCiclo de otto
Ciclo de otto
 
Ciclos termicos y trabajo
Ciclos termicos y trabajoCiclos termicos y trabajo
Ciclos termicos y trabajo
 
Eter2 u2 a1_malc
Eter2 u2 a1_malcEter2 u2 a1_malc
Eter2 u2 a1_malc
 
Resumen Ciclo de Potencia y Refrigeracion (Termodinámica II USB)
Resumen Ciclo de Potencia y Refrigeracion (Termodinámica II USB)Resumen Ciclo de Potencia y Refrigeracion (Termodinámica II USB)
Resumen Ciclo de Potencia y Refrigeracion (Termodinámica II USB)
 
Ciclo de brayton termoii-2013
Ciclo  de brayton termoii-2013Ciclo  de brayton termoii-2013
Ciclo de brayton termoii-2013
 
Maquina frigorífica, bomba de calor
Maquina frigorífica, bomba de calorMaquina frigorífica, bomba de calor
Maquina frigorífica, bomba de calor
 
Ciclo diesel
Ciclo dieselCiclo diesel
Ciclo diesel
 
6 ciclos de potencia
6 ciclos de potencia6 ciclos de potencia
6 ciclos de potencia
 
Ciclos Termodinamicos
Ciclos TermodinamicosCiclos Termodinamicos
Ciclos Termodinamicos
 
Ciclos termodinamicos 2
Ciclos termodinamicos 2Ciclos termodinamicos 2
Ciclos termodinamicos 2
 
Tema05 Perdidas De Calor. Refrigeracion
Tema05 Perdidas De Calor. RefrigeracionTema05 Perdidas De Calor. Refrigeracion
Tema05 Perdidas De Calor. Refrigeracion
 
03 turbina a-gas
03 turbina a-gas03 turbina a-gas
03 turbina a-gas
 
Ciclo brayton
Ciclo braytonCiclo brayton
Ciclo brayton
 
Semana 7 termodinamica-segunda ley
Semana 7 termodinamica-segunda leySemana 7 termodinamica-segunda ley
Semana 7 termodinamica-segunda ley
 
Ciclos termodinamicos-recopilación
Ciclos termodinamicos-recopilaciónCiclos termodinamicos-recopilación
Ciclos termodinamicos-recopilación
 
Ciclos Otto Teorico
Ciclos Otto TeoricoCiclos Otto Teorico
Ciclos Otto Teorico
 
250377343 ciclo-brayton
250377343 ciclo-brayton250377343 ciclo-brayton
250377343 ciclo-brayton
 
Ciclo Rankine
Ciclo RankineCiclo Rankine
Ciclo Rankine
 
Termo 6 1 centrales termicas
Termo 6 1 centrales termicasTermo 6 1 centrales termicas
Termo 6 1 centrales termicas
 
Ciclos termodinámica
Ciclos termodinámicaCiclos termodinámica
Ciclos termodinámica
 

Similar a Ud7 motores-termicos-frigorificos

Teoriadeltema3
Teoriadeltema3Teoriadeltema3
Teoriadeltema3
JL Rms
 
3.0-0 Aplicaciones MT - Turbinas_AERONAUTICAS .pdf
3.0-0 Aplicaciones MT - Turbinas_AERONAUTICAS .pdf3.0-0 Aplicaciones MT - Turbinas_AERONAUTICAS .pdf
3.0-0 Aplicaciones MT - Turbinas_AERONAUTICAS .pdf
mikoland
 
Grupo 4 segunda ley de la termodinamica
Grupo 4   segunda ley de la termodinamicaGrupo 4   segunda ley de la termodinamica
Grupo 4 segunda ley de la termodinamica
Will.I.Am Orlando
 
7. termodinamica 2da ley
7. termodinamica   2da ley7. termodinamica   2da ley
7. termodinamica 2da ley
David Narváez
 
Maq termicas
Maq termicasMaq termicas
Maq termicas
lealmayra
 

Similar a Ud7 motores-termicos-frigorificos (20)

Máquinas térmicas
Máquinas térmicasMáquinas térmicas
Máquinas térmicas
 
Analisis de motor
Analisis de motorAnalisis de motor
Analisis de motor
 
Resumen unidad 1
Resumen unidad 1Resumen unidad 1
Resumen unidad 1
 
Teoriadeltema3
Teoriadeltema3Teoriadeltema3
Teoriadeltema3
 
Segunda Ley Termodinamica. relacionnen ingenieriapdf
Segunda Ley Termodinamica. relacionnen ingenieriapdfSegunda Ley Termodinamica. relacionnen ingenieriapdf
Segunda Ley Termodinamica. relacionnen ingenieriapdf
 
Ciclos de Potencia
Ciclos de PotenciaCiclos de Potencia
Ciclos de Potencia
 
Tema 5-Introducción a los Motores Térmicos.ppt
Tema 5-Introducción a los Motores Térmicos.pptTema 5-Introducción a los Motores Térmicos.ppt
Tema 5-Introducción a los Motores Térmicos.ppt
 
Turbinas de gas(2011)
Turbinas de gas(2011)Turbinas de gas(2011)
Turbinas de gas(2011)
 
Ciclos termodinamicos damaris marquinez
Ciclos termodinamicos damaris marquinezCiclos termodinamicos damaris marquinez
Ciclos termodinamicos damaris marquinez
 
TERMODINÁMICA II.pptx
TERMODINÁMICA II.pptxTERMODINÁMICA II.pptx
TERMODINÁMICA II.pptx
 
ciclo de carnot.pptx
ciclo de carnot.pptxciclo de carnot.pptx
ciclo de carnot.pptx
 
3.0-0 Aplicaciones MT - Turbinas_AERONAUTICAS .pdf
3.0-0 Aplicaciones MT - Turbinas_AERONAUTICAS .pdf3.0-0 Aplicaciones MT - Turbinas_AERONAUTICAS .pdf
3.0-0 Aplicaciones MT - Turbinas_AERONAUTICAS .pdf
 
Principios_termodinamica.pdf
Principios_termodinamica.pdfPrincipios_termodinamica.pdf
Principios_termodinamica.pdf
 
proceso de combustión externa y interna en maquinas pdf
proceso de combustión externa y interna en maquinas  pdfproceso de combustión externa y interna en maquinas  pdf
proceso de combustión externa y interna en maquinas pdf
 
Eter2 u2 a1_ardc
Eter2 u2 a1_ardcEter2 u2 a1_ardc
Eter2 u2 a1_ardc
 
Ciclos a vapor
Ciclos a vaporCiclos a vapor
Ciclos a vapor
 
Grupo 4 segunda ley de la termodinamica
Grupo 4   segunda ley de la termodinamicaGrupo 4   segunda ley de la termodinamica
Grupo 4 segunda ley de la termodinamica
 
7. termodinamica 2da ley
7. termodinamica   2da ley7. termodinamica   2da ley
7. termodinamica 2da ley
 
Termodinamica ejercicios ciclo rankine
Termodinamica ejercicios ciclo rankineTermodinamica ejercicios ciclo rankine
Termodinamica ejercicios ciclo rankine
 
Maq termicas
Maq termicasMaq termicas
Maq termicas
 

Más de Avelino Santiago (20)

Calefacción
CalefacciónCalefacción
Calefacción
 
Conformado
ConformadoConformado
Conformado
 
Salas de calderas
Salas de calderasSalas de calderas
Salas de calderas
 
Sala calderas1
Sala calderas1Sala calderas1
Sala calderas1
 
Calderas rite ariston
Calderas rite aristonCalderas rite ariston
Calderas rite ariston
 
Calderas de condensacion
Calderas de condensacionCalderas de condensacion
Calderas de condensacion
 
Continua regulacion maquina
Continua regulacion maquinaContinua regulacion maquina
Continua regulacion maquina
 
Dinamo y-motor
Dinamo y-motorDinamo y-motor
Dinamo y-motor
 
Electricidad general-1
Electricidad general-1Electricidad general-1
Electricidad general-1
 
Continua alterna
Continua alternaContinua alterna
Continua alterna
 
Continua (3)
Continua (3)Continua (3)
Continua (3)
 
Continua (2)
Continua (2)Continua (2)
Continua (2)
 
Continua
ContinuaContinua
Continua
 
Continua alterna
Continua alternaContinua alterna
Continua alterna
 
Continua (2)
Continua (2)Continua (2)
Continua (2)
 
Circuitos
CircuitosCircuitos
Circuitos
 
Automatizacion industrial (1)
Automatizacion industrial (1)Automatizacion industrial (1)
Automatizacion industrial (1)
 
Automatismos industriales-cableados-1
Automatismos industriales-cableados-1Automatismos industriales-cableados-1
Automatismos industriales-cableados-1
 
Alterna
AlternaAlterna
Alterna
 
Alterna (2)
Alterna (2)Alterna (2)
Alterna (2)
 

Último

RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
amelia poma
 
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdfLas Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
Demetrio Ccesa Rayme
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
Wilian24
 
2° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
2° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx2° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
2° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
candy torres
 
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Lineamientos de la Escuela de la Confianza  SJA  Ccesa.pptxLineamientos de la Escuela de la Confianza  SJA  Ccesa.pptx
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Demetrio Ccesa Rayme
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Fernando Solis
 

Último (20)

PP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomasPP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomas
 
Power Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptxPower Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptx
 
EFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdf
EFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdfEFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdf
EFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdf
 
Actividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docxActividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docx
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
 
La Evaluacion Formativa SM6 Ccesa007.pdf
La Evaluacion Formativa SM6  Ccesa007.pdfLa Evaluacion Formativa SM6  Ccesa007.pdf
La Evaluacion Formativa SM6 Ccesa007.pdf
 
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanenteDiapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
 
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdfLas Preguntas Educativas entran a las Aulas CIAESA  Ccesa007.pdf
Las Preguntas Educativas entran a las Aulas CIAESA Ccesa007.pdf
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 
GRUPO 2 - LA GRAN TRIBULACIÓN 25-03-2024 vf.pdf
GRUPO 2 - LA GRAN TRIBULACIÓN 25-03-2024 vf.pdfGRUPO 2 - LA GRAN TRIBULACIÓN 25-03-2024 vf.pdf
GRUPO 2 - LA GRAN TRIBULACIÓN 25-03-2024 vf.pdf
 
Sesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdfSesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdf
 
Santa Criz de Eslava, la más monumental de las ciudades romanas de Navarra
Santa Criz de Eslava, la más monumental de las ciudades romanas de NavarraSanta Criz de Eslava, la más monumental de las ciudades romanas de Navarra
Santa Criz de Eslava, la más monumental de las ciudades romanas de Navarra
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdf
 
FICHA CUENTO BUSCANDO UNA MAMÁ 2024 MAESTRA JANET.pdf
FICHA CUENTO BUSCANDO UNA MAMÁ  2024 MAESTRA JANET.pdfFICHA CUENTO BUSCANDO UNA MAMÁ  2024 MAESTRA JANET.pdf
FICHA CUENTO BUSCANDO UNA MAMÁ 2024 MAESTRA JANET.pdf
 
REGLAMENTO FINAL DE EVALUACIÓN 2024 pdf.pdf
REGLAMENTO  FINAL DE EVALUACIÓN 2024 pdf.pdfREGLAMENTO  FINAL DE EVALUACIÓN 2024 pdf.pdf
REGLAMENTO FINAL DE EVALUACIÓN 2024 pdf.pdf
 
Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024
 
2° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
2° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx2° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
2° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Lineamientos de la Escuela de la Confianza  SJA  Ccesa.pptxLineamientos de la Escuela de la Confianza  SJA  Ccesa.pptx
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
 
12 - Planetas Extrasolares - Seminario de las Aulas de la Experiencia UPV/EHU
12 - Planetas Extrasolares - Seminario de las Aulas de la Experiencia UPV/EHU12 - Planetas Extrasolares - Seminario de las Aulas de la Experiencia UPV/EHU
12 - Planetas Extrasolares - Seminario de las Aulas de la Experiencia UPV/EHU
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 

Ud7 motores-termicos-frigorificos

  • 2. 6.1 El ingeniero francés Nicolas L. Sadi Carnot fue el primero que abordó el problema del η de un motor térmico, prescindiendo de su funcionamiento, llegando a la expresión: El motor térmico tendrá mejor η cuando el tubo que representa (Qc-Qf) sea lo más ancho posible y el tubo que representa el calor que cede por el escape Qf sea lo más estrecho. η = (Qc – Qf)/Qc = 1 – Qf/Qc Motor térmico 1 Ciclo de Carnot http://cerezo.pntic.mec.es/rlopez33/bach/tecind2/Tema_3/carnot.html
  • 3. Suponemos un gas ideal y el motor funciona entre dos focos de calor, el caliente a Tc y el frío a Tf. El ciclo se realiza en 4 tiempos mostrados en el diagrama p-V de la fig. •T1: Expansión isotérmica de M1 a M2 a la temperatura Tc=T1=T2 (ºK). El W exterior realizado será el área: W1 = Qc = nRTc lnV2/V1 •T2: Expansión adiabática hasta la siguiente isoterma Tf=T3=T4, no hay intercambio de Q con el exterior y la ecuación de estado es: T γ-1 γ-1 2/T3 = (V3/V2) o Tc/Tf = (V3/V2) 2
  • 4. •T3: Compresión isoterma a Tf cediendo al foco frío una cantidad de Qf, con un consumo de W exterior: W2 = Qf =nRTf ln V3/V4 •T4: Compresión adiabática de T4=Tf a T1=Tc finalizando el ciclo. La ecuación de estado es: T γ-1 γ-1 1/T4 = (V4/V1) o Tc/Tf = (V4/V1) Comparando T2 y T4 se puede establecer la relación de volúmenes: Tc/Tf = (V3/V2)γ-1 = (V4/V1)γ-1 → V3/V2 = V4/V1 → V3/V4 = V2/V1 3
  • 5. Sustituyendo en la ecuación del rendimiento: 4 El η del ciclo de Carnot depende únicamente de las temperaturas del foco frío (Tf) y del caliente (Tc). Para que tenga validez general, cualquier motor térmico que tenga un ciclo reversible entre los mismos focos de calor, tiene el mismo η. η = 1 – (Qf/Qc) = 1 – (nRTf ln V3/V4)/(nRTc lnV2/V1) = 1 - Tf/Tc
  • 6. Suponiendo entre dos focos (Tc>Tf) un motor de Carnot (C) y otra máquina reversible (X). La máquina C intercambia calores Qc y Qf, y la otra X, qc y qf; hacemos que Qc=qc. Como el ciclo de Carnot es reversible, ahora funciona como frigorífico, la máquina C cede calor Qc al foco caliente y la máquina X absorbe calor qc = Qc del foco caliente; es como si el foco caliente no interviene en el proceso y directamente la máquina X absorbe el calor de la máquina de C. El W neto no puede ser positivo w-W≤0 →w≤W Para producir W hacen falta dos focos de calor, Qc y Qf ,o lo que es lo mismo: el calor va del foco caliente al foco frío (excepto si es un frigorífico) 5
  • 7. Al ser Qc = qc, resulta: w ≤ W → w/qc = W/Qc → (qc – qf)/qc = (Qc – Qf)/Qc→ 1 – qf /qc ≤ 1 - Qf/Qc El rendimiento de la otra máquina no puede ser superior a la de Carnot. El signo = máquina reversible. El signo < máquina irreversible. 6
  • 8. Clasificación de los motores térmicos 7 1. En función de donde se produce la combustión: a) Combustión externa: el calor se transmite a un fluido intermedio (vapor) y éste produce la energía mecánica en una máquina alternativa o rotativa. (máquina y turbina de vapor). b) Combustión interna: el calor se produce en la cámara interna del motor y, son los gases, los que producen la energía mecánica. (motor explosión y diesel, turbina de gas, turbohélice, etc.) 6.2 Un motor térmico tiene como misión transformar energía térmica en energía mecánica que sea directamente utilizable para producir trabajo.
  • 9. 8 2. En función de cómo se obtiene la energía mecánica: a) Motores alternativos: el fluido actúa sobre pistones alternativos. b) Motores rotativos: el fluido actúa sobre pistones rotantes o turbinas. c) Motores de chorro: el fluido produce el empuje por el principio de acción y reacción. a) b) c)
  • 10. A – Motor alternativo de combustión externa Funcionamiento máq. de vapor: •El cilindro se mueve de forma alternativa por el vapor de la caldera, transformando el movimiento lineal en rotativo por la biela-manivela. •El distribuidor, unido al volante, y de sentido opuesto al émbolo, permite que el vapor entre o salga del cilindro y produciéndose el movimiento alternativo continuo. 6.3 9
  • 11. B – Motor rotativo de combustión externa Funcionamiento turbina: •Está formada por un rodete donde se insertan los álabes (paletas). •El vapor pasa por unas toberas, pierde presión y gana velocidad. •El vapor choca con el álabe y debido a su forma, se produce el giro del mismo. Turbina 10 Perfil de álabe
  • 12. •El líquido sale de la bomba (5), se precalienta a presión cte en la caldera hasta la saturación (1). •Se calienta en la caldera hasta vapor saturado (2). •Cede el calor al motor (adiabática) (3) a menor presión (condensador). •Aquí, el vapor húmedo condensa hasta la saturación (4). •Se comprime de pa hasta pb, con un ligero aumento de Tª (T5-T4). Por eso, el η es: C – Ciclo del motor de combustión externa http://cerezo.pntic.mec.es/rlopez33/bach/tecind2/Tema_3/rankine.html 11
  • 13. A – Motor rotativo. Turbina de gas Elementos: •Compresor, pueden ser axial o radial, comprimen el aire convirtiendo la Ec del aire en E de presión. •Cámara de combustión, se inyecta combustible y se lanza el aire caliente a las toberas donde obtenemos Ec. •Turbina, el “gas” con su Ec se lanza contra los álabes y se convierte en E mecánica que mueve el compresor y alternador. 6.4 12
  • 14. B – Ciclo termodinámico Turbina de gas Se llama ciclo de Brayton o Joule: • 1-2: entra aire a p1 y T1 ambiente, se comprime adiabaticamente a p2 y T2. • 2-3: p=cte, el aire eleva la T3 al quemar el combustible, absorbe Q1=mcp(T3-T2). • 3-4: expansión adiabática descendiendo a T4 y p1, cediendo W turbina. • 4-5: p=cte, los gases ceden calor atmósfera, T4 desciende hasta T1, Q2=mcp(T4-T1). http://cerezo.pntic.mec.es/rlopez33/bach/tecind2/Tema_3/brayton.html 2 13 3 1 p r( 1)/ T T  1 T4 T1 1
  • 15. C-D – Motores de combustión interna 14