SlideShare una empresa de Scribd logo
1 de 24
Descargar para leer sin conexión
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 13
Introducción a Fisiología
CAPÍTULO Nº 2:
En este capítulo Ud. podrá comprender la importancia de su tarea, cada vez que haga una instilación
venosa, cada vez que haga un balance hídrico.
El paciente se sentirá seguro, cuando perciba que Ud. conoce los fundamentos de lo que está hacien-
do, y las consecuencias esperadas y las posibles consecuencias no deseadas de de dicha tarea.
MEDIO INTERNO
II.1 Qué es el medio interno?
La unidad estructural, histológica y anatómica de los seres vivos es la
célula y cada una de ellas se organiza en tejidos, órganos y aparatos,
orientados hacia el cumplimiento de una función específica.
En el hombre, así como en todos los organismos complejos, la unidad
funcional está representada por cada una de sus células más el ambien-
te externo de las mismas que recibe el nombre de medio extracelular o
medio interno.
Prácticamente, todas las células viven en un medio esencialmente idén-
tico, el medio extracelular, que por esta razón se llama medio interno,
o melieu intérieur, término introducido por el gran fisiólogo francés del
melieu intérieur, término introducido por el gran fisiólogo francés del
melieu intérieur
siglo XIX Claude Bernard.
Aplicando el enfoque sistémico, abordaremos el estudio del medio in-
terno como un sistema, describiendo sus aspectos estructurales y fun-
cionales. Para tener presente sus características, recordemos la tabla
1-II.
Al finalizar la descripción de cada sistema, explicaremos la manera de
evaluar el funcionamiento de dichos sistemas.
Adelante!!!
* Límite.
* Elementos.
* Reservorio.
* Redes de comunicacion.
* Flujo.
* Compuertas o válvulas.
* Censores.
* Asas de retroalimentacion.
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE
14
Introducción a Fisiología
II.2 Estructura del medio interno
II.2.1 Elementos
Teniendo en cuenta que el organismo es una solución, describiremos
sus componentes:
* el agua (el solvente de la solución) representa el 40-60% del peso cor-
agua (el solvente de la solución) representa el 40-60% del peso cor-
agua
poral de un individuo, y es su principal constituyente. El agua se ingiere
en mayores cantidades que todas las demás sustancias y es la que más
se excreta. Es el vehículo de los principales nutrientes y productos de
excreción.
* Pero el agua no se encuentra sola en los organismos vivos y se ha vis-
to que se organiza mejor en presencia de otras sustancias (solutos de
la solución). Estas sustancias son iones y
iones y
iones moléculas organizadas de muy
moléculas organizadas de muy
moléculas
diversas maneras.
En condiciones ambientales y fisiológicas normales, el contenido de
agua de cada individuo es casi constante, variando en cantidades insig-
nificantes y existiendo sólo una diferencia dinámica que el organismo
se encarga de compensar en un par de horas.
II.2.2 Límites
Está constituído por las membranas biológicas, compuestas por lípidos
y proteínas. Definen los espacios o compartimentos del organismo.
Es muy importante que Ud. reconozca que la membrana celular es el
límite de este sistema: la composición en un lado y el otro de ella es
diferente. A su vez, es un sistema en sí mismo.
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 15
Introducción a Fisiología
W.B. Saunders Company items and derived items copyright © 2000 by W.B. Saunders Company
En las siguientes Figuras identifique los diferentes constituyentes microscópicos de la Membrana ce-
lular, de una Célula del Túbulo proximal.
a) Microvellosidades.
b) Uniones estrechas.
c) Desmosomas.
d) Comunicaciones Intercelulares. Uniones en hendidura o nexos.
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE
16
Introducción a Fisiología
Con el objetivo de presentar hasta dónde la ciencia ha podido identifi-
car los componentes de la membrana celular les presentamos los trans-
portadores que ya se han descripto.
No los tiene que memorizar. Sólo piense si Ud. no querría ser un Inves-
tigador y conocer más sobre esto!!!!
La Base de datos de la Nomenclatura de los genes humanos poveyó una
lista aprobada de símbolos de genes. Incluye 21 familias de “Transpor-
tadores”, llamados (SLC) o transportadores de solutos. Estas familias se
identifican con un número y se asignan a la misma familia cuando com-
parten al menos el 20% de aminoácidos.
Este material contiene palabras en inglés…
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 17
Introducción a Fisiología
II.2.3 Reservorios
Los espacios bien definidos por las membranas constituyen los compar-
timentos líquidos.
La masa acuosa de nuestro organismo se halla distribuida en dos gran-
des compartimentos:
1. la mayor parte del agua (2/3) se encuentra dentro de las células. Este
compartimiento se llama líquido intracelular (LIC)
líquido intracelular (LIC)
líquido intracelular
2. el 1/3 restante se encuentra fuera de las células. Este compartimiento
recibe el nombre de líquido extracelular (LEC) o medio interno. Este espa-
cio, a su vez, comprende los compartimentos líquidos intersticial e intra-
vascular.
Debido a que el líquido intravascular se obtiene fácilmente (mediante
la centrifugación de una muestra de sangre se logran separar los ele-
mentos formes del líquido), se utiliza el plasma como representativo del
medio interno o líquido extracelular.
El plasma constituye el 54% de la sangre (el 45% restante consiste en
glóbulos rojos, y 1% glóbulos blancos y plaquetas). El 92% del plasma es
agua, y el 8% está constituido por moléculas esenciales para la vida (glu-
cosa, aminoácidos, ácidos grasos, hormonas (como insulina, adrenalina,
aldosterona) e iones (como sodio y calcio).
Líquido intravascular = plasma
Estas proporciones debe ser conocidas por Ud. para ser un buen Li-
cenciado en Enfermería.
Con una calculadora o en una planilla de Excel Ud. puede determinar el
agua Corporal total.
Se usa cuando Ud. debe reponer líquidos, instilar una medicación...
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE
18
Introducción a Fisiología
II.2.4 Redes de comunicación
El agua se distribuye y pasa de un compartimento a otro, dependiendo
de:
* la permeabilidad de la barrera existente entre los compartimentos (la
mayoría de las membranas son permeables al agua, de manera que éste
factor es prácticamente inexistente, siendo las excepciones el nefrón
distal y los conductos de las glándulas sudoríparas).
Es de esta manera en que pueden pasar sustancia de un compartimento
a otro,
Tipos de Transporte:
Pueden ser pasivos cuando no gastan energía:
pasivos cuando no gastan energía:
pasivos
I-Difusión: Es el movimiento continuo de moléculas a través de la mem-
brana. Puede ser:
Simple:
Las moléculas pasan de un lado a otro por canales ( son proteínas). Pue-
den ser Selectivas: por su forma y constitución química seleccionan cuál
molécula transcurre y cual no. Por compuertas: operadas por voltaje o
cambios químicos ( o ligando).
Facilitada: necesita de moléculas transportadoras.
* la cantidad de solutos de cada compartimiento (es el elemento deter-
minante)
Puede ser Transporte activo:
Primario:CuandousaelTransporteActivo directamente:Ejemplo:Bom-
ba de Na/ K.
Secundario: la energía gastada por la bomba crea la diferencia de pos-
tencial para atraer o rechazar un ion. Ejemplo: Co transporte de Glucosa
y Aminoácidos.
La cantidad de solutos en cada compartimento está regulada, a su vez,
por :
1.- los mecanismos de transporte de membrana (hacen pasar los solutos
de uno a otro compartimento). Constituyen verdaderos canales o túne-
les en las membranas por donde pasan algunos solutos y otros no. Por
ejemplo, la bomba de Na-K ATPasa.
2.- las fuerzas que operan en las barreras compartimentales, son: el
equilibrio de Gibss Donnan y las fuerzas de Starling.
Así, la cantidad de solutos en el LIC y LEC son diferentes (ver fig. 2-1)
CAPÍTULO II
¶
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 19
Introducción a Fisiología
II.3 Aspectos funcionales del medio interno
La principal función del organismo es mantener su equilibrio interno.
Esto involucra mantener constante la concentración, en el plasma, de
ciertasmoléculaseionesquesonesencialesparalavida.Estapropiedad
del cuerpo intrigó a muchos fisiólogos. En 1932 Walter Cannon, fisiólogo
norteamericano, halló el concepto que hizo posible explicar esta pro-
piedad de regulación del cuerpo, y la llamó homeostasis.
Homeostasis es el equilibrio dinámico que mantiene las condiciones
constantes en el medio interno.
Prácticamente todos los tejidos y órganos del cuerpo realizan funciones
que ayudan a mantener la homeostasis.
De esta manera, el medio interno constituye un gran sistema que con-
tiene, a su vez, una gran variedad de subsistemas (circulatorio, respira-
torio, digestivo, renal, osteomioarticular, nervioso, endocrino, etc.) que
contribuyen al funcionamiento en armonía.
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE
20
Introducción a Fisiología
II.3.1 Transporte del medio interno (flujo):
El sistema circulatorio
El líquido extracelular o medio interno, se encuentra en continuo movi-
miento por todo el cuerpo.
El movimiento puede dividirse en 2 formas:
* la primera a través del movimiento circular del plasma por el sistema
circulatorio. La figura 2-2 ilustra la circulación completa de la sangre en
el organismo.
* la segunda, el movimiento del líquido entre los capilares sanguíneos y
las células a través del líquido intersticial. La figura 2-3 ilustra este mo-
vimiento.
II.3.2 Origen de los nutrientes del medio interno(sustrato):
Sistemas digestivo, respiratorio y osteomioarticular
Sistema digestivo
Los alimentos de la dieta diaria contienen materia prima indispensables
para el organismo (agua, glucosa, proteínas, lípidos, iones, vitaminas,
etc).
En el tubo digestivo, estas sustancias pasan a través de una serie de
transformaciones, y luego son absorbidas para su uso inmediato o para
su almacenamiento. Una gran proporción de la sangre, que el corazón
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 21
Introducción a Fisiología
bombea, pasa por las paredes del tubo digestivo y recogen los diferen-
tes nutrientes para ser distribuidos por todo el cuerpo.
Sistema respiratorio
El oxígeno del aire ingresa por las vías aéreas a los pulmones. Toda la
sangre de la circulación pasa por los pulmones para captar el oxígeno.
Sistema osteomioarticular
Uno se preguntaría: cómo encaja este sistema en las funciones homeos-
táticas del cuerpo? La respuesta es simple: si no fuera por este sistema,
el cuerpo no se podría desplazar al lugar adecuado en el momento ade-
cuado para obtener los alimentos necesarios para su nutrición.
II.3.3 Eliminación de desechos del medio interno (productos):
Sistemas respiratorio, renal y digestivo
Debido a que los desechos metabólicos y los gases de combustión son
devueltos a la sangre, un sistema de filtración, reciclaje y de eliminación
de desechos es necesario para limpiar la sangre.
Sistema respiratorio
La sangre es regenerada en los pulmones a través de la eliminación de
dióxido de carbono y la absorción de oxígeno por medio de la hemog-
lobina de los glóbulos rojos.
Sistema renal
Los riñones filtran, reciclan y limpian la sangre de desechos. El 99% de la
sangre que fluye por los riñones vuelve a la circulación, mientras que el
1% restante forma la orina con los desechos, que se elimina a través de
las vías urinarias.
Sistema digestivo
Las sustancias que no se absorben en el tubo digestivo sumadas a las
que el organismo secreta para facilitar la absorción, se eliminan como
materia fecal.
Además, el hígado actúa como un filtro químico, reteniendo y destru-
yendo cualquier sustancia que podría ser tóxica para el sistema.
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE
22
Introducción a Fisiología
II.3.4 Sistema de regulación y control del medio interno:
Sistemas nervioso y endocrino
El sistema nervioso recibe la información del medio y envía sus res-
puestas al mismo a través de los nervios. En el cerebro se procesa y se
almacena la información (memoria).
El control y la regulación de las mayores funciones del cuerpo son asu-
midas por el cerebro y por las glándulas endócrinas.
La regulación requiere la cooperación de muchos órganos. Las redes de
comunicación entre los órganos son esenciales.
Una red de naturaleza electroquímica permite la transmisión de un im-
pulso eléctrico a través de los nervios.
También existe una red de naturaleza química: glándulas endócrinas li-
beran una señal molecular (una hormona) en la circulación. Todos los
órganos recibirán dicha hormona, pero debido a que la instrucción que
contiene la hormona es codificada, sólo los órganos indicados recibirán
la señal y llevarán a cabo la acción reguladora. Así funciona el sistema
endocrino.
II.4 Evaluación del medio interno
Teniendo en cuenta que el medio interno es una solución compuesta
por solutos y solventes, en la práctica se cuantifica estos elementos.
II.4.1 Unidades para medir solutos
Existen diferentes unidades para expresar la cantidad de solutos. Por
ejemplo, si consideramos al catión Na+, su medición puede ser expre-
sada como Na+ corporal toral (5.000 mEq o 115 g o 71 mEq/kg de peso),
como concentración plasmática (142 mEq/L), o como concentración en
el LEC (152 mOsm/L). Esto nos demuestra la necesidad de un consenso
para utilizar unidades de medida standard para expresar la concentra-
ción de solutos.
Vuelva a la figura 2.1 y observe las diferentes unidades utilizadas para
expresar la composición química del LEC y del LIC.
Muchas veces se presenta la situación de que conocemos la concentra-
ción de una sustancia en una miligramos por ciento y queremos conocer
su concentración en miliequivalentes por litro, y viceversa. Para resolver
esta situación se idearon las siguiente fórmulas:
mEq/L = peso en gramos x valencia x 10 peso atómico
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 23
Introducción a Fisiología
peso en gramos = equivalentes x peso atómico valencia x10
II.4.2 Unidades para medir solventes
osmol (Osm): osmolaridad
Como el 75% del volumen intracelular y el 94% del plasma están cons-
tituidos por agua, la mejor forma de expresar la actividad osmótica de
una solución es en concepto de agua y no de volumen. La importancia
de la osmolaridad es que al medirla se determina la concentración de
agua, la que se desplaza siempre a gradientes de concentración desde
la zona de menor a la de mayor osmolaridad.
Actividad osmótica del medio interno
Si tenemos un tubo en U y colocamos en el centro de la U una membrana
semipermeable, y a ambos lados agua, la cantidad de moléculas, que
por su tendencia de escape y por su potencial químico tiende a pasar de
un lado a otro de la membrana, es igual (siempre que las condiciones de
temperatura y presión sean iguales de ambos lados). En consecuencia,
el nivel alcanzado por el agua en cada una de ramas del tubo en U será
exactamente el mismo.
Ahora, si adicionamos un soluto que pase libremente a través de la
membrana, como es la urea (osmol inefectivo), en uno de los brazos del
tubo en U, el soluto se distribuirá igualmente a ambos lados de la mem-
brana y se llegará a una situación de equilibrio en la cual la transferencia
de agua y urea por su tendencia de escape será exactamente igual, con
igual altura de la solución en ambos brazos del tubo en U.
En cambio, si adicionamos en uno de los brazos del tubo en U un soluto
que no pase a través de la membrana como es la glucosa (osmol efecti-
vo), la actividad de las moléculas de agua en el sitio donde fue colocado
el soluto se reduce. Entonces, el agua pasará entonces desde el brazo sin
glucosa hacia el brazo con glucosa, hasta que la presión hidrostática que
se establece por el aumento de la columna hídrica restaure la actividad
de la solución glucosada a una similar a la del agua pura. La diferencia
de presión hidrostática entre las dos ramas del tubo en U define a la
presión osmótica.
Observe el gráfico: la membrana está cerrada.
Como Ud. conoce la glucosa es un monosacárido y la sucrosa un disacá-
rido. Los pesos moleculares son diferentes pero la molaridad es la mis-
ma. Por lo tanto, hacia dónde se desplazará el agua? Ver figura 2.
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE
24
Introducción a Fisiología
Veamos qué sucede si se expresa en gramos.
Como la glucosa tiene menor peso molecular, hay mas glucosa en 1 gra-
mo que sucrosa en un gramo por lo tanto el agua se desplazará hacia
donde hay mayor concentración.
Observe la figura 3:
Veamos un caso mas complejo:
Aquí las concentraciones molares son iguales pero…..
Al abrirse la membrana el CLNa se disocia, y actúa como si fuese de
200mM. Por lo tanto el agua se desplaza hacia el ClNa. ( es cloruro de
sodio, la sal común!!!). Por lo tanto, atrae agua!!!!!
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 25
Introducción a Fisiología
Observe la figura 4:
Otro ejemplo con otros componentes del Medio Interno:
Observe la figura 5:
La albúmina es 1000 veces más grande que la glicina, pero ambos solu-
tos tienen la misma concentración molar, por lo tanto no hay desplaza-
miento de agua.
Veamos que pasa en el siguiente ejemplo. Tape la segunda figura y me-
dite de dónde a dónde se desplazará el agua…
Si bien la masa de insulina es 100 veces mayor, la concentración de gli-
cina es 7.7 veces mayor!!!! Por lo tanto el agua se desplaza hacia la so-
lución con glicina.
Observe la figura 6:
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE
26
Introducción a Fisiología
La presión osmótica corresponde a la suma de los solutos. Veamos en el
siguiente ejemplo hacia donde fluye el agua. Recuerde lo que pasaba
con el ClNa….
Observe la figura 7:
Se debe a que el ClK se disocia y por lo tanto la suma es de 100 mM
mientras que la suma de sacáridos alcanza sólo a 70mM.
2.4.3 Determinación de la presión osmótica del medio interno
Conociendo la concentración del Na+, de la glucosa y de la urea (por sim-
ple análisis de una muestra sanguínea), la presión osmótica del líquido
extracelular se puede calcular mediante la siguiente fórmula:
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 27
Introducción a Fisiología
Posm del LEC = 2 x Na + glucosa (mg%) + urea (mg%)
18 2.8
Como el Na+ es el osmol efectivo más importante en el LEC, se puede
deducir que cuando el Na+ está alto (hipernatremia) hay hiperosmolari-
dad, provocando la sustracción de agua del LIC (deshidratación celular)
En cambio, si el Na+ está bajo en el LEC (hiponatremia) hay hipoosmo-
laridad, produciendo pasaje de agua al LIC (encharcamiento o sobrehi-
dratación celular)
El Na+ corporal total representa el volumen del LEC. Su aumento signi-
fica un aumento del LEC y viceversa. Como es difícil medirlo, se reem-
plaza su determinación por la evaluación clínica: presencia de edemas,
signos de sobrecarga cardíaca, signo del pliegue cutáneo, hipotensión
arterial, oliguria, etc.
II.4.4 Determinación de la tonicidad del medio interno
Para determinarla se quita la urea de la fórmula anterior (por ser un os-
mol inefectivo):
Posm del LEC = 2 x Na + glucosa (mg%)
18
La importancia de estos conceptos es que debemos conocer la forma de
medir la distribución del agua entre los compartimentos. Esta distribu-
ción depende de los osmoles efectivos en cada compartimiento (Na+
para el LEC y K+ para el LIC)
De esta manera, el volumen o cantidad de agua del LEC dependerá del
balance de Na+.
En cambio, como la cantidad de osmoles del LIC es prácticamente cons-
tante, la cantidad de agua o volumen del mismo dependerá del balance
de agua.
II.4.5 Balance de agua
La relación entre el agua que entra y que sale del organismo se llama
balance de agua.
Normalmente, durante las 24 horas del día, los ingresos de agua guar-
dan una similitud con los egresos, de tal manera que el balance final es
cero (Tabla 2-II).
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE
28
Introducción a Fisiología
MUY IMPORTANTE!!!!!!!!!
Las pérdidas se modifican en circunstancias no fisiológicas:
a) Piel:
si tiene fiebre, 150 ml en 24 horas por cada grado centígrado que au-
menta.Si moja la ropa, 1000 ml en 24 horas.
b) Respiratoria:
si tienen disnea, aumento de 5 respiraciones por minuto, en un período
de 24 horas, 100ml en el mismo tiempo.
La sudoración contiene: 50 mEq/l de na y 50 mEq/ l de Cl y 14 mEq/l de
K.
c) Por vía renal:
Diuresis normal: 1500ml en 24 horas.
Cloro: 130 mEq/l.
Na: 140 mEq/l
K: 35 mEq/l.
Estos valores se modifican en relación a los aportes y correcta función
renal.Está totalmente modificada si se usan diuréticos!!!!
c) Digestiva:
Heces: Cl 15mEq/l. Na: 20 mQ/l y K:45 mEq/l.
Si hay diarrea: la pérdida de Na puede ascender a 100 mEq/l, Cl a 40
mEq/l, y K a 30 mRq/l.
Si hay vómitos: se piede Cl: 120 mEq/l. Na: 90mEq/l, y K: 6 mEq/l.
Jugo Intestinal: Cl: 50 mEq/l; Na: 90 mEq/l, K: 12 mEq/l.
Bilis: Cl: 80 mE/l; Na: 140 mEq/l; K: 5 mEq/l.
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 29
Introducción a Fisiología
Trabajo Práctico:
Realice una Tabla con las pérdidas ordinarias de Agua, Cl, Na, K, y Cl.
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE
30
Introducción a Fisiología
La importancia de conocer el balance de agua es que cuando se modifi-
can cualquiera de estos factores, también se modifica el volumen de los
compartimentos. Así la ingesta de agua, la deshidratación, la infusión
intravenosa de diferentes soluciones, la pérdida de grandes cantidades
de líquido desde el tubo digestivo (diarrea, vómitos) y las pérdidas de
líquido por el sudor (zona cálida o posterior a actividad física) o por los
riñones, determinan cambios importantes en el medio interno y las cé-
lulas.Comoconsecuenciasedesencadenamecanismoscompensatorios
homeostáticos para volver al equilibrio anterior.
Por ejemplo, aumentan las pérdidas cuando un individuo tiene diarrea;
o cuando tras una actividad física intensa (correr) aumenta su frecuencia
respiratoria y la temperatura corporal (pérdida por la piel por traspira-
ción).
Ante estas pérdidas el cuerpo desencadena mecanismos que tienden a
recuperar el estado anterior, estimulando la sensación de la sed (para
aumentar los ingresos) y secretando una hormona (ADH: antidiurética)
que actúa a nivel renal ahorrando agua.
Cuando las pérdidas son de magnitud tal (por ejemplo, una hemorragia
severa, vómitos profusos, diarrea crónica) que los mecanismos com-
pensatorios son insuficientes para reestablecer el equilibrio, es necesa-
rio reponer la cantidad que se perdió por medio de una infusión intra-
venosa de soluciones parenterales.
Todo lo anterior sirve para que, cada vez que usa un “suero” deberá valorar
los aportes que está realizando:
II.4.6 Soluciones parenterales
Clasificación de las soluciones parenterales de acuerdo a su osmolari-
dad:
1.- hipertónicas o hiperosmolares
2.- hipotónicas o hipoosmolares
3.- isotónicas o isosmóticas
Si se añade una solución isotónica al compartimento líquido extracelu-
lar, la osmolaridad del LEC no cambia, por ser la misma.
No se produce movimiento de agua, por lo tanto el único efecto es un
aumento del volumen del LEC.
Sin embargo, si se añade una solución hipertónica al LEC, la osmolari-
dad aumenta y causa salida de agua desde el interior hacia el exterior de
las células (achicamiento celular).
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 31
Introducción a Fisiología
Finalmente, si se administra una solución hipotónica, la osmolaridad
del LEC disminuye, penetrando parte del líquido a las células (encharca-
miento o hinchazón celular).
Además, con frecuencia se administran diferentes tipos de soluciones
intravenosas para nutrir a los pacientes que no pueden ingerir cantida-
des adecuada de alimento por la vía natural enteral. Las soluciones más
utilizadas son las glucosadas.
Numerar las diferentes soluciones con sus componentes. Dividir según cla-
sificación.
Resumen
El propósito de este capítulo ha sido destacar, primero, la organización
global del cuerpo, y segundo, los medios por los cuales las distintas es-
tructuras del cuerpo operan en armonía.
En conclusión diremos que el cuerpo es realmente un sistema (cantidad)
de células organizadas en estructuras funcionales o subsistemas.
Cada subsistema coopera en el mantenimiento de las condiciones ho-
meostáticas del líquido extracelular, que se llama medio interno.
Mientras se mantengan las condiciones normales en el medio interno,
las células del cuerpo continuarán viviendo y funcionando adecuada-
mente.
Esta interrelación recíproca proporciona el automatismo continuo del
cuerpo hasta que uno o más sistemas funcionales pierdan la capacidad
de aportar su grano de arena de función.
Cuando esto sucede, todas las células del cuerpo sufren. Un mal funcio-
namiento extremo conduce a la muerte, mientras que un mal funciona-
miento moderado conduce a la enfermedad.
Por este motivo es importante conocer cómo se puede evaluar y medir
el estado del medio interno, y de esta manera estar capacitados para
actuar debidamente.
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE
32
Introducción a Fisiología
Presentamos las preguntas de Multiple choice que evalúan la com-
prensión, aplicación y la información recibida.
1.- A qué se refiere un balance neutro de agua?
* Pérdidas de líquidos es igual al ingreso por vía oral
* Pérdidas por piel es igual al ingreso por vía parenteral.
* Las pérdidas por piel, respiración y diuresis, son iguales a ingresos por
vía oral, parenteral, o enteral y agua endógena.
* Solo se considera la pérdida de la diuresis igual a los ingresos.
2.- Si un paciente pesa 95 kg, a cuánto corresponde el agua corporal to-
tal?
* 42 litros
* 57 litros
* 24 litros
* 18 litros
3.- El agua es el principal constituyente del medio interno. Puede Ud. se-
ñalar el porcentaje del peso corporal, que representa el agua corporal de
un varón entre 40 y 59 años?
* 45%
* 60%
* 50%
* 75%
4.- Señale cual de las siguientes afirmaciones con respecto a la membrana
celular es correcta:
* Es altamente permeable, y la composición química de un lado y otro
es igual.
* No es permeable a ningún ion.
* Sus características físico químicas determinan el paso de solutos de-
terminando diferentes concentraciones de iones de un lado y otro.
* Es permeable solo a lípidos
5.- Cuando Ud. infunde una solución por vía endovenosa, está modifican-
do primariamente, la composición química de un compartimiento.
Señale la respuesta correcta:
* Líquido Intracelular
* Líquido Intersticial
* Líquido Extracelular
* Líquido transcelular.
6.- Señale la respuesta correcta, que completa la siguiente oración: El
plasma constituye el componente líquido de la sangre. Su medición en
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 33
Introducción a Fisiología
términos relativos, porcentaje es de aproximadamente……..
* 55%
* 45%
* 35%
* 25%
7.- Señale la definición correcta de hematocrito:
* Es la relación de glóbulos / líquidos de la sangre, y mide la parte globu-
lar. Su valor normal es de alrededor del 45%
* Es la proporción de glóbulos que se encuentra en la sangre y su valor
normal es de 60%
* Es el compartimiento intravascular del Líquido extracelular, y su valor
normal es del 60%
* Es la determinación de la prporción de glóbulos blancos del plasma.
8.- Señale los valores considerados normales del Na en el plasma o Líqui-
do extracelular:
* 130 a 135 mEq/l
* 150 a 160 mEq/l
* 138 a 142 mEq/l
* 133 a 135 mEq/l
9.- Señale los valores considerados normales del Potasio (K) en el plasma
o Líquido extracelular:
* 2,5 a 3 mEq/l
* 3, 5 a 4, 5 mEq/l
* 4,8 a 5,5 mEq/l
* 5, 5 a 7 mEq/l
10.- Señale los valores considerados normales del Bicarbonato
(CO3H-) en el plasma o Líquido extracelular:
* 25 a 28 mEq/l
* 30 a 40 mEq/l
* 20 a 23 mEq/l
* 45 a 60 mEq/l
11.- Señalelosvaloresconsideradosnormalesdelaglucosaenayunas en
el plasma o Líquido extracelular:
* menor a 126 mg%
* mayor a 126 mg%
* mayor de 110 mg%
* menor de 90 mg%
12.- Señale la respuesta incorrecta con respecto al concepto de presión
osmótica:
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE
34
Introducción a Fisiología
* Es la presión que ejercen los solutos que se disocian
* Es la presión que ejercen las proteinas del plasma
* Es la presión que permite que fluya líquido hacia el intersticio en con-
diciones fisiológicas
* Es la presión hidrostática de los capilares
13.- Señale cuáles son los Egresos diarios de agua esperados en condi-
ciones fisiológicas:
* Orina, 1000ml, Pulmón, 450 ml; Piel, 500ml; Heces 150ml.
* Orina, 3000ml, Pulmón, 4500 ml; Piel, 5000ml; Heces 1500ml.
* Orina, 100ml, Pulmón, 450 ml; Piel, 50ml; Heces 150ml.
* Orina, 300ml, Pulmón, 45 ml; Piel, 50ml; Heces 15ml.
14.- Señale la opción correcta con respecto a las pérdidas de agua:
* La fiebre no aumenta la pérdida de agua
* No hay pérdidas de alectrolitos en una diarrea.
* El ejercicio físico aumenta la pérdida de agua y electrolitos
* Por bilis se pierde glucosa.
15.- Una solución parenteral isotónica significa:
* que aumenta el tono muscular
* que tiene la misma osmolaridad que el plasma
* que es de glucosa al 10%
* que tiene la misma osmolaridad del plasma pero puede movilizar lí-
quidos.
16.- El término de homeostasis se refiere a:
(marque la opción CORRECTA)
a). la falta de equilibrio entre los componentes del compartimento in-
travascular
b). el equilibrio dinámico de los componentes del medio interno
c). a la igualdad en las concentraciones de los componentes del LEC y
del LIC.
d. ninguna es correcta
17.- El principal componente del medio interno corresponde a:
El principal componente del medio interno corresponde a:
El
(marque la opción CORRECTA)
a). el sodio, por ser el catión más importante, y por su poder osmótico
b). el agua, por corresponder al 40-60% del peso corporal de un indi-
viduo
c). el cloro, por ser el anión de mayor cantidad en el compartimento in-
travascular
d. ninguno de los anteriores constituye el principal componente del
medio interno
18.- Un balance neutro de agua se refiere a:
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 35
Introducción a Fisiología
a). que el pH del agua sea neutro
b). que la cantidad del líquido intracelular sea igual al del líquido extra-
celular
c). que los ingresos y egresos sean equilibrados
d). todas son correctas
19.- Un individuo concurre a la consulta por un chequeo médico, y nos
indican que calculemos el balance de agua del día previo a la consulta.
El individuo nos cuenta que bebió 1950 ml de agua; se alimentó en tres
oportunidades (desayuno, almuerzo y cena); refiere haber orinado en 4
oportunidades, calculando emisiones de 500 ml aproximadamente en
cada oportunidad; y refiere la deposición de materia fecal. El resultado
del balance es de: (marque la opción CORRECTA)
a). positivo de 1000 ml
b). negativo de 1000 ml
c). neutro
d). no se puede calcular
20.- Una situación frecuente de presentarse es que conozcamos la con-
centracióndeunasustanciaenunadeterminadaunidad,ydebamoscono-
cer en otra unidad para su administración. Aplicando las fórmulas corres-
pondientes, calcule cuál es el número de moles contenidos en 360 gramos
de glucosa, en 500 gramos de ClNa, y en 1200 gramos de ClK?
a). 2 moles de glucosa; 8,5 moles de ClNa; 16,1 moles de ClK
b). 12 moles de glucosa; 5 moles de ClNa; 8,5 moles de ClK
c). 180 moles de glucosa; 23 moles de ClNa; 40 moles de ClK
d). ninguna es correcta
21.- Se denomina osmol efectivo a:
a). toda sustancia capaz de medir la osmolaridad
b). toda sustancia que pasa libremente la membrana plasmática
c). toda sustancia capaz de generar movimiento de agua
d). ninguna es correcta
22.- Indique cuál de los siguientes NO es un osmol efectivo:
a). sodio
b). glucosa
c). manitol
d). urea
23.- Si tenemos un tubo en U y colocamos en el centro de la U una mem-
brana semipermeable, y a ambos lados agua, la cantidad de moléculas,
que por su “tendencia de escape” y por su potencial químico tienden a pa-
sar de un lado a otro de la membrana, es igual. En consecuencia, el nivel
alcanzadoporelaguaencadaunadelasramasdeltuboenUseráexacta-
CAPÍTULO II
Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE
36
Introducción a Fisiología
mente el mismo. Ahora, si adicionamos en uno de los brazos un soluto que
no pase a través de la membrana, como es la glucosa, el comportamiento
del agua será: (marque la opción CORRECTA)
a). el agua pasará del brazo sin glucosa hacia el brazo con glucosa
b). el agua pasará del brazo con glucosa hacia el brazo sin glucosa
c). el agua no se movilizará a través de la membrana
d). ninguna es correcta
24.- Qué resultados se obtienen al infundir una solución fisiológica a un
individuo:
a). aporto calorías con fines nutritivos
b). aporto mucho Na y Cl para aumentar la osmolaridad y sacar agua de
la célula
c). aporto volumen al LEC
d). aporto poco Na y Cl para disminuir la osmolaridad e introducir agua
a la célula
25.- Quéresultadosseobtienenalinfundirunasolucióndedextrosaal5%
a un individuo:
a). aporto calorías con fines nutritivos
b). aporto mucho Na y Cl para aumentar la osmolaridad y sacar agua de
la célula
c). aporto volumen al LEC
d). aporto poco Na y Cl para disminuir la osmolaridad e introducir agua
a la célula
Bibliografía.
Barry Brenner. The kidney. Seventh Edition. Saunders.2003.
De Robertis y De Robertis. Biología Celular y Molecular. El Ateneo. Sexta Impresión.
1995.
E. Rottelar. Abc de los Trastornos Electrolíticos. 2 Edicion. Jims. Barcelona.
CAPÍTULO II

Más contenido relacionado

Similar a Capitulo Fisiología de Líquidos Corporales.pdf

La celula, liquidos y electrolitos
La celula, liquidos y electrolitosLa celula, liquidos y electrolitos
La celula, liquidos y electrolitosDalianaMujica
 
¿De que estamos formados los seres vivos ?
¿De que estamos formados los seres vivos ? ¿De que estamos formados los seres vivos ?
¿De que estamos formados los seres vivos ? macarenamiranda7a
 
Resumen capítulos de guyton
Resumen  capítulos de guytonResumen  capítulos de guyton
Resumen capítulos de guytonLeila Mignola
 
2do - Semana 3 (UNIDAD 1)-EDGARD PPT.pptx
2do - Semana 3 (UNIDAD 1)-EDGARD PPT.pptx2do - Semana 3 (UNIDAD 1)-EDGARD PPT.pptx
2do - Semana 3 (UNIDAD 1)-EDGARD PPT.pptxEdgardAugustoMalaver1
 
Se llama fecundación a la unión del gameto masculino o espermatozoide y el ga...
Se llama fecundación a la unión del gameto masculino o espermatozoide y el ga...Se llama fecundación a la unión del gameto masculino o espermatozoide y el ga...
Se llama fecundación a la unión del gameto masculino o espermatozoide y el ga...yaocoitinho
 
Circulacion en los seres vivos
Circulacion en los seres vivosCirculacion en los seres vivos
Circulacion en los seres vivosjaime josa
 
Fisiología general.pptx
Fisiología general.pptxFisiología general.pptx
Fisiología general.pptxYasserCalvoGmez
 
Unidad 1 (medio interno y homeostasis)
Unidad 1 (medio interno y homeostasis)Unidad 1 (medio interno y homeostasis)
Unidad 1 (medio interno y homeostasis)Maria Cantellano
 
Guia de biologia ciclo iii y iv funcape
Guia de biologia ciclo iii y iv funcapeGuia de biologia ciclo iii y iv funcape
Guia de biologia ciclo iii y iv funcapeEdgar Arguello Castro
 
La teoría celular 9°
La teoría celular 9°La teoría celular 9°
La teoría celular 9°dinia2013
 
La teoría celular 9°
La teoría celular 9°La teoría celular 9°
La teoría celular 9°dinia2013
 

Similar a Capitulo Fisiología de Líquidos Corporales.pdf (20)

La celula, liquidos y electrolitos
La celula, liquidos y electrolitosLa celula, liquidos y electrolitos
La celula, liquidos y electrolitos
 
Fisiologia general
Fisiologia  general Fisiologia  general
Fisiologia general
 
Celulas 160531013945
Celulas 160531013945Celulas 160531013945
Celulas 160531013945
 
¿De que estamos formados los seres vivos ?
¿De que estamos formados los seres vivos ? ¿De que estamos formados los seres vivos ?
¿De que estamos formados los seres vivos ?
 
Celulas
CelulasCelulas
Celulas
 
Pma biología 11 i per 2016
Pma biología 11 i per 2016Pma biología 11 i per 2016
Pma biología 11 i per 2016
 
La celula.UNY
La celula.UNYLa celula.UNY
La celula.UNY
 
Resumen capítulos de guyton
Resumen  capítulos de guytonResumen  capítulos de guyton
Resumen capítulos de guyton
 
2do - Semana 3 (UNIDAD 1)-EDGARD PPT.pptx
2do - Semana 3 (UNIDAD 1)-EDGARD PPT.pptx2do - Semana 3 (UNIDAD 1)-EDGARD PPT.pptx
2do - Semana 3 (UNIDAD 1)-EDGARD PPT.pptx
 
Se llama fecundación a la unión del gameto masculino o espermatozoide y el ga...
Se llama fecundación a la unión del gameto masculino o espermatozoide y el ga...Se llama fecundación a la unión del gameto masculino o espermatozoide y el ga...
Se llama fecundación a la unión del gameto masculino o espermatozoide y el ga...
 
Circulacion en los seres vivos
Circulacion en los seres vivosCirculacion en los seres vivos
Circulacion en los seres vivos
 
Fisiología general.pptx
Fisiología general.pptxFisiología general.pptx
Fisiología general.pptx
 
Unidad 1 (medio interno y homeostasis)
Unidad 1 (medio interno y homeostasis)Unidad 1 (medio interno y homeostasis)
Unidad 1 (medio interno y homeostasis)
 
Actividad de evaluacion denis
Actividad de evaluacion denisActividad de evaluacion denis
Actividad de evaluacion denis
 
Tema 1 Fisiologia
Tema 1 FisiologiaTema 1 Fisiologia
Tema 1 Fisiologia
 
La célula
La célulaLa célula
La célula
 
Fisiologia diapositivas
Fisiologia diapositivasFisiologia diapositivas
Fisiologia diapositivas
 
Guia de biologia ciclo iii y iv funcape
Guia de biologia ciclo iii y iv funcapeGuia de biologia ciclo iii y iv funcape
Guia de biologia ciclo iii y iv funcape
 
La teoría celular 9°
La teoría celular 9°La teoría celular 9°
La teoría celular 9°
 
La teoría celular 9°
La teoría celular 9°La teoría celular 9°
La teoría celular 9°
 

Más de CarolinaMartinez63484

Netter Fundamentos de Fisiologia_booksmedicos.org.pdf
Netter Fundamentos de Fisiologia_booksmedicos.org.pdfNetter Fundamentos de Fisiologia_booksmedicos.org.pdf
Netter Fundamentos de Fisiologia_booksmedicos.org.pdfCarolinaMartinez63484
 
PhysioEx 9-0-Simulaciones de Laboratorio de Fisiologia.pdf
PhysioEx 9-0-Simulaciones de Laboratorio de Fisiologia.pdfPhysioEx 9-0-Simulaciones de Laboratorio de Fisiologia.pdf
PhysioEx 9-0-Simulaciones de Laboratorio de Fisiologia.pdfCarolinaMartinez63484
 
Programa Fisiología 2017 versión final.pdf
Programa Fisiología 2017 versión final.pdfPrograma Fisiología 2017 versión final.pdf
Programa Fisiología 2017 versión final.pdfCarolinaMartinez63484
 
Cátedra de Fisiología Licenciatura en Enfermería. .pdf
Cátedra de Fisiología Licenciatura en Enfermería. .pdfCátedra de Fisiología Licenciatura en Enfermería. .pdf
Cátedra de Fisiología Licenciatura en Enfermería. .pdfCarolinaMartinez63484
 
Guía Didáctica 1- Liquidos corporales.docx
Guía Didáctica 1- Liquidos corporales.docxGuía Didáctica 1- Liquidos corporales.docx
Guía Didáctica 1- Liquidos corporales.docxCarolinaMartinez63484
 

Más de CarolinaMartinez63484 (17)

Netter Fundamentos de Fisiologia_booksmedicos.org.pdf
Netter Fundamentos de Fisiologia_booksmedicos.org.pdfNetter Fundamentos de Fisiologia_booksmedicos.org.pdf
Netter Fundamentos de Fisiologia_booksmedicos.org.pdf
 
biologia-celular-y-molecular.pdf
biologia-celular-y-molecular.pdfbiologia-celular-y-molecular.pdf
biologia-celular-y-molecular.pdf
 
PhysioEx 9-0-Simulaciones de Laboratorio de Fisiologia.pdf
PhysioEx 9-0-Simulaciones de Laboratorio de Fisiologia.pdfPhysioEx 9-0-Simulaciones de Laboratorio de Fisiologia.pdf
PhysioEx 9-0-Simulaciones de Laboratorio de Fisiologia.pdf
 
fisio.pdf
fisio.pdffisio.pdf
fisio.pdf
 
sistema nervioso.pdf
sistema nervioso.pdfsistema nervioso.pdf
sistema nervioso.pdf
 
Sistema digestivo teorico.ppt
Sistema digestivo teorico.pptSistema digestivo teorico.ppt
Sistema digestivo teorico.ppt
 
Sistema Inmune clase.pdf
Sistema Inmune clase.pdfSistema Inmune clase.pdf
Sistema Inmune clase.pdf
 
sistema circulatorio.docx
sistema circulatorio.docxsistema circulatorio.docx
sistema circulatorio.docx
 
Programa Fisiología 2017 versión final.pdf
Programa Fisiología 2017 versión final.pdfPrograma Fisiología 2017 versión final.pdf
Programa Fisiología 2017 versión final.pdf
 
sangre 2015(1).pdf
sangre 2015(1).pdfsangre 2015(1).pdf
sangre 2015(1).pdf
 
Practico 1 Liquidos corporales.pptx
Practico 1 Liquidos corporales.pptxPractico 1 Liquidos corporales.pptx
Practico 1 Liquidos corporales.pptx
 
Cátedra de Fisiología Licenciatura en Enfermería. .pdf
Cátedra de Fisiología Licenciatura en Enfermería. .pdfCátedra de Fisiología Licenciatura en Enfermería. .pdf
Cátedra de Fisiología Licenciatura en Enfermería. .pdf
 
Guía Didáctica 1- Liquidos corporales.docx
Guía Didáctica 1- Liquidos corporales.docxGuía Didáctica 1- Liquidos corporales.docx
Guía Didáctica 1- Liquidos corporales.docx
 
Teórico 1 (1).pdf
Teórico 1 (1).pdfTeórico 1 (1).pdf
Teórico 1 (1).pdf
 
Balance Hidrico Fisiologia.ppt
Balance Hidrico Fisiologia.pptBalance Hidrico Fisiologia.ppt
Balance Hidrico Fisiologia.ppt
 
sistema nervioso autonomo 2015.pdf
sistema nervioso autonomo 2015.pdfsistema nervioso autonomo 2015.pdf
sistema nervioso autonomo 2015.pdf
 
2) portafolio Ph 2016.doc
2) portafolio Ph 2016.doc2) portafolio Ph 2016.doc
2) portafolio Ph 2016.doc
 

Último

equipos e insumos para la administracion de biologicos
equipos e insumos para la administracion de biologicosequipos e insumos para la administracion de biologicos
equipos e insumos para la administracion de biologicosmafaldoachonga
 
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdf
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdfSISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdf
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdfTruGaCshirley
 
Historia Clínica y Consentimiento Informado en Odontología
Historia Clínica y Consentimiento Informado en OdontologíaHistoria Clínica y Consentimiento Informado en Odontología
Historia Clínica y Consentimiento Informado en OdontologíaJorge Enrique Manrique-Chávez
 
seminario patología de los pares craneales 2024.pptx
seminario patología de los pares craneales 2024.pptxseminario patología de los pares craneales 2024.pptx
seminario patología de los pares craneales 2024.pptxScarletMedina4
 
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)UDMAFyC SECTOR ZARAGOZA II
 
AFERESIS TERAPEUTICA para el personal médico
AFERESIS TERAPEUTICA para el personal médicoAFERESIS TERAPEUTICA para el personal médico
AFERESIS TERAPEUTICA para el personal médicoGabrielMontalvo19
 
PUNTOS CRANEOMÉTRICOS PARA PLANEACIÓN QUIRÚRGICA
PUNTOS CRANEOMÉTRICOS  PARA PLANEACIÓN QUIRÚRGICAPUNTOS CRANEOMÉTRICOS  PARA PLANEACIÓN QUIRÚRGICA
PUNTOS CRANEOMÉTRICOS PARA PLANEACIÓN QUIRÚRGICAVeronica Martínez Zerón
 
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (doc).pdf
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (doc).pdf(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (doc).pdf
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (doc).pdfUDMAFyC SECTOR ZARAGOZA II
 
Enferemedades reproductivas de Yeguas.pdf
Enferemedades reproductivas  de Yeguas.pdfEnferemedades reproductivas  de Yeguas.pdf
Enferemedades reproductivas de Yeguas.pdftaniacgcclassroom
 
Torax normal-Oscar 2024- principios físicos del rx de torax
Torax normal-Oscar 2024- principios físicos del rx de toraxTorax normal-Oscar 2024- principios físicos del rx de torax
Torax normal-Oscar 2024- principios físicos del rx de toraxWillianEduardoMascar
 
ACRONIMO TIMERS TRATAMIENTO DE HERIDAS AVANZADAS
ACRONIMO TIMERS TRATAMIENTO DE HERIDAS AVANZADASACRONIMO TIMERS TRATAMIENTO DE HERIDAS AVANZADAS
ACRONIMO TIMERS TRATAMIENTO DE HERIDAS AVANZADASjuanjosenajerasanche
 
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (ppt).pdf
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (ppt).pdf(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (ppt).pdf
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (ppt).pdfUDMAFyC SECTOR ZARAGOZA II
 
TERMINOLOGIA ADULTO MAYOR DEFINICIONES.pptx
TERMINOLOGIA ADULTO MAYOR DEFINICIONES.pptxTERMINOLOGIA ADULTO MAYOR DEFINICIONES.pptx
TERMINOLOGIA ADULTO MAYOR DEFINICIONES.pptxrosi339302
 
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdfClase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdfgarrotamara01
 
Trombocitopenia Inmune primaria , clínica
Trombocitopenia Inmune primaria , clínicaTrombocitopenia Inmune primaria , clínica
Trombocitopenia Inmune primaria , clínicaVillegasValentnJosAl
 
Sistema Nervioso Periférico (1).pdf
Sistema Nervioso Periférico      (1).pdfSistema Nervioso Periférico      (1).pdf
Sistema Nervioso Periférico (1).pdfNjeraMatas
 
PPT HIS PROMSA - PANAS-MINSA DEL 2024.pptx
PPT HIS PROMSA - PANAS-MINSA DEL 2024.pptxPPT HIS PROMSA - PANAS-MINSA DEL 2024.pptx
PPT HIS PROMSA - PANAS-MINSA DEL 2024.pptxOrlandoApazagomez1
 
Mapa-conceptual-del-Sistema-Circulatorio-2.pptx
Mapa-conceptual-del-Sistema-Circulatorio-2.pptxMapa-conceptual-del-Sistema-Circulatorio-2.pptx
Mapa-conceptual-del-Sistema-Circulatorio-2.pptxJhonDarwinSnchezVsqu1
 
PRIMEROS AUXILIOS BOMBEROS 2024 actualizado
PRIMEROS AUXILIOS BOMBEROS 2024 actualizadoPRIMEROS AUXILIOS BOMBEROS 2024 actualizado
PRIMEROS AUXILIOS BOMBEROS 2024 actualizadoNestorCardona13
 
FISIOLOGIA BACTERIANA y mecanismos de acción (1).pptx
FISIOLOGIA BACTERIANA y mecanismos de acción (1).pptxFISIOLOGIA BACTERIANA y mecanismos de acción (1).pptx
FISIOLOGIA BACTERIANA y mecanismos de acción (1).pptxLoydaMamaniVargas
 

Último (20)

equipos e insumos para la administracion de biologicos
equipos e insumos para la administracion de biologicosequipos e insumos para la administracion de biologicos
equipos e insumos para la administracion de biologicos
 
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdf
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdfSISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdf
SISTEMA OBLIGATORIO GARANTIA DE LA CALIDAD EN SALUD SOGCS.pdf
 
Historia Clínica y Consentimiento Informado en Odontología
Historia Clínica y Consentimiento Informado en OdontologíaHistoria Clínica y Consentimiento Informado en Odontología
Historia Clínica y Consentimiento Informado en Odontología
 
seminario patología de los pares craneales 2024.pptx
seminario patología de los pares craneales 2024.pptxseminario patología de los pares craneales 2024.pptx
seminario patología de los pares craneales 2024.pptx
 
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)
 
AFERESIS TERAPEUTICA para el personal médico
AFERESIS TERAPEUTICA para el personal médicoAFERESIS TERAPEUTICA para el personal médico
AFERESIS TERAPEUTICA para el personal médico
 
PUNTOS CRANEOMÉTRICOS PARA PLANEACIÓN QUIRÚRGICA
PUNTOS CRANEOMÉTRICOS  PARA PLANEACIÓN QUIRÚRGICAPUNTOS CRANEOMÉTRICOS  PARA PLANEACIÓN QUIRÚRGICA
PUNTOS CRANEOMÉTRICOS PARA PLANEACIÓN QUIRÚRGICA
 
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (doc).pdf
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (doc).pdf(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (doc).pdf
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (doc).pdf
 
Enferemedades reproductivas de Yeguas.pdf
Enferemedades reproductivas  de Yeguas.pdfEnferemedades reproductivas  de Yeguas.pdf
Enferemedades reproductivas de Yeguas.pdf
 
Torax normal-Oscar 2024- principios físicos del rx de torax
Torax normal-Oscar 2024- principios físicos del rx de toraxTorax normal-Oscar 2024- principios físicos del rx de torax
Torax normal-Oscar 2024- principios físicos del rx de torax
 
ACRONIMO TIMERS TRATAMIENTO DE HERIDAS AVANZADAS
ACRONIMO TIMERS TRATAMIENTO DE HERIDAS AVANZADASACRONIMO TIMERS TRATAMIENTO DE HERIDAS AVANZADAS
ACRONIMO TIMERS TRATAMIENTO DE HERIDAS AVANZADAS
 
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (ppt).pdf
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (ppt).pdf(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (ppt).pdf
(2024-04-17) PATOLOGIAVASCULARENEXTREMIDADINFERIOR (ppt).pdf
 
TERMINOLOGIA ADULTO MAYOR DEFINICIONES.pptx
TERMINOLOGIA ADULTO MAYOR DEFINICIONES.pptxTERMINOLOGIA ADULTO MAYOR DEFINICIONES.pptx
TERMINOLOGIA ADULTO MAYOR DEFINICIONES.pptx
 
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdfClase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
 
Trombocitopenia Inmune primaria , clínica
Trombocitopenia Inmune primaria , clínicaTrombocitopenia Inmune primaria , clínica
Trombocitopenia Inmune primaria , clínica
 
Sistema Nervioso Periférico (1).pdf
Sistema Nervioso Periférico      (1).pdfSistema Nervioso Periférico      (1).pdf
Sistema Nervioso Periférico (1).pdf
 
PPT HIS PROMSA - PANAS-MINSA DEL 2024.pptx
PPT HIS PROMSA - PANAS-MINSA DEL 2024.pptxPPT HIS PROMSA - PANAS-MINSA DEL 2024.pptx
PPT HIS PROMSA - PANAS-MINSA DEL 2024.pptx
 
Mapa-conceptual-del-Sistema-Circulatorio-2.pptx
Mapa-conceptual-del-Sistema-Circulatorio-2.pptxMapa-conceptual-del-Sistema-Circulatorio-2.pptx
Mapa-conceptual-del-Sistema-Circulatorio-2.pptx
 
PRIMEROS AUXILIOS BOMBEROS 2024 actualizado
PRIMEROS AUXILIOS BOMBEROS 2024 actualizadoPRIMEROS AUXILIOS BOMBEROS 2024 actualizado
PRIMEROS AUXILIOS BOMBEROS 2024 actualizado
 
FISIOLOGIA BACTERIANA y mecanismos de acción (1).pptx
FISIOLOGIA BACTERIANA y mecanismos de acción (1).pptxFISIOLOGIA BACTERIANA y mecanismos de acción (1).pptx
FISIOLOGIA BACTERIANA y mecanismos de acción (1).pptx
 

Capitulo Fisiología de Líquidos Corporales.pdf

  • 1. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 13 Introducción a Fisiología CAPÍTULO Nº 2: En este capítulo Ud. podrá comprender la importancia de su tarea, cada vez que haga una instilación venosa, cada vez que haga un balance hídrico. El paciente se sentirá seguro, cuando perciba que Ud. conoce los fundamentos de lo que está hacien- do, y las consecuencias esperadas y las posibles consecuencias no deseadas de de dicha tarea. MEDIO INTERNO II.1 Qué es el medio interno? La unidad estructural, histológica y anatómica de los seres vivos es la célula y cada una de ellas se organiza en tejidos, órganos y aparatos, orientados hacia el cumplimiento de una función específica. En el hombre, así como en todos los organismos complejos, la unidad funcional está representada por cada una de sus células más el ambien- te externo de las mismas que recibe el nombre de medio extracelular o medio interno. Prácticamente, todas las células viven en un medio esencialmente idén- tico, el medio extracelular, que por esta razón se llama medio interno, o melieu intérieur, término introducido por el gran fisiólogo francés del melieu intérieur, término introducido por el gran fisiólogo francés del melieu intérieur siglo XIX Claude Bernard. Aplicando el enfoque sistémico, abordaremos el estudio del medio in- terno como un sistema, describiendo sus aspectos estructurales y fun- cionales. Para tener presente sus características, recordemos la tabla 1-II. Al finalizar la descripción de cada sistema, explicaremos la manera de evaluar el funcionamiento de dichos sistemas. Adelante!!! * Límite. * Elementos. * Reservorio. * Redes de comunicacion. * Flujo. * Compuertas o válvulas. * Censores. * Asas de retroalimentacion. CAPÍTULO II
  • 2. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 14 Introducción a Fisiología II.2 Estructura del medio interno II.2.1 Elementos Teniendo en cuenta que el organismo es una solución, describiremos sus componentes: * el agua (el solvente de la solución) representa el 40-60% del peso cor- agua (el solvente de la solución) representa el 40-60% del peso cor- agua poral de un individuo, y es su principal constituyente. El agua se ingiere en mayores cantidades que todas las demás sustancias y es la que más se excreta. Es el vehículo de los principales nutrientes y productos de excreción. * Pero el agua no se encuentra sola en los organismos vivos y se ha vis- to que se organiza mejor en presencia de otras sustancias (solutos de la solución). Estas sustancias son iones y iones y iones moléculas organizadas de muy moléculas organizadas de muy moléculas diversas maneras. En condiciones ambientales y fisiológicas normales, el contenido de agua de cada individuo es casi constante, variando en cantidades insig- nificantes y existiendo sólo una diferencia dinámica que el organismo se encarga de compensar en un par de horas. II.2.2 Límites Está constituído por las membranas biológicas, compuestas por lípidos y proteínas. Definen los espacios o compartimentos del organismo. Es muy importante que Ud. reconozca que la membrana celular es el límite de este sistema: la composición en un lado y el otro de ella es diferente. A su vez, es un sistema en sí mismo. CAPÍTULO II
  • 3. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 15 Introducción a Fisiología W.B. Saunders Company items and derived items copyright © 2000 by W.B. Saunders Company En las siguientes Figuras identifique los diferentes constituyentes microscópicos de la Membrana ce- lular, de una Célula del Túbulo proximal. a) Microvellosidades. b) Uniones estrechas. c) Desmosomas. d) Comunicaciones Intercelulares. Uniones en hendidura o nexos. CAPÍTULO II
  • 4. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 16 Introducción a Fisiología Con el objetivo de presentar hasta dónde la ciencia ha podido identifi- car los componentes de la membrana celular les presentamos los trans- portadores que ya se han descripto. No los tiene que memorizar. Sólo piense si Ud. no querría ser un Inves- tigador y conocer más sobre esto!!!! La Base de datos de la Nomenclatura de los genes humanos poveyó una lista aprobada de símbolos de genes. Incluye 21 familias de “Transpor- tadores”, llamados (SLC) o transportadores de solutos. Estas familias se identifican con un número y se asignan a la misma familia cuando com- parten al menos el 20% de aminoácidos. Este material contiene palabras en inglés… CAPÍTULO II
  • 5. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 17 Introducción a Fisiología II.2.3 Reservorios Los espacios bien definidos por las membranas constituyen los compar- timentos líquidos. La masa acuosa de nuestro organismo se halla distribuida en dos gran- des compartimentos: 1. la mayor parte del agua (2/3) se encuentra dentro de las células. Este compartimiento se llama líquido intracelular (LIC) líquido intracelular (LIC) líquido intracelular 2. el 1/3 restante se encuentra fuera de las células. Este compartimiento recibe el nombre de líquido extracelular (LEC) o medio interno. Este espa- cio, a su vez, comprende los compartimentos líquidos intersticial e intra- vascular. Debido a que el líquido intravascular se obtiene fácilmente (mediante la centrifugación de una muestra de sangre se logran separar los ele- mentos formes del líquido), se utiliza el plasma como representativo del medio interno o líquido extracelular. El plasma constituye el 54% de la sangre (el 45% restante consiste en glóbulos rojos, y 1% glóbulos blancos y plaquetas). El 92% del plasma es agua, y el 8% está constituido por moléculas esenciales para la vida (glu- cosa, aminoácidos, ácidos grasos, hormonas (como insulina, adrenalina, aldosterona) e iones (como sodio y calcio). Líquido intravascular = plasma Estas proporciones debe ser conocidas por Ud. para ser un buen Li- cenciado en Enfermería. Con una calculadora o en una planilla de Excel Ud. puede determinar el agua Corporal total. Se usa cuando Ud. debe reponer líquidos, instilar una medicación... CAPÍTULO II
  • 6. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 18 Introducción a Fisiología II.2.4 Redes de comunicación El agua se distribuye y pasa de un compartimento a otro, dependiendo de: * la permeabilidad de la barrera existente entre los compartimentos (la mayoría de las membranas son permeables al agua, de manera que éste factor es prácticamente inexistente, siendo las excepciones el nefrón distal y los conductos de las glándulas sudoríparas). Es de esta manera en que pueden pasar sustancia de un compartimento a otro, Tipos de Transporte: Pueden ser pasivos cuando no gastan energía: pasivos cuando no gastan energía: pasivos I-Difusión: Es el movimiento continuo de moléculas a través de la mem- brana. Puede ser: Simple: Las moléculas pasan de un lado a otro por canales ( son proteínas). Pue- den ser Selectivas: por su forma y constitución química seleccionan cuál molécula transcurre y cual no. Por compuertas: operadas por voltaje o cambios químicos ( o ligando). Facilitada: necesita de moléculas transportadoras. * la cantidad de solutos de cada compartimiento (es el elemento deter- minante) Puede ser Transporte activo: Primario:CuandousaelTransporteActivo directamente:Ejemplo:Bom- ba de Na/ K. Secundario: la energía gastada por la bomba crea la diferencia de pos- tencial para atraer o rechazar un ion. Ejemplo: Co transporte de Glucosa y Aminoácidos. La cantidad de solutos en cada compartimento está regulada, a su vez, por : 1.- los mecanismos de transporte de membrana (hacen pasar los solutos de uno a otro compartimento). Constituyen verdaderos canales o túne- les en las membranas por donde pasan algunos solutos y otros no. Por ejemplo, la bomba de Na-K ATPasa. 2.- las fuerzas que operan en las barreras compartimentales, son: el equilibrio de Gibss Donnan y las fuerzas de Starling. Así, la cantidad de solutos en el LIC y LEC son diferentes (ver fig. 2-1) CAPÍTULO II ¶
  • 7. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 19 Introducción a Fisiología II.3 Aspectos funcionales del medio interno La principal función del organismo es mantener su equilibrio interno. Esto involucra mantener constante la concentración, en el plasma, de ciertasmoléculaseionesquesonesencialesparalavida.Estapropiedad del cuerpo intrigó a muchos fisiólogos. En 1932 Walter Cannon, fisiólogo norteamericano, halló el concepto que hizo posible explicar esta pro- piedad de regulación del cuerpo, y la llamó homeostasis. Homeostasis es el equilibrio dinámico que mantiene las condiciones constantes en el medio interno. Prácticamente todos los tejidos y órganos del cuerpo realizan funciones que ayudan a mantener la homeostasis. De esta manera, el medio interno constituye un gran sistema que con- tiene, a su vez, una gran variedad de subsistemas (circulatorio, respira- torio, digestivo, renal, osteomioarticular, nervioso, endocrino, etc.) que contribuyen al funcionamiento en armonía. CAPÍTULO II
  • 8. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 20 Introducción a Fisiología II.3.1 Transporte del medio interno (flujo): El sistema circulatorio El líquido extracelular o medio interno, se encuentra en continuo movi- miento por todo el cuerpo. El movimiento puede dividirse en 2 formas: * la primera a través del movimiento circular del plasma por el sistema circulatorio. La figura 2-2 ilustra la circulación completa de la sangre en el organismo. * la segunda, el movimiento del líquido entre los capilares sanguíneos y las células a través del líquido intersticial. La figura 2-3 ilustra este mo- vimiento. II.3.2 Origen de los nutrientes del medio interno(sustrato): Sistemas digestivo, respiratorio y osteomioarticular Sistema digestivo Los alimentos de la dieta diaria contienen materia prima indispensables para el organismo (agua, glucosa, proteínas, lípidos, iones, vitaminas, etc). En el tubo digestivo, estas sustancias pasan a través de una serie de transformaciones, y luego son absorbidas para su uso inmediato o para su almacenamiento. Una gran proporción de la sangre, que el corazón CAPÍTULO II
  • 9. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 21 Introducción a Fisiología bombea, pasa por las paredes del tubo digestivo y recogen los diferen- tes nutrientes para ser distribuidos por todo el cuerpo. Sistema respiratorio El oxígeno del aire ingresa por las vías aéreas a los pulmones. Toda la sangre de la circulación pasa por los pulmones para captar el oxígeno. Sistema osteomioarticular Uno se preguntaría: cómo encaja este sistema en las funciones homeos- táticas del cuerpo? La respuesta es simple: si no fuera por este sistema, el cuerpo no se podría desplazar al lugar adecuado en el momento ade- cuado para obtener los alimentos necesarios para su nutrición. II.3.3 Eliminación de desechos del medio interno (productos): Sistemas respiratorio, renal y digestivo Debido a que los desechos metabólicos y los gases de combustión son devueltos a la sangre, un sistema de filtración, reciclaje y de eliminación de desechos es necesario para limpiar la sangre. Sistema respiratorio La sangre es regenerada en los pulmones a través de la eliminación de dióxido de carbono y la absorción de oxígeno por medio de la hemog- lobina de los glóbulos rojos. Sistema renal Los riñones filtran, reciclan y limpian la sangre de desechos. El 99% de la sangre que fluye por los riñones vuelve a la circulación, mientras que el 1% restante forma la orina con los desechos, que se elimina a través de las vías urinarias. Sistema digestivo Las sustancias que no se absorben en el tubo digestivo sumadas a las que el organismo secreta para facilitar la absorción, se eliminan como materia fecal. Además, el hígado actúa como un filtro químico, reteniendo y destru- yendo cualquier sustancia que podría ser tóxica para el sistema. CAPÍTULO II
  • 10. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 22 Introducción a Fisiología II.3.4 Sistema de regulación y control del medio interno: Sistemas nervioso y endocrino El sistema nervioso recibe la información del medio y envía sus res- puestas al mismo a través de los nervios. En el cerebro se procesa y se almacena la información (memoria). El control y la regulación de las mayores funciones del cuerpo son asu- midas por el cerebro y por las glándulas endócrinas. La regulación requiere la cooperación de muchos órganos. Las redes de comunicación entre los órganos son esenciales. Una red de naturaleza electroquímica permite la transmisión de un im- pulso eléctrico a través de los nervios. También existe una red de naturaleza química: glándulas endócrinas li- beran una señal molecular (una hormona) en la circulación. Todos los órganos recibirán dicha hormona, pero debido a que la instrucción que contiene la hormona es codificada, sólo los órganos indicados recibirán la señal y llevarán a cabo la acción reguladora. Así funciona el sistema endocrino. II.4 Evaluación del medio interno Teniendo en cuenta que el medio interno es una solución compuesta por solutos y solventes, en la práctica se cuantifica estos elementos. II.4.1 Unidades para medir solutos Existen diferentes unidades para expresar la cantidad de solutos. Por ejemplo, si consideramos al catión Na+, su medición puede ser expre- sada como Na+ corporal toral (5.000 mEq o 115 g o 71 mEq/kg de peso), como concentración plasmática (142 mEq/L), o como concentración en el LEC (152 mOsm/L). Esto nos demuestra la necesidad de un consenso para utilizar unidades de medida standard para expresar la concentra- ción de solutos. Vuelva a la figura 2.1 y observe las diferentes unidades utilizadas para expresar la composición química del LEC y del LIC. Muchas veces se presenta la situación de que conocemos la concentra- ción de una sustancia en una miligramos por ciento y queremos conocer su concentración en miliequivalentes por litro, y viceversa. Para resolver esta situación se idearon las siguiente fórmulas: mEq/L = peso en gramos x valencia x 10 peso atómico CAPÍTULO II
  • 11. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 23 Introducción a Fisiología peso en gramos = equivalentes x peso atómico valencia x10 II.4.2 Unidades para medir solventes osmol (Osm): osmolaridad Como el 75% del volumen intracelular y el 94% del plasma están cons- tituidos por agua, la mejor forma de expresar la actividad osmótica de una solución es en concepto de agua y no de volumen. La importancia de la osmolaridad es que al medirla se determina la concentración de agua, la que se desplaza siempre a gradientes de concentración desde la zona de menor a la de mayor osmolaridad. Actividad osmótica del medio interno Si tenemos un tubo en U y colocamos en el centro de la U una membrana semipermeable, y a ambos lados agua, la cantidad de moléculas, que por su tendencia de escape y por su potencial químico tiende a pasar de un lado a otro de la membrana, es igual (siempre que las condiciones de temperatura y presión sean iguales de ambos lados). En consecuencia, el nivel alcanzado por el agua en cada una de ramas del tubo en U será exactamente el mismo. Ahora, si adicionamos un soluto que pase libremente a través de la membrana, como es la urea (osmol inefectivo), en uno de los brazos del tubo en U, el soluto se distribuirá igualmente a ambos lados de la mem- brana y se llegará a una situación de equilibrio en la cual la transferencia de agua y urea por su tendencia de escape será exactamente igual, con igual altura de la solución en ambos brazos del tubo en U. En cambio, si adicionamos en uno de los brazos del tubo en U un soluto que no pase a través de la membrana como es la glucosa (osmol efecti- vo), la actividad de las moléculas de agua en el sitio donde fue colocado el soluto se reduce. Entonces, el agua pasará entonces desde el brazo sin glucosa hacia el brazo con glucosa, hasta que la presión hidrostática que se establece por el aumento de la columna hídrica restaure la actividad de la solución glucosada a una similar a la del agua pura. La diferencia de presión hidrostática entre las dos ramas del tubo en U define a la presión osmótica. Observe el gráfico: la membrana está cerrada. Como Ud. conoce la glucosa es un monosacárido y la sucrosa un disacá- rido. Los pesos moleculares son diferentes pero la molaridad es la mis- ma. Por lo tanto, hacia dónde se desplazará el agua? Ver figura 2. CAPÍTULO II
  • 12. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 24 Introducción a Fisiología Veamos qué sucede si se expresa en gramos. Como la glucosa tiene menor peso molecular, hay mas glucosa en 1 gra- mo que sucrosa en un gramo por lo tanto el agua se desplazará hacia donde hay mayor concentración. Observe la figura 3: Veamos un caso mas complejo: Aquí las concentraciones molares son iguales pero….. Al abrirse la membrana el CLNa se disocia, y actúa como si fuese de 200mM. Por lo tanto el agua se desplaza hacia el ClNa. ( es cloruro de sodio, la sal común!!!). Por lo tanto, atrae agua!!!!! CAPÍTULO II
  • 13. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 25 Introducción a Fisiología Observe la figura 4: Otro ejemplo con otros componentes del Medio Interno: Observe la figura 5: La albúmina es 1000 veces más grande que la glicina, pero ambos solu- tos tienen la misma concentración molar, por lo tanto no hay desplaza- miento de agua. Veamos que pasa en el siguiente ejemplo. Tape la segunda figura y me- dite de dónde a dónde se desplazará el agua… Si bien la masa de insulina es 100 veces mayor, la concentración de gli- cina es 7.7 veces mayor!!!! Por lo tanto el agua se desplaza hacia la so- lución con glicina. Observe la figura 6: CAPÍTULO II
  • 14. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 26 Introducción a Fisiología La presión osmótica corresponde a la suma de los solutos. Veamos en el siguiente ejemplo hacia donde fluye el agua. Recuerde lo que pasaba con el ClNa…. Observe la figura 7: Se debe a que el ClK se disocia y por lo tanto la suma es de 100 mM mientras que la suma de sacáridos alcanza sólo a 70mM. 2.4.3 Determinación de la presión osmótica del medio interno Conociendo la concentración del Na+, de la glucosa y de la urea (por sim- ple análisis de una muestra sanguínea), la presión osmótica del líquido extracelular se puede calcular mediante la siguiente fórmula: CAPÍTULO II
  • 15. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 27 Introducción a Fisiología Posm del LEC = 2 x Na + glucosa (mg%) + urea (mg%) 18 2.8 Como el Na+ es el osmol efectivo más importante en el LEC, se puede deducir que cuando el Na+ está alto (hipernatremia) hay hiperosmolari- dad, provocando la sustracción de agua del LIC (deshidratación celular) En cambio, si el Na+ está bajo en el LEC (hiponatremia) hay hipoosmo- laridad, produciendo pasaje de agua al LIC (encharcamiento o sobrehi- dratación celular) El Na+ corporal total representa el volumen del LEC. Su aumento signi- fica un aumento del LEC y viceversa. Como es difícil medirlo, se reem- plaza su determinación por la evaluación clínica: presencia de edemas, signos de sobrecarga cardíaca, signo del pliegue cutáneo, hipotensión arterial, oliguria, etc. II.4.4 Determinación de la tonicidad del medio interno Para determinarla se quita la urea de la fórmula anterior (por ser un os- mol inefectivo): Posm del LEC = 2 x Na + glucosa (mg%) 18 La importancia de estos conceptos es que debemos conocer la forma de medir la distribución del agua entre los compartimentos. Esta distribu- ción depende de los osmoles efectivos en cada compartimiento (Na+ para el LEC y K+ para el LIC) De esta manera, el volumen o cantidad de agua del LEC dependerá del balance de Na+. En cambio, como la cantidad de osmoles del LIC es prácticamente cons- tante, la cantidad de agua o volumen del mismo dependerá del balance de agua. II.4.5 Balance de agua La relación entre el agua que entra y que sale del organismo se llama balance de agua. Normalmente, durante las 24 horas del día, los ingresos de agua guar- dan una similitud con los egresos, de tal manera que el balance final es cero (Tabla 2-II). CAPÍTULO II
  • 16. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 28 Introducción a Fisiología MUY IMPORTANTE!!!!!!!!! Las pérdidas se modifican en circunstancias no fisiológicas: a) Piel: si tiene fiebre, 150 ml en 24 horas por cada grado centígrado que au- menta.Si moja la ropa, 1000 ml en 24 horas. b) Respiratoria: si tienen disnea, aumento de 5 respiraciones por minuto, en un período de 24 horas, 100ml en el mismo tiempo. La sudoración contiene: 50 mEq/l de na y 50 mEq/ l de Cl y 14 mEq/l de K. c) Por vía renal: Diuresis normal: 1500ml en 24 horas. Cloro: 130 mEq/l. Na: 140 mEq/l K: 35 mEq/l. Estos valores se modifican en relación a los aportes y correcta función renal.Está totalmente modificada si se usan diuréticos!!!! c) Digestiva: Heces: Cl 15mEq/l. Na: 20 mQ/l y K:45 mEq/l. Si hay diarrea: la pérdida de Na puede ascender a 100 mEq/l, Cl a 40 mEq/l, y K a 30 mRq/l. Si hay vómitos: se piede Cl: 120 mEq/l. Na: 90mEq/l, y K: 6 mEq/l. Jugo Intestinal: Cl: 50 mEq/l; Na: 90 mEq/l, K: 12 mEq/l. Bilis: Cl: 80 mE/l; Na: 140 mEq/l; K: 5 mEq/l. CAPÍTULO II
  • 17. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 29 Introducción a Fisiología Trabajo Práctico: Realice una Tabla con las pérdidas ordinarias de Agua, Cl, Na, K, y Cl. CAPÍTULO II
  • 18. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 30 Introducción a Fisiología La importancia de conocer el balance de agua es que cuando se modifi- can cualquiera de estos factores, también se modifica el volumen de los compartimentos. Así la ingesta de agua, la deshidratación, la infusión intravenosa de diferentes soluciones, la pérdida de grandes cantidades de líquido desde el tubo digestivo (diarrea, vómitos) y las pérdidas de líquido por el sudor (zona cálida o posterior a actividad física) o por los riñones, determinan cambios importantes en el medio interno y las cé- lulas.Comoconsecuenciasedesencadenamecanismoscompensatorios homeostáticos para volver al equilibrio anterior. Por ejemplo, aumentan las pérdidas cuando un individuo tiene diarrea; o cuando tras una actividad física intensa (correr) aumenta su frecuencia respiratoria y la temperatura corporal (pérdida por la piel por traspira- ción). Ante estas pérdidas el cuerpo desencadena mecanismos que tienden a recuperar el estado anterior, estimulando la sensación de la sed (para aumentar los ingresos) y secretando una hormona (ADH: antidiurética) que actúa a nivel renal ahorrando agua. Cuando las pérdidas son de magnitud tal (por ejemplo, una hemorragia severa, vómitos profusos, diarrea crónica) que los mecanismos com- pensatorios son insuficientes para reestablecer el equilibrio, es necesa- rio reponer la cantidad que se perdió por medio de una infusión intra- venosa de soluciones parenterales. Todo lo anterior sirve para que, cada vez que usa un “suero” deberá valorar los aportes que está realizando: II.4.6 Soluciones parenterales Clasificación de las soluciones parenterales de acuerdo a su osmolari- dad: 1.- hipertónicas o hiperosmolares 2.- hipotónicas o hipoosmolares 3.- isotónicas o isosmóticas Si se añade una solución isotónica al compartimento líquido extracelu- lar, la osmolaridad del LEC no cambia, por ser la misma. No se produce movimiento de agua, por lo tanto el único efecto es un aumento del volumen del LEC. Sin embargo, si se añade una solución hipertónica al LEC, la osmolari- dad aumenta y causa salida de agua desde el interior hacia el exterior de las células (achicamiento celular). CAPÍTULO II
  • 19. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 31 Introducción a Fisiología Finalmente, si se administra una solución hipotónica, la osmolaridad del LEC disminuye, penetrando parte del líquido a las células (encharca- miento o hinchazón celular). Además, con frecuencia se administran diferentes tipos de soluciones intravenosas para nutrir a los pacientes que no pueden ingerir cantida- des adecuada de alimento por la vía natural enteral. Las soluciones más utilizadas son las glucosadas. Numerar las diferentes soluciones con sus componentes. Dividir según cla- sificación. Resumen El propósito de este capítulo ha sido destacar, primero, la organización global del cuerpo, y segundo, los medios por los cuales las distintas es- tructuras del cuerpo operan en armonía. En conclusión diremos que el cuerpo es realmente un sistema (cantidad) de células organizadas en estructuras funcionales o subsistemas. Cada subsistema coopera en el mantenimiento de las condiciones ho- meostáticas del líquido extracelular, que se llama medio interno. Mientras se mantengan las condiciones normales en el medio interno, las células del cuerpo continuarán viviendo y funcionando adecuada- mente. Esta interrelación recíproca proporciona el automatismo continuo del cuerpo hasta que uno o más sistemas funcionales pierdan la capacidad de aportar su grano de arena de función. Cuando esto sucede, todas las células del cuerpo sufren. Un mal funcio- namiento extremo conduce a la muerte, mientras que un mal funciona- miento moderado conduce a la enfermedad. Por este motivo es importante conocer cómo se puede evaluar y medir el estado del medio interno, y de esta manera estar capacitados para actuar debidamente. CAPÍTULO II
  • 20. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 32 Introducción a Fisiología Presentamos las preguntas de Multiple choice que evalúan la com- prensión, aplicación y la información recibida. 1.- A qué se refiere un balance neutro de agua? * Pérdidas de líquidos es igual al ingreso por vía oral * Pérdidas por piel es igual al ingreso por vía parenteral. * Las pérdidas por piel, respiración y diuresis, son iguales a ingresos por vía oral, parenteral, o enteral y agua endógena. * Solo se considera la pérdida de la diuresis igual a los ingresos. 2.- Si un paciente pesa 95 kg, a cuánto corresponde el agua corporal to- tal? * 42 litros * 57 litros * 24 litros * 18 litros 3.- El agua es el principal constituyente del medio interno. Puede Ud. se- ñalar el porcentaje del peso corporal, que representa el agua corporal de un varón entre 40 y 59 años? * 45% * 60% * 50% * 75% 4.- Señale cual de las siguientes afirmaciones con respecto a la membrana celular es correcta: * Es altamente permeable, y la composición química de un lado y otro es igual. * No es permeable a ningún ion. * Sus características físico químicas determinan el paso de solutos de- terminando diferentes concentraciones de iones de un lado y otro. * Es permeable solo a lípidos 5.- Cuando Ud. infunde una solución por vía endovenosa, está modifican- do primariamente, la composición química de un compartimiento. Señale la respuesta correcta: * Líquido Intracelular * Líquido Intersticial * Líquido Extracelular * Líquido transcelular. 6.- Señale la respuesta correcta, que completa la siguiente oración: El plasma constituye el componente líquido de la sangre. Su medición en CAPÍTULO II
  • 21. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 33 Introducción a Fisiología términos relativos, porcentaje es de aproximadamente…….. * 55% * 45% * 35% * 25% 7.- Señale la definición correcta de hematocrito: * Es la relación de glóbulos / líquidos de la sangre, y mide la parte globu- lar. Su valor normal es de alrededor del 45% * Es la proporción de glóbulos que se encuentra en la sangre y su valor normal es de 60% * Es el compartimiento intravascular del Líquido extracelular, y su valor normal es del 60% * Es la determinación de la prporción de glóbulos blancos del plasma. 8.- Señale los valores considerados normales del Na en el plasma o Líqui- do extracelular: * 130 a 135 mEq/l * 150 a 160 mEq/l * 138 a 142 mEq/l * 133 a 135 mEq/l 9.- Señale los valores considerados normales del Potasio (K) en el plasma o Líquido extracelular: * 2,5 a 3 mEq/l * 3, 5 a 4, 5 mEq/l * 4,8 a 5,5 mEq/l * 5, 5 a 7 mEq/l 10.- Señale los valores considerados normales del Bicarbonato (CO3H-) en el plasma o Líquido extracelular: * 25 a 28 mEq/l * 30 a 40 mEq/l * 20 a 23 mEq/l * 45 a 60 mEq/l 11.- Señalelosvaloresconsideradosnormalesdelaglucosaenayunas en el plasma o Líquido extracelular: * menor a 126 mg% * mayor a 126 mg% * mayor de 110 mg% * menor de 90 mg% 12.- Señale la respuesta incorrecta con respecto al concepto de presión osmótica: CAPÍTULO II
  • 22. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 34 Introducción a Fisiología * Es la presión que ejercen los solutos que se disocian * Es la presión que ejercen las proteinas del plasma * Es la presión que permite que fluya líquido hacia el intersticio en con- diciones fisiológicas * Es la presión hidrostática de los capilares 13.- Señale cuáles son los Egresos diarios de agua esperados en condi- ciones fisiológicas: * Orina, 1000ml, Pulmón, 450 ml; Piel, 500ml; Heces 150ml. * Orina, 3000ml, Pulmón, 4500 ml; Piel, 5000ml; Heces 1500ml. * Orina, 100ml, Pulmón, 450 ml; Piel, 50ml; Heces 150ml. * Orina, 300ml, Pulmón, 45 ml; Piel, 50ml; Heces 15ml. 14.- Señale la opción correcta con respecto a las pérdidas de agua: * La fiebre no aumenta la pérdida de agua * No hay pérdidas de alectrolitos en una diarrea. * El ejercicio físico aumenta la pérdida de agua y electrolitos * Por bilis se pierde glucosa. 15.- Una solución parenteral isotónica significa: * que aumenta el tono muscular * que tiene la misma osmolaridad que el plasma * que es de glucosa al 10% * que tiene la misma osmolaridad del plasma pero puede movilizar lí- quidos. 16.- El término de homeostasis se refiere a: (marque la opción CORRECTA) a). la falta de equilibrio entre los componentes del compartimento in- travascular b). el equilibrio dinámico de los componentes del medio interno c). a la igualdad en las concentraciones de los componentes del LEC y del LIC. d. ninguna es correcta 17.- El principal componente del medio interno corresponde a: El principal componente del medio interno corresponde a: El (marque la opción CORRECTA) a). el sodio, por ser el catión más importante, y por su poder osmótico b). el agua, por corresponder al 40-60% del peso corporal de un indi- viduo c). el cloro, por ser el anión de mayor cantidad en el compartimento in- travascular d. ninguno de los anteriores constituye el principal componente del medio interno 18.- Un balance neutro de agua se refiere a: CAPÍTULO II
  • 23. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 35 Introducción a Fisiología a). que el pH del agua sea neutro b). que la cantidad del líquido intracelular sea igual al del líquido extra- celular c). que los ingresos y egresos sean equilibrados d). todas son correctas 19.- Un individuo concurre a la consulta por un chequeo médico, y nos indican que calculemos el balance de agua del día previo a la consulta. El individuo nos cuenta que bebió 1950 ml de agua; se alimentó en tres oportunidades (desayuno, almuerzo y cena); refiere haber orinado en 4 oportunidades, calculando emisiones de 500 ml aproximadamente en cada oportunidad; y refiere la deposición de materia fecal. El resultado del balance es de: (marque la opción CORRECTA) a). positivo de 1000 ml b). negativo de 1000 ml c). neutro d). no se puede calcular 20.- Una situación frecuente de presentarse es que conozcamos la con- centracióndeunasustanciaenunadeterminadaunidad,ydebamoscono- cer en otra unidad para su administración. Aplicando las fórmulas corres- pondientes, calcule cuál es el número de moles contenidos en 360 gramos de glucosa, en 500 gramos de ClNa, y en 1200 gramos de ClK? a). 2 moles de glucosa; 8,5 moles de ClNa; 16,1 moles de ClK b). 12 moles de glucosa; 5 moles de ClNa; 8,5 moles de ClK c). 180 moles de glucosa; 23 moles de ClNa; 40 moles de ClK d). ninguna es correcta 21.- Se denomina osmol efectivo a: a). toda sustancia capaz de medir la osmolaridad b). toda sustancia que pasa libremente la membrana plasmática c). toda sustancia capaz de generar movimiento de agua d). ninguna es correcta 22.- Indique cuál de los siguientes NO es un osmol efectivo: a). sodio b). glucosa c). manitol d). urea 23.- Si tenemos un tubo en U y colocamos en el centro de la U una mem- brana semipermeable, y a ambos lados agua, la cantidad de moléculas, que por su “tendencia de escape” y por su potencial químico tienden a pa- sar de un lado a otro de la membrana, es igual. En consecuencia, el nivel alcanzadoporelaguaencadaunadelasramasdeltuboenUseráexacta- CAPÍTULO II
  • 24. Cátedra de Fisiología Humana. Carrera de Enfermería. UNNE 36 Introducción a Fisiología mente el mismo. Ahora, si adicionamos en uno de los brazos un soluto que no pase a través de la membrana, como es la glucosa, el comportamiento del agua será: (marque la opción CORRECTA) a). el agua pasará del brazo sin glucosa hacia el brazo con glucosa b). el agua pasará del brazo con glucosa hacia el brazo sin glucosa c). el agua no se movilizará a través de la membrana d). ninguna es correcta 24.- Qué resultados se obtienen al infundir una solución fisiológica a un individuo: a). aporto calorías con fines nutritivos b). aporto mucho Na y Cl para aumentar la osmolaridad y sacar agua de la célula c). aporto volumen al LEC d). aporto poco Na y Cl para disminuir la osmolaridad e introducir agua a la célula 25.- Quéresultadosseobtienenalinfundirunasolucióndedextrosaal5% a un individuo: a). aporto calorías con fines nutritivos b). aporto mucho Na y Cl para aumentar la osmolaridad y sacar agua de la célula c). aporto volumen al LEC d). aporto poco Na y Cl para disminuir la osmolaridad e introducir agua a la célula Bibliografía. Barry Brenner. The kidney. Seventh Edition. Saunders.2003. De Robertis y De Robertis. Biología Celular y Molecular. El Ateneo. Sexta Impresión. 1995. E. Rottelar. Abc de los Trastornos Electrolíticos. 2 Edicion. Jims. Barcelona. CAPÍTULO II