SlideShare una empresa de Scribd logo
1 de 33
1
DIVISION DE CIENCIAS ECONOMICO ADMINISTRATIVAS
Arq. Juan Martín Muñoz Hernández
Nov. 2017
ESTADISTICA DESCRIPTIVA
2
Se denomina distribución de variable discreta a aquella cuya función
de probabilidad sólo toma valores positivos naturales en un conjunto de
valores de {x│x} finito o infinito numerable. A dicha función se le llama
función de densidad de probabilidad
Función de probabilidad
Se llama función de probabilidad de una variable aleatoria discreta X a
la aplicación que asocia a cada valor de xi de la variable su
probabilidad pi.
0 ≤ pi ≤ 1
p1 + p2 + p3 + · · · + pn = Σ pi = 1
Distribuciones discretas
3
Distribuciones discretas
Parámetros de la distribución de probabilidad
Media, valor esperado o esperanza matemática
Desviación Estandar
Varianza
4
Una variable aleatoria X puede tomar los valores 30, 40, 50 y 60 con probabilidades de
0.4, 0.2, 0.1 y 0.3 respectivamente.
a.Calcular la esperanza matemática de la v. a. X
b.Calcular su varianza
c.Calcular la desviación estándar de la v. a. X
EJEMPLO
a) tomando en consideración los valores y sustituyéndolos en la
fórmula µ=(30*0.40)+(40*0.20)+(50*0.10)+(60*0.30) =12.00 + 8.00 +
5.00 + 18.00 =43.00
b) σ2
= 360 + 320 + 250 + 1080 − 1849
= 2010 – 1849 = 161
c) σ = 161 =12.688
5
Distribución de Bernoulli
Experimento de Bernoulli: Admite solo
dos resultados: éxito o fracaso. Y
podemos, definer, a la variable aleatoria
discreta X tal que:
éxito → 1
fracaso → 0
Si la probabilidad de éxito es p la de fracas será q=(1 – p),
podemos construir una función de probabilidad:
Un típico experimento de Bernoulli es el lanzamiento de
una moneda con probabilidad p para cara y (1-p) para
cruz. De donde la prob. De èxito equivale al 50% y la de
fracaso 50%
6
Función de distribución:
7
Ejercicio: Calcular la esperanza y la varianza
de la distribución de Bernoulli.
8
Distribución binomial
La distribución binomial aparece cuando estamos
interesados en el número de veces que un suceso
A ocurre (éxitos) en n intentos independientes de
un experimento.
P. ej.: # de caras en n lanzamientos de una moneda.
Si A tiene probabilidad p (probabilidad de éxito) en
un intento, entonces 1-p es la probabilidad de que A
no ocurra (probabilidad de fracaso).
9
Experimento aleatorio: n = 3 lanzamientos de una moneda.
Probabilidad de éxito en cada lanzamiento (cara) = p.
Probabilidad de fracaso en cada lanzamiento (cruz) = 1- p = q.
10
Supongamos que el experimento consta de n
intentos y definamos la variable aleatoria:
X = Número de veces que ocurre A.
En nuestro ejemplo: X = Número de veces que sale cara.
Entonces X puede tomar los valores 0, 1, 2, ... n.
Si consideramos uno de estos valores, digamos el
valor x , i.e. en x de los n intentos ocurre A y en n - x
no. Entonces la probabilidad de cada posible
ordenación es pxqn-x y existen idénticas
ordenaciones.
11
La función de probabilidad P(X = x) será
la distribución binomial:
Distribución binomial para n = 5 y
distintos valores de p, B(5, p)
12
13
Ejercicio:
¿Cuál es la probabilidad de que en una familia de 4 hijos
exactamente 2 sean niñas?
14
Ejercicio:
Si una décima parte de las personas tienen cierto grupo
sanguíneo, ¿cuál es la probabilidad de que entre 100
personas escogidas al azar exactamente 8 de ellas
pertenezcan a este grupo sanguíneo?
15
¿Y si la pregunta es 8 como máximo?
16
Calcula la probabilidad de obtener al menos dos seises al
lanzar un dado cuatro veces.
p = 1/6, q = 5/6, n = 4
Al menos dos seises, implica que nos valen k = 2, 3, 4.
P(2) + P(3) + P (4)
18
Distribución geométrica
Consideremos el siguiente experimento:
Partimos de un experimento de Bernoulli donde la
probabilidad de que ocurra un suceso es
p (éxito) y la probabilidad de que no ocurra
q = 1- p (fracaso). Repetimos nuestro experimento
hasta conseguir el primer éxito. Definimos la variable
aleatoria X, como el número de fracasos hasta que
se obtiene el primer éxito. Entonces:
19
p(x)
x
Función de distribución:
20
Distribución binomial negativa
(de Pascal o de Pólya)
Consideremos el siguiente experimento:
Partimos de un experimento de Bernoulli donde la probabilidad
de que ocurra un suceso es p (éxito) y la probabilidad de que
no ocurra q = 1- p (fracaso). Repetimos nuestro experimento
hasta conseguir el r-ésimo éxito. Definimos la variable
aleatoria X, como el número de fracasos x hasta que se
obtiene el r-ésimo éxito. Entonces:
Se denomina binomial negativa porque los coeficiente provienen de
la serie binomial negativa:
El último tiene que ser un éxito.
21
Distribución binomial negativa
(de Pascal o de Pólya)
La distribución binomial negativa también se puede definir
como el número de pruebas x hasta la aparición de r éxitos.
Como el número de pruebas x, en este caso, contabiliza
tanto los éxitos como los fracasos se tendría según ésta
definición que:
22
Disponemos de una moneda trucada con probabilidad de cara
igual a p=0.25. La lanzamos hasta que obtenemos 2 caras.
La distribución del número de lanzamientos x será:
x
P(x)
23
Elegir al azar con reemplazo
Elegir al azar con reemplazo significa que escogemos al azar
un elemento de un conjunto y lo regresamos para elegir de nuevo
al azar. Esto garantiza la independencia de las elecciones y nos
lleva a una distribución binomial.
Si una caja contiene N bolas de las cuales A son rojas, entonces
la probabilidad de escoger al azar una bola roja es: p = A/N.
Si repetimos el experimento sacando n bolas con reemplazo la
probabilidad de que x sean rojas es:
(Una distribución binomial)
24
Elegir al azar sin reemplazo
Elegir al azar sin reemplazo significa que no devolvemos
el elemento elegido al azar al conjunto. De modo que las
probabilidades de la siguiente elección dependen de las
anteriores.
Si repetimos el experimento anterior sacando n bolas sin
reemplazo, ¿cuál será ahora la probabilidad de que x sean
rojas?
Para calcular los casos favorables observa que:
N = A + (N – A). De las A bolas rojas tomaremos x y de
las N – A bolas no rojas tomaremos n – x.
25
Distribución hipergeométrica
26
Queremos seleccionar al azar dos bolas de una caja que contiene
10 bolas, tres de las cuales son rojas. Encuentra la función de
probabilidad de la variable aleatoria : X = Número de bolas rojas
en cada elección (con y sin reemplazo).
Tenemos N = 10, A = 3, N - A = 7, n = 2
Escogemos con reemplazo:
Escogemos sin reemplazo:
28
Distribución de Poisson
Cuando en una distribución binomial el número de intentos (n)
es grande y la probabilidad de éxito (p) es pequeña, la
distribución binomial converge a la distribución de Poisson:
Observa que si p es pequeña, el éxito es
un “suceso raro”.
La distribución de Poisson, junto con la uniforme y la
binomial, son las distribuciones más utilizadas.
donde np = λ
29
Un proceso poissoniano es aquél compuesto de
eventos discretos que son independientes en el
espacio y/o en el tiempo.
Por ejemplo la llegada de fotones a un detector.
Usemos la distribución binomial para modelar el
proceso. Podemos dividir el intervalo de tiempo en el
que ocurre el proceso en n subintervalos suficientemente
pequeños, como para asegurarnos que a lo sumo se
produce un evento en cada subintervalo. De modo que
en cada subintervalo, o se producen 0 o 1 ocurrencias.
A lo sumo llega un fotón en cada subintervalo o ninguno.
De modo que podemos entender el proceso como un
experimento de Bernoulli. Para determinar p, podemos
razonar de la siguiente manera:
30
En promedio se producirán λt ocurrencias en un intervalo de
tiempo t. Si este intervalo se divide en n subintervalos,
entonces esperaríamos en promedio (usando Bernoulli):
np ocurrencias. Así: λt = np, p = λt / n.
Sin pérdida de generalidad supongamos que t = 1 y que X
es la variable aleatoria = número total de ocurrencias.
Sabemos que:
Observa que para n grande P(X = 0) es aproximadamente e-λ.
Además para n grande (y por tanto p muy pequeño):
31
Tenemos entonces
la siguiente ecuación
iterada:
Que nos proporciona:
33
Distribución de Poisson para varios valores de μ.
La distribución de Poisson se obtiene como aproximación de
una distribución binomial con la misma media, para ‘n grande’
(n > 30) y ‘p pequeño’ (p < 0,1). Queda caracterizada por un
único parámetro μ (que es a su vez su media y varianza).
μ = σ = n p = λ
34
Si la probabilidad de fabricar un televisor defectuoso es
p = 0.01, ¿cuál es la probabilidad de que en un lote de 100
televisores contenga más de 2 televisores defectuosos?
El suceso complementario Ac: No más de 2 televisores
defectuosos puede aproximarse con una distribución de
Poisson con μ = np = 1, sumando p(0) + p(1) + p(2).
La distribución binomial nos daría el resultado exacto:
35
La señal promedio recibida en un telescopio de una fuente
celeste es de 10 fotones por segundo. Calcular la probabilidad
de recibir 7 fotones en un segundo dado.
P(7) = 107 e−10 / 7! = 0.09, es decir 9%
Parece muy baja. Comparemos con el valor de máxima
probabilidad que ocurrirá para x = 10:
μ = 10 P(10) = 1010 x e−10 / 10! = 0.125, es decir 12.5%
Las probabilidades poissonianas para un número de eventos
dado, son siempre pequeñas, incluso en el máximo de la
distribución de probabilidad.
Una distribución de Poisson
con μ = 10.
36
Si en promedio, entran 2 coches por minuto en un garaje, ¿cuál
es la probabilidad de que durante un minuto entren 4 o más
coches?
Si asumimos que un minuto puede dividirse en muchos
intervalos cortos de tiempo independientes y que la probabilidad
de que un coche entre en uno de esos intervalos es p – que para
un intervalo pequeño será también pequeño – podemos
aproximar la distribución a una Poisson con μ = np = 2.
y la respuesta es 1 – 0.857 = 0.143
El suceso complementario “entran 3 coches o menos” tiene
probabilidad:

Más contenido relacionado

La actualidad más candente

Distribuciones discretas de_probabiliidad
Distribuciones discretas de_probabiliidadDistribuciones discretas de_probabiliidad
Distribuciones discretas de_probabiliidadUNAD
 
Distribuciones Muestrales
Distribuciones MuestralesDistribuciones Muestrales
Distribuciones MuestralesHector Funes
 
Distribucion de poisson
Distribucion de poissonDistribucion de poisson
Distribucion de poissoncathycontreras
 
Prueba Kolmogorov-Smirnov
Prueba Kolmogorov-SmirnovPrueba Kolmogorov-Smirnov
Prueba Kolmogorov-SmirnovDavid Solis
 
Capítulo 05, Revisión de algunos conceptos de probabilidad
Capítulo 05, Revisión de algunos conceptos de probabilidadCapítulo 05, Revisión de algunos conceptos de probabilidad
Capítulo 05, Revisión de algunos conceptos de probabilidadAlejandro Ruiz
 
Variables aleatorias y distribución de probabilidad
Variables aleatorias y distribución de probabilidadVariables aleatorias y distribución de probabilidad
Variables aleatorias y distribución de probabilidadBlanca Parra Campos
 
Prueba de Hipótesis para una media y proporción-estadistica
Prueba de Hipótesis para una media y proporción-estadisticaPrueba de Hipótesis para una media y proporción-estadistica
Prueba de Hipótesis para una media y proporción-estadisticaYanina C.J
 
Estimacion puntual, propiedades de las estimaciones; estimacion por intervalo...
Estimacion puntual, propiedades de las estimaciones; estimacion por intervalo...Estimacion puntual, propiedades de las estimaciones; estimacion por intervalo...
Estimacion puntual, propiedades de las estimaciones; estimacion por intervalo...Alexander Flores Valencia
 
Inferencia lbinomialypoisson
Inferencia lbinomialypoissonInferencia lbinomialypoisson
Inferencia lbinomialypoissonInstruccional
 
Prueba de hipótesis para distribuciones normal, y t student. Presentación dis...
Prueba de hipótesis para distribuciones normal, y t student. Presentación dis...Prueba de hipótesis para distribuciones normal, y t student. Presentación dis...
Prueba de hipótesis para distribuciones normal, y t student. Presentación dis...JAVIER SOLIS NOYOLA
 
Ejercicios de estimación de intervalo o intervalos de confianza (8)
Ejercicios de estimación de intervalo o intervalos de confianza (8) Ejercicios de estimación de intervalo o intervalos de confianza (8)
Ejercicios de estimación de intervalo o intervalos de confianza (8) Luz Hernández
 
9. diferencia entre p de hipótesis e intervalos de confianza
9.  diferencia entre p de hipótesis e intervalos de confianza9.  diferencia entre p de hipótesis e intervalos de confianza
9. diferencia entre p de hipótesis e intervalos de confianzaYerko Bravo
 

La actualidad más candente (20)

Distribucion de Poisson
Distribucion de PoissonDistribucion de Poisson
Distribucion de Poisson
 
Distribuciones discretas de_probabiliidad
Distribuciones discretas de_probabiliidadDistribuciones discretas de_probabiliidad
Distribuciones discretas de_probabiliidad
 
Distribuciones Muestrales
Distribuciones MuestralesDistribuciones Muestrales
Distribuciones Muestrales
 
Distribucion de poisson
Distribucion de poissonDistribucion de poisson
Distribucion de poisson
 
Prueba Kolmogorov-Smirnov
Prueba Kolmogorov-SmirnovPrueba Kolmogorov-Smirnov
Prueba Kolmogorov-Smirnov
 
Capítulo 05, Revisión de algunos conceptos de probabilidad
Capítulo 05, Revisión de algunos conceptos de probabilidadCapítulo 05, Revisión de algunos conceptos de probabilidad
Capítulo 05, Revisión de algunos conceptos de probabilidad
 
Distribución gamma y exponencial
Distribución gamma y exponencialDistribución gamma y exponencial
Distribución gamma y exponencial
 
Variables aleatorias y distribución de probabilidad
Variables aleatorias y distribución de probabilidadVariables aleatorias y distribución de probabilidad
Variables aleatorias y distribución de probabilidad
 
Distribucion hipergeometrica
Distribucion hipergeometricaDistribucion hipergeometrica
Distribucion hipergeometrica
 
Calculo del tamaño de muestra
Calculo del tamaño de muestraCalculo del tamaño de muestra
Calculo del tamaño de muestra
 
Prueba de Hipótesis para una media y proporción-estadistica
Prueba de Hipótesis para una media y proporción-estadisticaPrueba de Hipótesis para una media y proporción-estadistica
Prueba de Hipótesis para una media y proporción-estadistica
 
Estimacion puntual, propiedades de las estimaciones; estimacion por intervalo...
Estimacion puntual, propiedades de las estimaciones; estimacion por intervalo...Estimacion puntual, propiedades de las estimaciones; estimacion por intervalo...
Estimacion puntual, propiedades de las estimaciones; estimacion por intervalo...
 
Inferencia lbinomialypoisson
Inferencia lbinomialypoissonInferencia lbinomialypoisson
Inferencia lbinomialypoisson
 
5
55
5
 
Prueba de hipótesis para distribuciones normal, y t student. Presentación dis...
Prueba de hipótesis para distribuciones normal, y t student. Presentación dis...Prueba de hipótesis para distribuciones normal, y t student. Presentación dis...
Prueba de hipótesis para distribuciones normal, y t student. Presentación dis...
 
Ejercicios de estimación de intervalo o intervalos de confianza (8)
Ejercicios de estimación de intervalo o intervalos de confianza (8) Ejercicios de estimación de intervalo o intervalos de confianza (8)
Ejercicios de estimación de intervalo o intervalos de confianza (8)
 
Distribucion binomial negativa
Distribucion binomial negativaDistribucion binomial negativa
Distribucion binomial negativa
 
Distribucion binomial
Distribucion binomialDistribucion binomial
Distribucion binomial
 
Distribucion binomial ñ.ñ
Distribucion binomial ñ.ñDistribucion binomial ñ.ñ
Distribucion binomial ñ.ñ
 
9. diferencia entre p de hipótesis e intervalos de confianza
9.  diferencia entre p de hipótesis e intervalos de confianza9.  diferencia entre p de hipótesis e intervalos de confianza
9. diferencia entre p de hipótesis e intervalos de confianza
 

Similar a Distribuciones discretas-2017.ppt

distribuciones-discretas-2017.ppt
distribuciones-discretas-2017.pptdistribuciones-discretas-2017.ppt
distribuciones-discretas-2017.pptBaquedanoMarbaro
 
Variables aleatorias. estadistica 1
Variables aleatorias. estadistica 1Variables aleatorias. estadistica 1
Variables aleatorias. estadistica 1Leyvis Farias Medina
 
DefinicióN Variable Aleatoria Discreta
DefinicióN Variable Aleatoria DiscretaDefinicióN Variable Aleatoria Discreta
DefinicióN Variable Aleatoria Discretajoeliv
 
L ochoa-distribuciones-probabilidad-discretas
L ochoa-distribuciones-probabilidad-discretasL ochoa-distribuciones-probabilidad-discretas
L ochoa-distribuciones-probabilidad-discretasleo_8a
 
Trabajo final de estadistica
Trabajo final de estadisticaTrabajo final de estadistica
Trabajo final de estadisticaCYALE19
 
Trabajo final de estadistica
Trabajo final de estadisticaTrabajo final de estadistica
Trabajo final de estadisticaCYALE19
 
Distribucionesdiscretas]
Distribucionesdiscretas]Distribucionesdiscretas]
Distribucionesdiscretas]edeannis
 
Distribucionesdiscretas]
Distribucionesdiscretas]Distribucionesdiscretas]
Distribucionesdiscretas]edeannis
 
Distribución de Frecuencia
Distribución de FrecuenciaDistribución de Frecuencia
Distribución de FrecuenciaRonald Medrano
 
Modelos probabilidad
Modelos probabilidadModelos probabilidad
Modelos probabilidadSandra Pachon
 
Presentacion estadistica II
Presentacion estadistica IIPresentacion estadistica II
Presentacion estadistica IIalexjcv
 
Conceptos básicos
Conceptos básicosConceptos básicos
Conceptos básicosrubenrascon
 
Presentación distribuciones discretas denís cañas
Presentación distribuciones discretas denís cañasPresentación distribuciones discretas denís cañas
Presentación distribuciones discretas denís cañasDenis2014
 
probabilidad y diferencia entre Poisson y Bernoulli.
probabilidad y diferencia entre Poisson y Bernoulli.probabilidad y diferencia entre Poisson y Bernoulli.
probabilidad y diferencia entre Poisson y Bernoulli.Belen Dominguez
 
probabilidad de Poisson y Bernoulli, y su comparación.
probabilidad de Poisson y Bernoulli, y su comparación.probabilidad de Poisson y Bernoulli, y su comparación.
probabilidad de Poisson y Bernoulli, y su comparación.Belen Dominguez
 
DISTRIBUCIÓN BERNOULLI Y DISTRIBUCIÓN BINOMIAL
DISTRIBUCIÓN BERNOULLI Y DISTRIBUCIÓN BINOMIALDISTRIBUCIÓN BERNOULLI Y DISTRIBUCIÓN BINOMIAL
DISTRIBUCIÓN BERNOULLI Y DISTRIBUCIÓN BINOMIALSonyé Lockheart
 

Similar a Distribuciones discretas-2017.ppt (20)

8. probabilidad y variables aleatorias
8.  probabilidad y variables aleatorias8.  probabilidad y variables aleatorias
8. probabilidad y variables aleatorias
 
distribuciones-discretas-2017.ppt
distribuciones-discretas-2017.pptdistribuciones-discretas-2017.ppt
distribuciones-discretas-2017.ppt
 
distribuciones-discretas- choluteca honduras
distribuciones-discretas- choluteca  hondurasdistribuciones-discretas- choluteca  honduras
distribuciones-discretas- choluteca honduras
 
distribuciones de probabilidad los numeros enteros
distribuciones de probabilidad los numeros enterosdistribuciones de probabilidad los numeros enteros
distribuciones de probabilidad los numeros enteros
 
Variables aleatorias. estadistica 1
Variables aleatorias. estadistica 1Variables aleatorias. estadistica 1
Variables aleatorias. estadistica 1
 
DefinicióN Variable Aleatoria Discreta
DefinicióN Variable Aleatoria DiscretaDefinicióN Variable Aleatoria Discreta
DefinicióN Variable Aleatoria Discreta
 
L ochoa-distribuciones-probabilidad-discretas
L ochoa-distribuciones-probabilidad-discretasL ochoa-distribuciones-probabilidad-discretas
L ochoa-distribuciones-probabilidad-discretas
 
Trabajo final de estadistica
Trabajo final de estadisticaTrabajo final de estadistica
Trabajo final de estadistica
 
Trabajo final de estadistica
Trabajo final de estadisticaTrabajo final de estadistica
Trabajo final de estadistica
 
Distribucionesdiscretas]
Distribucionesdiscretas]Distribucionesdiscretas]
Distribucionesdiscretas]
 
Distribucionesdiscretas]
Distribucionesdiscretas]Distribucionesdiscretas]
Distribucionesdiscretas]
 
DISTRIBUCIÓN DISCRETA.pptx
DISTRIBUCIÓN DISCRETA.pptxDISTRIBUCIÓN DISCRETA.pptx
DISTRIBUCIÓN DISCRETA.pptx
 
Distribución de Frecuencia
Distribución de FrecuenciaDistribución de Frecuencia
Distribución de Frecuencia
 
Modelos probabilidad
Modelos probabilidadModelos probabilidad
Modelos probabilidad
 
Presentacion estadistica II
Presentacion estadistica IIPresentacion estadistica II
Presentacion estadistica II
 
Conceptos básicos
Conceptos básicosConceptos básicos
Conceptos básicos
 
Presentación distribuciones discretas denís cañas
Presentación distribuciones discretas denís cañasPresentación distribuciones discretas denís cañas
Presentación distribuciones discretas denís cañas
 
probabilidad y diferencia entre Poisson y Bernoulli.
probabilidad y diferencia entre Poisson y Bernoulli.probabilidad y diferencia entre Poisson y Bernoulli.
probabilidad y diferencia entre Poisson y Bernoulli.
 
probabilidad de Poisson y Bernoulli, y su comparación.
probabilidad de Poisson y Bernoulli, y su comparación.probabilidad de Poisson y Bernoulli, y su comparación.
probabilidad de Poisson y Bernoulli, y su comparación.
 
DISTRIBUCIÓN BERNOULLI Y DISTRIBUCIÓN BINOMIAL
DISTRIBUCIÓN BERNOULLI Y DISTRIBUCIÓN BINOMIALDISTRIBUCIÓN BERNOULLI Y DISTRIBUCIÓN BINOMIAL
DISTRIBUCIÓN BERNOULLI Y DISTRIBUCIÓN BINOMIAL
 

Más de JUAN M. MUÑOZ H.

Estilos arq prope-2018 tem 3
Estilos arq prope-2018 tem 3Estilos arq prope-2018 tem 3
Estilos arq prope-2018 tem 3JUAN M. MUÑOZ H.
 
Clase estructuras (const v i)
Clase estructuras (const v i)Clase estructuras (const v i)
Clase estructuras (const v i)JUAN M. MUÑOZ H.
 
(Generalidades de la arq tema ii) prope
(Generalidades de la arq tema ii) prope(Generalidades de la arq tema ii) prope
(Generalidades de la arq tema ii) propeJUAN M. MUÑOZ H.
 
Mejora tiempo de trabajo tema 4
Mejora tiempo de trabajo tema 4Mejora tiempo de trabajo tema 4
Mejora tiempo de trabajo tema 4JUAN M. MUÑOZ H.
 
Mejora tiempo de trabajo tema 4
Mejora tiempo de trabajo tema 4Mejora tiempo de trabajo tema 4
Mejora tiempo de trabajo tema 4JUAN M. MUÑOZ H.
 
Programas(corto,mediano,largo plazo)
Programas(corto,mediano,largo plazo)Programas(corto,mediano,largo plazo)
Programas(corto,mediano,largo plazo)JUAN M. MUÑOZ H.
 

Más de JUAN M. MUÑOZ H. (12)

Estilos arq prope-2018 tem 3
Estilos arq prope-2018 tem 3Estilos arq prope-2018 tem 3
Estilos arq prope-2018 tem 3
 
Clase estructuras (const v i)
Clase estructuras (const v i)Clase estructuras (const v i)
Clase estructuras (const v i)
 
Eficiencia producción 1
Eficiencia producción  1Eficiencia producción  1
Eficiencia producción 1
 
(Generalidades de la arq tema ii) prope
(Generalidades de la arq tema ii) prope(Generalidades de la arq tema ii) prope
(Generalidades de la arq tema ii) prope
 
Mejora tiempo de trabajo tema 4
Mejora tiempo de trabajo tema 4Mejora tiempo de trabajo tema 4
Mejora tiempo de trabajo tema 4
 
Mejora tiempo de trabajo tema 4
Mejora tiempo de trabajo tema 4Mejora tiempo de trabajo tema 4
Mejora tiempo de trabajo tema 4
 
Programas(corto,mediano,largo plazo)
Programas(corto,mediano,largo plazo)Programas(corto,mediano,largo plazo)
Programas(corto,mediano,largo plazo)
 
UG guia extra dic- 2017docx
UG guia extra dic- 2017docxUG guia extra dic- 2017docx
UG guia extra dic- 2017docx
 
Instalaciones sanitarias(2)
Instalaciones sanitarias(2)Instalaciones sanitarias(2)
Instalaciones sanitarias(2)
 
Cesba(metodos ecuaciones)
Cesba(metodos ecuaciones)Cesba(metodos ecuaciones)
Cesba(metodos ecuaciones)
 
Filosofias de calidad
Filosofias de calidadFilosofias de calidad
Filosofias de calidad
 
Untitled Presentation
Untitled PresentationUntitled Presentation
Untitled Presentation
 

Último

Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOluismii249
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesYanirisBarcelDelaHoz
 
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
SESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.docSESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.doc
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.docRodneyFrankCUADROSMI
 
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdfMiguelHuaman31
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Juan Martín Martín
 
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptxRigoTito
 
Infografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfInfografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfAlfaresbilingual
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfFrancisco158360
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICAÁngel Encinas
 
Abril 2024 - Maestra Jardinera Ediba.pdf
Abril 2024 -  Maestra Jardinera Ediba.pdfAbril 2024 -  Maestra Jardinera Ediba.pdf
Abril 2024 - Maestra Jardinera Ediba.pdfValeriaCorrea29
 
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdfMiNeyi1
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...JAVIER SOLIS NOYOLA
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dstEphaniiie
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfUPTAIDELTACHIRA
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxFernando Solis
 

Último (20)

Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
SESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.docSESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.doc
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
 
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
 
Sesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronósticoSesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronóstico
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
 
Infografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfInfografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdf
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 
Abril 2024 - Maestra Jardinera Ediba.pdf
Abril 2024 -  Maestra Jardinera Ediba.pdfAbril 2024 -  Maestra Jardinera Ediba.pdf
Abril 2024 - Maestra Jardinera Ediba.pdf
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
 
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdfTema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 

Distribuciones discretas-2017.ppt

  • 1. 1 DIVISION DE CIENCIAS ECONOMICO ADMINISTRATIVAS Arq. Juan Martín Muñoz Hernández Nov. 2017 ESTADISTICA DESCRIPTIVA
  • 2. 2 Se denomina distribución de variable discreta a aquella cuya función de probabilidad sólo toma valores positivos naturales en un conjunto de valores de {x│x} finito o infinito numerable. A dicha función se le llama función de densidad de probabilidad Función de probabilidad Se llama función de probabilidad de una variable aleatoria discreta X a la aplicación que asocia a cada valor de xi de la variable su probabilidad pi. 0 ≤ pi ≤ 1 p1 + p2 + p3 + · · · + pn = Σ pi = 1 Distribuciones discretas
  • 3. 3 Distribuciones discretas Parámetros de la distribución de probabilidad Media, valor esperado o esperanza matemática Desviación Estandar Varianza
  • 4. 4 Una variable aleatoria X puede tomar los valores 30, 40, 50 y 60 con probabilidades de 0.4, 0.2, 0.1 y 0.3 respectivamente. a.Calcular la esperanza matemática de la v. a. X b.Calcular su varianza c.Calcular la desviación estándar de la v. a. X EJEMPLO a) tomando en consideración los valores y sustituyéndolos en la fórmula µ=(30*0.40)+(40*0.20)+(50*0.10)+(60*0.30) =12.00 + 8.00 + 5.00 + 18.00 =43.00 b) σ2 = 360 + 320 + 250 + 1080 − 1849 = 2010 – 1849 = 161 c) σ = 161 =12.688
  • 5. 5 Distribución de Bernoulli Experimento de Bernoulli: Admite solo dos resultados: éxito o fracaso. Y podemos, definer, a la variable aleatoria discreta X tal que: éxito → 1 fracaso → 0 Si la probabilidad de éxito es p la de fracas será q=(1 – p), podemos construir una función de probabilidad: Un típico experimento de Bernoulli es el lanzamiento de una moneda con probabilidad p para cara y (1-p) para cruz. De donde la prob. De èxito equivale al 50% y la de fracaso 50%
  • 7. 7 Ejercicio: Calcular la esperanza y la varianza de la distribución de Bernoulli.
  • 8. 8 Distribución binomial La distribución binomial aparece cuando estamos interesados en el número de veces que un suceso A ocurre (éxitos) en n intentos independientes de un experimento. P. ej.: # de caras en n lanzamientos de una moneda. Si A tiene probabilidad p (probabilidad de éxito) en un intento, entonces 1-p es la probabilidad de que A no ocurra (probabilidad de fracaso).
  • 9. 9 Experimento aleatorio: n = 3 lanzamientos de una moneda. Probabilidad de éxito en cada lanzamiento (cara) = p. Probabilidad de fracaso en cada lanzamiento (cruz) = 1- p = q.
  • 10. 10 Supongamos que el experimento consta de n intentos y definamos la variable aleatoria: X = Número de veces que ocurre A. En nuestro ejemplo: X = Número de veces que sale cara. Entonces X puede tomar los valores 0, 1, 2, ... n. Si consideramos uno de estos valores, digamos el valor x , i.e. en x de los n intentos ocurre A y en n - x no. Entonces la probabilidad de cada posible ordenación es pxqn-x y existen idénticas ordenaciones.
  • 11. 11 La función de probabilidad P(X = x) será la distribución binomial: Distribución binomial para n = 5 y distintos valores de p, B(5, p)
  • 12. 12
  • 13. 13 Ejercicio: ¿Cuál es la probabilidad de que en una familia de 4 hijos exactamente 2 sean niñas?
  • 14. 14 Ejercicio: Si una décima parte de las personas tienen cierto grupo sanguíneo, ¿cuál es la probabilidad de que entre 100 personas escogidas al azar exactamente 8 de ellas pertenezcan a este grupo sanguíneo?
  • 15. 15 ¿Y si la pregunta es 8 como máximo?
  • 16. 16 Calcula la probabilidad de obtener al menos dos seises al lanzar un dado cuatro veces. p = 1/6, q = 5/6, n = 4 Al menos dos seises, implica que nos valen k = 2, 3, 4. P(2) + P(3) + P (4)
  • 17. 18 Distribución geométrica Consideremos el siguiente experimento: Partimos de un experimento de Bernoulli donde la probabilidad de que ocurra un suceso es p (éxito) y la probabilidad de que no ocurra q = 1- p (fracaso). Repetimos nuestro experimento hasta conseguir el primer éxito. Definimos la variable aleatoria X, como el número de fracasos hasta que se obtiene el primer éxito. Entonces:
  • 19. 20 Distribución binomial negativa (de Pascal o de Pólya) Consideremos el siguiente experimento: Partimos de un experimento de Bernoulli donde la probabilidad de que ocurra un suceso es p (éxito) y la probabilidad de que no ocurra q = 1- p (fracaso). Repetimos nuestro experimento hasta conseguir el r-ésimo éxito. Definimos la variable aleatoria X, como el número de fracasos x hasta que se obtiene el r-ésimo éxito. Entonces: Se denomina binomial negativa porque los coeficiente provienen de la serie binomial negativa: El último tiene que ser un éxito.
  • 20. 21 Distribución binomial negativa (de Pascal o de Pólya) La distribución binomial negativa también se puede definir como el número de pruebas x hasta la aparición de r éxitos. Como el número de pruebas x, en este caso, contabiliza tanto los éxitos como los fracasos se tendría según ésta definición que:
  • 21. 22 Disponemos de una moneda trucada con probabilidad de cara igual a p=0.25. La lanzamos hasta que obtenemos 2 caras. La distribución del número de lanzamientos x será: x P(x)
  • 22. 23 Elegir al azar con reemplazo Elegir al azar con reemplazo significa que escogemos al azar un elemento de un conjunto y lo regresamos para elegir de nuevo al azar. Esto garantiza la independencia de las elecciones y nos lleva a una distribución binomial. Si una caja contiene N bolas de las cuales A son rojas, entonces la probabilidad de escoger al azar una bola roja es: p = A/N. Si repetimos el experimento sacando n bolas con reemplazo la probabilidad de que x sean rojas es: (Una distribución binomial)
  • 23. 24 Elegir al azar sin reemplazo Elegir al azar sin reemplazo significa que no devolvemos el elemento elegido al azar al conjunto. De modo que las probabilidades de la siguiente elección dependen de las anteriores. Si repetimos el experimento anterior sacando n bolas sin reemplazo, ¿cuál será ahora la probabilidad de que x sean rojas? Para calcular los casos favorables observa que: N = A + (N – A). De las A bolas rojas tomaremos x y de las N – A bolas no rojas tomaremos n – x.
  • 25. 26 Queremos seleccionar al azar dos bolas de una caja que contiene 10 bolas, tres de las cuales son rojas. Encuentra la función de probabilidad de la variable aleatoria : X = Número de bolas rojas en cada elección (con y sin reemplazo). Tenemos N = 10, A = 3, N - A = 7, n = 2 Escogemos con reemplazo: Escogemos sin reemplazo:
  • 26. 28 Distribución de Poisson Cuando en una distribución binomial el número de intentos (n) es grande y la probabilidad de éxito (p) es pequeña, la distribución binomial converge a la distribución de Poisson: Observa que si p es pequeña, el éxito es un “suceso raro”. La distribución de Poisson, junto con la uniforme y la binomial, son las distribuciones más utilizadas. donde np = λ
  • 27. 29 Un proceso poissoniano es aquél compuesto de eventos discretos que son independientes en el espacio y/o en el tiempo. Por ejemplo la llegada de fotones a un detector. Usemos la distribución binomial para modelar el proceso. Podemos dividir el intervalo de tiempo en el que ocurre el proceso en n subintervalos suficientemente pequeños, como para asegurarnos que a lo sumo se produce un evento en cada subintervalo. De modo que en cada subintervalo, o se producen 0 o 1 ocurrencias. A lo sumo llega un fotón en cada subintervalo o ninguno. De modo que podemos entender el proceso como un experimento de Bernoulli. Para determinar p, podemos razonar de la siguiente manera:
  • 28. 30 En promedio se producirán λt ocurrencias en un intervalo de tiempo t. Si este intervalo se divide en n subintervalos, entonces esperaríamos en promedio (usando Bernoulli): np ocurrencias. Así: λt = np, p = λt / n. Sin pérdida de generalidad supongamos que t = 1 y que X es la variable aleatoria = número total de ocurrencias. Sabemos que: Observa que para n grande P(X = 0) es aproximadamente e-λ. Además para n grande (y por tanto p muy pequeño):
  • 29. 31 Tenemos entonces la siguiente ecuación iterada: Que nos proporciona:
  • 30. 33 Distribución de Poisson para varios valores de μ. La distribución de Poisson se obtiene como aproximación de una distribución binomial con la misma media, para ‘n grande’ (n > 30) y ‘p pequeño’ (p < 0,1). Queda caracterizada por un único parámetro μ (que es a su vez su media y varianza). μ = σ = n p = λ
  • 31. 34 Si la probabilidad de fabricar un televisor defectuoso es p = 0.01, ¿cuál es la probabilidad de que en un lote de 100 televisores contenga más de 2 televisores defectuosos? El suceso complementario Ac: No más de 2 televisores defectuosos puede aproximarse con una distribución de Poisson con μ = np = 1, sumando p(0) + p(1) + p(2). La distribución binomial nos daría el resultado exacto:
  • 32. 35 La señal promedio recibida en un telescopio de una fuente celeste es de 10 fotones por segundo. Calcular la probabilidad de recibir 7 fotones en un segundo dado. P(7) = 107 e−10 / 7! = 0.09, es decir 9% Parece muy baja. Comparemos con el valor de máxima probabilidad que ocurrirá para x = 10: μ = 10 P(10) = 1010 x e−10 / 10! = 0.125, es decir 12.5% Las probabilidades poissonianas para un número de eventos dado, son siempre pequeñas, incluso en el máximo de la distribución de probabilidad. Una distribución de Poisson con μ = 10.
  • 33. 36 Si en promedio, entran 2 coches por minuto en un garaje, ¿cuál es la probabilidad de que durante un minuto entren 4 o más coches? Si asumimos que un minuto puede dividirse en muchos intervalos cortos de tiempo independientes y que la probabilidad de que un coche entre en uno de esos intervalos es p – que para un intervalo pequeño será también pequeño – podemos aproximar la distribución a una Poisson con μ = np = 2. y la respuesta es 1 – 0.857 = 0.143 El suceso complementario “entran 3 coches o menos” tiene probabilidad: