SlideShare una empresa de Scribd logo
1 de 4
Ley de Viscosidad de Newton
Un fluido se diferencia de un sólido por su comportamiento cuando este se
somete a un esfuerzo ( fuerza por unidad de área) o fuerza aplicada. Un sólido
elástico se deforma en una magnitud proporcional similar al esfuerzo aplicado.
Sin embargo, cuando un fluido se somete a un esfuerzo aplicado similar
continúa deformándose, esto es, cuando fluye a una velocidad que aumenta
con el esfuerzo creciente, el fluido exhibe resistencia a este esfuerzo. La
viscosidad es la propiedad de un fluido que da lugar a fuerzas que se oponen al
movimiento relativo de capas adyacentes en el fluido y tambien es el
rozamiento que poseen los liquidos.
Cuando se piensa en un líquido con viscosidad nos tenemos que imaginar que
hablamos de miel, de glicerina, de caramelo derretido o similares. Un ejemplo
muy claro se observa al momento de virar un frasco que contiene miel y al
mismo tiempo, un frasco que contiene agua, a la miel le cuesta trabajo y tiempo
al tratar de llegar al filo, esta se pega en las paredes y baja muy lentamente de
modo contrario a lo que pasa con el agua ya que ésta va a fluir rápidamente
por el vaso y en pocos segundos alcanzará su borde.
Si consideramos un fluido sea líquido o gas, que se encuentra contenido entre
dos grandes láminas planas y paralelas, de área A, separadas entre sí por una
distancia pequeña Y. Supongamos que inicialmente el sistema se encuentra en
reposo, pero que al cabo del tiempo t = 0, la lámina inferior se pone en
movimiento en dirección al eje X, con una velocidad constante V. A medida que
transcurre el tiempo el fluido gana cantidad de movimiento, y, finalmente se
establece el perfil de velocidad en régimen estacionario. Una vez alcanzado
dicho estado estacionario de movimiento, es preciso aplicar una fuerza
constante F para conservar el movimiento de la lámina inferior. Esta fuerza
viene dada por la siguiente expresión (al suponer que el flujo es laminar):
ζ = -u dv/dz
Otra forma de expresar la viscosidad es con la denominada Ley de Newton,
que se muestra a continuación:
Fluidos Newtonianos
La distinción entre fluidos newtonianos y fluidos no-newtonianos se basa en la
diferente relación que existe en unos y otros entre la aplicación de un esfuerzo
tangencial y la velocidad con que se deforman.
Un fluido Newtoniano, también llamado fluido verdadero es aquel que,
sometido a un esfuerzo tangencial o cortante, se deforma con una velocidad
que es proporcional directamente al esfuerzo aplicado.
Dicho de otra forma: si se aplica un esfuerzo tangencial a un fluido newtoniano,
este se pondrá en movimiento sin importar cuán pequeño sea el esfuerzo
tangencial y se generará una cierta distribución de velocidad en el fluido. Ese
esfuerzo tangencial y el gradiente de velocidad que se produce serán
directamente proporcionales, a la constante de proporcionalidad se la define
como viscosidad.
Los fluidos más comunes tales como el agua, el aire y la gasolina son
newtonianos en condiciones normales. Si el fluido de la figura anterior es
newtoniano entonces:
tyx a du/dy
Si consideramos la deformación de dos fluidos newtonianos diferentes,
digamos glicerina y agua podemos darnos cuenta de que se deformarán a
diferentes proporciones ante la acción del mismo esfuerzo de corte
aplicado. La glicerina presenta una resistencia mucho mayor a la deformación
que el agua y por ello podemos decir que es mucho más viscosa. La constante
de proporcionalidad de la ecuación es la viscosidad absoluta
(dinámica), m. Así, en términos de las coordenadas de la figura, la ley de
viscosidad de Newton está dada para un flujo unidimensional por:
tyx = m·(du/dy)
Las dimensiones de la viscosidad dinámica son [Ft/L2] o en forma equivalente
[M/Lt]. En el sistema métrico, la unidad básica de viscosidad se denomina
poise (poise = g/cm*s).
Fluidos no newtonianos.
Los fluidos en los cuales el esfuerzo de corte no es directamente proporcional a
la relación de deformación son no newtonianos. Estrictamente hablando la
definición de un fluido es válida solo para materiales que tienen un esfuerzo de
deformación cero. Por lo común, los fluidos no newtonianos se clasifican con
respecto a su comportamiento en el tiempo, es decir, pueden ser dependientes
del tiempo o independientes del mismo.
Un gran número de ecuaciones empíricas se han propuesto para modelar las
relaciones observadas entre tyx y du/dy para fluidos independientes del
tiempo. Pueden representarse de manera adecuada para muchas aplicaciones
de la ingeniería mediante un modelo de la ley de potencia, el cual se convierte
para un flujo unidimensional en
tyx = k·(du/dy)n
donde el exponente n se llama índice de comportamiento del flujo y k el índice
de consistencia. Esta ecuación se reduce a la ley de viscosidad de newton
para n = 1 y k = m , para un fluido newtoniano.
Los fluidos en los cuales la viscosidad aparente disminuye con el aumento de
la relación de deformación (n < 1) se llaman seudoplásticos. Es decir con un
incremento en la tasa de corte el liquido se adelgaza. Casi todos los fluidos no
newtonianos entran en este grupo; los ejemplos incluyen soluciones
poliméricas, suspensiones coloidales y pulpa de papel en agua. Si la
viscosidad aparente aumenta con el incremento de la relación de deformación
(n > 1) el fluido se nombra dilatante; aquí el fluido se engruesa con un
aumento en la tasa de corte.
Además, existen los llamados materiales lineales de Bingham, donde se
presenta un desplazamiento finito para un esfuerzo cortante menor que un
valor t1 y para el cual existe un comportamiento viscoso newtoniano cuando el
esfuerzo es menor que t1. Para este comportamiento la ecuación
correspondiente es:
t=t1+mB du/dy
El estudio de fluidos no newtonianos es aún más complicado por el hecho de
que la viscosidad aparente puede depender del tiempo. Los
fluidostixotrópicos como tintas de impresor , tiene una viscosidad que
depende de la deformación angular inmediatamente anterior de la sustancia y
tiende a solidificarce cuando se encuentra en reposo, estos fluidos muestran
una reducción de n con el tiempo ante la aplicación de un esfuerzo de corte
constante. Los fluidos reopécticos muestran un aumento de n con el
tiempo. Después de la deformación, algunos regresan parcialmente a su forma
original cuando se libera el esfuerzo aplicado. A tales fluidos se les
llama viscoelásticos.
Ley de viscosidad de newton

Más contenido relacionado

La actualidad más candente

Mass transfer dr auroba
Mass transfer dr aurobaMass transfer dr auroba
Mass transfer dr aurobacbhattr
 
Aplicaciones de Bernoulli en Ingeniería
Aplicaciones de Bernoulli en IngenieríaAplicaciones de Bernoulli en Ingeniería
Aplicaciones de Bernoulli en IngenieríaKevin Rucoba Vargas
 
Practica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
Practica 3 Perfiles de Velocidad en Flujo Laminar y TurbulentoPractica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
Practica 3 Perfiles de Velocidad en Flujo Laminar y TurbulentoJasminSeufert
 
Perdidas de energias en fluidos incompresible.pptx
Perdidas de energias en fluidos incompresible.pptxPerdidas de energias en fluidos incompresible.pptx
Perdidas de energias en fluidos incompresible.pptxMariaCazorla5
 
Tablas termodinamicas-TERMODINÁMICA TÉCNICA I TERMODINÁMICA TÉCNICA II
Tablas termodinamicas-TERMODINÁMICA TÉCNICA I  TERMODINÁMICA TÉCNICA II   Tablas termodinamicas-TERMODINÁMICA TÉCNICA I  TERMODINÁMICA TÉCNICA II
Tablas termodinamicas-TERMODINÁMICA TÉCNICA I TERMODINÁMICA TÉCNICA II Yanina C.J
 
Unidad I. Flujo de fluidos de fase liquida
Unidad I. Flujo de fluidos de fase liquidaUnidad I. Flujo de fluidos de fase liquida
Unidad I. Flujo de fluidos de fase liquidaSistemadeEstudiosMed
 
Deducciones y demostraciones - Transferencia de Calor
Deducciones y demostraciones - Transferencia de Calor Deducciones y demostraciones - Transferencia de Calor
Deducciones y demostraciones - Transferencia de Calor Laura Nitola
 
Dinámica de los fluidos
Dinámica de los fluidosDinámica de los fluidos
Dinámica de los fluidosdomingo osorio
 
Variación de la viscosidad respecto a la temperatura
Variación de la viscosidad respecto a la temperaturaVariación de la viscosidad respecto a la temperatura
Variación de la viscosidad respecto a la temperatura00201292
 
Práctica 12: Coeficiente de transferencia de calor
Práctica 12: Coeficiente de transferencia de calorPráctica 12: Coeficiente de transferencia de calor
Práctica 12: Coeficiente de transferencia de calorErnestoFabela1196
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calorALEXITTOOh
 
Mecanismos de transferencia unidad 1
Mecanismos de transferencia unidad 1Mecanismos de transferencia unidad 1
Mecanismos de transferencia unidad 1Cesar D Colosio C
 
Diagramas de pourbaix_aluminio_y_niquel
Diagramas de pourbaix_aluminio_y_niquelDiagramas de pourbaix_aluminio_y_niquel
Diagramas de pourbaix_aluminio_y_niquelMiguelZuigaVillanuev
 
Fluidos Newtonianos
Fluidos NewtonianosFluidos Newtonianos
Fluidos NewtonianosJavier Casas
 
Cinematica de fluidos
Cinematica de fluidosCinematica de fluidos
Cinematica de fluidosajguerrab
 
Laboratorio 1 pérdidas en tuberías por fricción.
Laboratorio 1 pérdidas en tuberías por fricción.Laboratorio 1 pérdidas en tuberías por fricción.
Laboratorio 1 pérdidas en tuberías por fricción.juanccorreag1
 
Laboratorio Mecanica de Fluidos
Laboratorio Mecanica de FluidosLaboratorio Mecanica de Fluidos
Laboratorio Mecanica de FluidosAaron Espinoza
 

La actualidad más candente (20)

Mass transfer dr auroba
Mass transfer dr aurobaMass transfer dr auroba
Mass transfer dr auroba
 
Calor especifico
Calor especificoCalor especifico
Calor especifico
 
Aplicaciones de Bernoulli en Ingeniería
Aplicaciones de Bernoulli en IngenieríaAplicaciones de Bernoulli en Ingeniería
Aplicaciones de Bernoulli en Ingeniería
 
Practica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
Practica 3 Perfiles de Velocidad en Flujo Laminar y TurbulentoPractica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
Practica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
 
Perdidas de energias en fluidos incompresible.pptx
Perdidas de energias en fluidos incompresible.pptxPerdidas de energias en fluidos incompresible.pptx
Perdidas de energias en fluidos incompresible.pptx
 
Tablas termodinamicas-TERMODINÁMICA TÉCNICA I TERMODINÁMICA TÉCNICA II
Tablas termodinamicas-TERMODINÁMICA TÉCNICA I  TERMODINÁMICA TÉCNICA II   Tablas termodinamicas-TERMODINÁMICA TÉCNICA I  TERMODINÁMICA TÉCNICA II
Tablas termodinamicas-TERMODINÁMICA TÉCNICA I TERMODINÁMICA TÉCNICA II
 
Unidad I. Flujo de fluidos de fase liquida
Unidad I. Flujo de fluidos de fase liquidaUnidad I. Flujo de fluidos de fase liquida
Unidad I. Flujo de fluidos de fase liquida
 
Deducciones y demostraciones - Transferencia de Calor
Deducciones y demostraciones - Transferencia de Calor Deducciones y demostraciones - Transferencia de Calor
Deducciones y demostraciones - Transferencia de Calor
 
Dinámica de los fluidos
Dinámica de los fluidosDinámica de los fluidos
Dinámica de los fluidos
 
1235971715.psicrometria
1235971715.psicrometria1235971715.psicrometria
1235971715.psicrometria
 
Variación de la viscosidad respecto a la temperatura
Variación de la viscosidad respecto a la temperaturaVariación de la viscosidad respecto a la temperatura
Variación de la viscosidad respecto a la temperatura
 
Práctica 12: Coeficiente de transferencia de calor
Práctica 12: Coeficiente de transferencia de calorPráctica 12: Coeficiente de transferencia de calor
Práctica 12: Coeficiente de transferencia de calor
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calor
 
Mecanismos de transferencia unidad 1
Mecanismos de transferencia unidad 1Mecanismos de transferencia unidad 1
Mecanismos de transferencia unidad 1
 
Diagramas de pourbaix_aluminio_y_niquel
Diagramas de pourbaix_aluminio_y_niquelDiagramas de pourbaix_aluminio_y_niquel
Diagramas de pourbaix_aluminio_y_niquel
 
Fluidos Newtonianos
Fluidos NewtonianosFluidos Newtonianos
Fluidos Newtonianos
 
Cinematica de fluidos
Cinematica de fluidosCinematica de fluidos
Cinematica de fluidos
 
Laboratorio 1 pérdidas en tuberías por fricción.
Laboratorio 1 pérdidas en tuberías por fricción.Laboratorio 1 pérdidas en tuberías por fricción.
Laboratorio 1 pérdidas en tuberías por fricción.
 
P 3 ley de stokes
P 3 ley de stokesP 3 ley de stokes
P 3 ley de stokes
 
Laboratorio Mecanica de Fluidos
Laboratorio Mecanica de FluidosLaboratorio Mecanica de Fluidos
Laboratorio Mecanica de Fluidos
 

Destacado

Impulse für Christsein im Beruf (Sanjay Poonen)
Impulse für Christsein im Beruf (Sanjay Poonen)Impulse für Christsein im Beruf (Sanjay Poonen)
Impulse für Christsein im Beruf (Sanjay Poonen)FeG Heidelberg
 
Werning, Die oekonomische Durchdringung der digitalen (Medien-)Kultur
Werning, Die oekonomische Durchdringung der digitalen (Medien-)KulturWerning, Die oekonomische Durchdringung der digitalen (Medien-)Kultur
Werning, Die oekonomische Durchdringung der digitalen (Medien-)KulturStefan Werning
 
El positivismo de augusto comte
El positivismo de augusto comteEl positivismo de augusto comte
El positivismo de augusto comteyusmaryrumbos
 
Corrección de la evaluación
Corrección de la evaluaciónCorrección de la evaluación
Corrección de la evaluaciónbaqueromorenoj
 
First B Summer 1912
First B Summer 1912First B Summer 1912
First B Summer 1912werni4slide
 
Margaret mead __antropologia_la_ciencia_del_hombre
Margaret mead __antropologia_la_ciencia_del_hombreMargaret mead __antropologia_la_ciencia_del_hombre
Margaret mead __antropologia_la_ciencia_del_hombrealejouno2003
 
Nachhaltige Unternehmensentwicklung V2
Nachhaltige Unternehmensentwicklung V2Nachhaltige Unternehmensentwicklung V2
Nachhaltige Unternehmensentwicklung V2fokus_prinzip
 
Okw gehäusesysteme d
Okw gehäusesysteme dOkw gehäusesysteme d
Okw gehäusesysteme dmakokh
 
M3 s4 matríz tpack para el diseño de actividades mejorada (1) marzo 12 2015
M3 s4 matríz tpack para el diseño de actividades mejorada (1) marzo 12 2015M3 s4 matríz tpack para el diseño de actividades mejorada (1) marzo 12 2015
M3 s4 matríz tpack para el diseño de actividades mejorada (1) marzo 12 2015diplomadotita
 
Presentación logistica
Presentación logisticaPresentación logistica
Presentación logisticaStamar Project
 
Rubricas y-diario escrito
Rubricas y-diario escritoRubricas y-diario escrito
Rubricas y-diario escritoAlina D-Cn
 
Vanessa singaña excel
Vanessa singaña excelVanessa singaña excel
Vanessa singaña excelvane01si
 
Report in history-PAGLALAYAG NI MAGELLAN
Report in history-PAGLALAYAG NI MAGELLANReport in history-PAGLALAYAG NI MAGELLAN
Report in history-PAGLALAYAG NI MAGELLANOlhen Rence Duque
 
Tecnologías de la información y la comunicación
Tecnologías de la información y la comunicación   Tecnologías de la información y la comunicación
Tecnologías de la información y la comunicación GeovannyYungan
 
Smartphone Betriebssysteme BlackBerry
Smartphone Betriebssysteme BlackBerrySmartphone Betriebssysteme BlackBerry
Smartphone Betriebssysteme BlackBerrydm-development
 

Destacado (20)

Impulse für Christsein im Beruf (Sanjay Poonen)
Impulse für Christsein im Beruf (Sanjay Poonen)Impulse für Christsein im Beruf (Sanjay Poonen)
Impulse für Christsein im Beruf (Sanjay Poonen)
 
Werning, Die oekonomische Durchdringung der digitalen (Medien-)Kultur
Werning, Die oekonomische Durchdringung der digitalen (Medien-)KulturWerning, Die oekonomische Durchdringung der digitalen (Medien-)Kultur
Werning, Die oekonomische Durchdringung der digitalen (Medien-)Kultur
 
Eleccions
EleccionsEleccions
Eleccions
 
El positivismo de augusto comte
El positivismo de augusto comteEl positivismo de augusto comte
El positivismo de augusto comte
 
Corrección de la evaluación
Corrección de la evaluaciónCorrección de la evaluación
Corrección de la evaluación
 
First B Summer 1912
First B Summer 1912First B Summer 1912
First B Summer 1912
 
Margaret mead __antropologia_la_ciencia_del_hombre
Margaret mead __antropologia_la_ciencia_del_hombreMargaret mead __antropologia_la_ciencia_del_hombre
Margaret mead __antropologia_la_ciencia_del_hombre
 
Nachhaltige Unternehmensentwicklung V2
Nachhaltige Unternehmensentwicklung V2Nachhaltige Unternehmensentwicklung V2
Nachhaltige Unternehmensentwicklung V2
 
Okw gehäusesysteme d
Okw gehäusesysteme dOkw gehäusesysteme d
Okw gehäusesysteme d
 
M3 s4 matríz tpack para el diseño de actividades mejorada (1) marzo 12 2015
M3 s4 matríz tpack para el diseño de actividades mejorada (1) marzo 12 2015M3 s4 matríz tpack para el diseño de actividades mejorada (1) marzo 12 2015
M3 s4 matríz tpack para el diseño de actividades mejorada (1) marzo 12 2015
 
Presentación logistica
Presentación logisticaPresentación logistica
Presentación logistica
 
Ritmica vilaroja
Ritmica vilarojaRitmica vilaroja
Ritmica vilaroja
 
Rubricas y-diario escrito
Rubricas y-diario escritoRubricas y-diario escrito
Rubricas y-diario escrito
 
Vanessa singaña excel
Vanessa singaña excelVanessa singaña excel
Vanessa singaña excel
 
Tarea sílabo
Tarea sílaboTarea sílabo
Tarea sílabo
 
Report in history-PAGLALAYAG NI MAGELLAN
Report in history-PAGLALAYAG NI MAGELLANReport in history-PAGLALAYAG NI MAGELLAN
Report in history-PAGLALAYAG NI MAGELLAN
 
Tecnologías de la información y la comunicación
Tecnologías de la información y la comunicación   Tecnologías de la información y la comunicación
Tecnologías de la información y la comunicación
 
Dinero electrónico
Dinero electrónicoDinero electrónico
Dinero electrónico
 
Smartphone Betriebssysteme BlackBerry
Smartphone Betriebssysteme BlackBerrySmartphone Betriebssysteme BlackBerry
Smartphone Betriebssysteme BlackBerry
 
Enogastronomia - Alemanha
Enogastronomia - AlemanhaEnogastronomia - Alemanha
Enogastronomia - Alemanha
 

Similar a Ley de viscosidad de newton

Trasferencia de cantidad de movimiento
Trasferencia de cantidad de movimientoTrasferencia de cantidad de movimiento
Trasferencia de cantidad de movimientoLeonel Rangel
 
fluidosnonewtonianos
fluidosnonewtonianosfluidosnonewtonianos
fluidosnonewtonianos...
 
Todo acerca de Fluidos
Todo acerca de FluidosTodo acerca de Fluidos
Todo acerca de Fluidosomhar100894
 
Unidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimientoUnidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimientoKaren M. Guillén
 
Unidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimientoUnidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimientoKaren M. Guillén
 
Transferencia de cantidad de movimiento
Transferencia de cantidad de movimientoTransferencia de cantidad de movimiento
Transferencia de cantidad de movimientoJanette Sierra
 
Ley de la viscosidad de newton, newtonianos y no newtonianos
Ley de la viscosidad de newton, newtonianos y no newtonianosLey de la viscosidad de newton, newtonianos y no newtonianos
Ley de la viscosidad de newton, newtonianos y no newtonianosOscar Astorga
 
Ley de la viscosidad de newton, newtonianos y no newtonianos
Ley de la viscosidad de newton, newtonianos y no newtonianosLey de la viscosidad de newton, newtonianos y no newtonianos
Ley de la viscosidad de newton, newtonianos y no newtonianosOscar Astorga
 
Definiciones basicas unidad 1
Definiciones basicas unidad 1Definiciones basicas unidad 1
Definiciones basicas unidad 1Carmen Guillen
 
Ley de newton de la viscosidad
Ley de newton de la viscosidadLey de newton de la viscosidad
Ley de newton de la viscosidadLeonardo Meza
 

Similar a Ley de viscosidad de newton (20)

Trasferencia de cantidad de movimiento
Trasferencia de cantidad de movimientoTrasferencia de cantidad de movimiento
Trasferencia de cantidad de movimiento
 
Unidad 2 mecanismos
Unidad 2 mecanismosUnidad 2 mecanismos
Unidad 2 mecanismos
 
fluidosnonewtonianos
fluidosnonewtonianosfluidosnonewtonianos
fluidosnonewtonianos
 
Ley de Newton
Ley de NewtonLey de Newton
Ley de Newton
 
Mecanismos
MecanismosMecanismos
Mecanismos
 
Todo acerca de Fluidos
Todo acerca de FluidosTodo acerca de Fluidos
Todo acerca de Fluidos
 
Tarea unidad 3 investigacion blog
Tarea unidad 3 investigacion blogTarea unidad 3 investigacion blog
Tarea unidad 3 investigacion blog
 
Unidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimientoUnidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimiento
 
Unidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimientoUnidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimiento
 
Viscosidad charito
Viscosidad charitoViscosidad charito
Viscosidad charito
 
Grecia
GreciaGrecia
Grecia
 
Hidrostatica
HidrostaticaHidrostatica
Hidrostatica
 
Viscosidad
ViscosidadViscosidad
Viscosidad
 
VISCOSIDAD.docx
VISCOSIDAD.docxVISCOSIDAD.docx
VISCOSIDAD.docx
 
Transferencia de cantidad de movimiento
Transferencia de cantidad de movimientoTransferencia de cantidad de movimiento
Transferencia de cantidad de movimiento
 
Trabajo colaborativo
Trabajo colaborativoTrabajo colaborativo
Trabajo colaborativo
 
Ley de la viscosidad de newton, newtonianos y no newtonianos
Ley de la viscosidad de newton, newtonianos y no newtonianosLey de la viscosidad de newton, newtonianos y no newtonianos
Ley de la viscosidad de newton, newtonianos y no newtonianos
 
Ley de la viscosidad de newton, newtonianos y no newtonianos
Ley de la viscosidad de newton, newtonianos y no newtonianosLey de la viscosidad de newton, newtonianos y no newtonianos
Ley de la viscosidad de newton, newtonianos y no newtonianos
 
Definiciones basicas unidad 1
Definiciones basicas unidad 1Definiciones basicas unidad 1
Definiciones basicas unidad 1
 
Ley de newton de la viscosidad
Ley de newton de la viscosidadLey de newton de la viscosidad
Ley de newton de la viscosidad
 

Más de Manny Walker

Más de Manny Walker (14)

Bosquejo del-procedimiento-par-un-panel-solar (1)
Bosquejo del-procedimiento-par-un-panel-solar (1)Bosquejo del-procedimiento-par-un-panel-solar (1)
Bosquejo del-procedimiento-par-un-panel-solar (1)
 
Resumen
ResumenResumen
Resumen
 
Ejemplo 6 dos_ala_k
Ejemplo 6 dos_ala_kEjemplo 6 dos_ala_k
Ejemplo 6 dos_ala_k
 
Dos ala k_ejercico_4
Dos ala k_ejercico_4Dos ala k_ejercico_4
Dos ala k_ejercico_4
 
Dos ala k_ejercico_4
Dos ala k_ejercico_4Dos ala k_ejercico_4
Dos ala k_ejercico_4
 
Ji cuadrada
Ji cuadradaJi cuadrada
Ji cuadrada
 
Reporte 5
Reporte 5Reporte 5
Reporte 5
 
Reporte 4
Reporte 4Reporte 4
Reporte 4
 
Reporte 2 (1)
Reporte 2 (1)Reporte 2 (1)
Reporte 2 (1)
 
Reporte 2
Reporte 2Reporte 2
Reporte 2
 
Reporte 1 (1)
Reporte 1 (1)Reporte 1 (1)
Reporte 1 (1)
 
Diagrama de caja
Diagrama de cajaDiagrama de caja
Diagrama de caja
 
Ley de viscosidad de newton
Ley de viscosidad de newtonLey de viscosidad de newton
Ley de viscosidad de newton
 
Presentación 7
Presentación 7Presentación 7
Presentación 7
 

Último

RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxAna Fernandez
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressionsConsueloSantana3
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxMapyMerma1
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxJUANSIMONPACHIN
 
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIATRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIAAbelardoVelaAlbrecht1
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOweislaco
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfvictorbeltuce
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfsamyarrocha1
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 

Último (20)

RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docx
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressions
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptx
 
TL/CNL – 2.ª FASE .
TL/CNL – 2.ª FASE                       .TL/CNL – 2.ª FASE                       .
TL/CNL – 2.ª FASE .
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
 
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIATRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
Unidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDIUnidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDI
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
VISITA À PROTEÇÃO CIVIL _
VISITA À PROTEÇÃO CIVIL                  _VISITA À PROTEÇÃO CIVIL                  _
VISITA À PROTEÇÃO CIVIL _
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdf
 
Earth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversaryEarth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversary
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 

Ley de viscosidad de newton

  • 1. Ley de Viscosidad de Newton Un fluido se diferencia de un sólido por su comportamiento cuando este se somete a un esfuerzo ( fuerza por unidad de área) o fuerza aplicada. Un sólido elástico se deforma en una magnitud proporcional similar al esfuerzo aplicado. Sin embargo, cuando un fluido se somete a un esfuerzo aplicado similar continúa deformándose, esto es, cuando fluye a una velocidad que aumenta con el esfuerzo creciente, el fluido exhibe resistencia a este esfuerzo. La viscosidad es la propiedad de un fluido que da lugar a fuerzas que se oponen al movimiento relativo de capas adyacentes en el fluido y tambien es el rozamiento que poseen los liquidos. Cuando se piensa en un líquido con viscosidad nos tenemos que imaginar que hablamos de miel, de glicerina, de caramelo derretido o similares. Un ejemplo muy claro se observa al momento de virar un frasco que contiene miel y al mismo tiempo, un frasco que contiene agua, a la miel le cuesta trabajo y tiempo al tratar de llegar al filo, esta se pega en las paredes y baja muy lentamente de modo contrario a lo que pasa con el agua ya que ésta va a fluir rápidamente por el vaso y en pocos segundos alcanzará su borde. Si consideramos un fluido sea líquido o gas, que se encuentra contenido entre dos grandes láminas planas y paralelas, de área A, separadas entre sí por una distancia pequeña Y. Supongamos que inicialmente el sistema se encuentra en reposo, pero que al cabo del tiempo t = 0, la lámina inferior se pone en movimiento en dirección al eje X, con una velocidad constante V. A medida que transcurre el tiempo el fluido gana cantidad de movimiento, y, finalmente se establece el perfil de velocidad en régimen estacionario. Una vez alcanzado dicho estado estacionario de movimiento, es preciso aplicar una fuerza constante F para conservar el movimiento de la lámina inferior. Esta fuerza viene dada por la siguiente expresión (al suponer que el flujo es laminar): ζ = -u dv/dz Otra forma de expresar la viscosidad es con la denominada Ley de Newton, que se muestra a continuación:
  • 2. Fluidos Newtonianos La distinción entre fluidos newtonianos y fluidos no-newtonianos se basa en la diferente relación que existe en unos y otros entre la aplicación de un esfuerzo tangencial y la velocidad con que se deforman. Un fluido Newtoniano, también llamado fluido verdadero es aquel que, sometido a un esfuerzo tangencial o cortante, se deforma con una velocidad que es proporcional directamente al esfuerzo aplicado. Dicho de otra forma: si se aplica un esfuerzo tangencial a un fluido newtoniano, este se pondrá en movimiento sin importar cuán pequeño sea el esfuerzo tangencial y se generará una cierta distribución de velocidad en el fluido. Ese esfuerzo tangencial y el gradiente de velocidad que se produce serán directamente proporcionales, a la constante de proporcionalidad se la define como viscosidad. Los fluidos más comunes tales como el agua, el aire y la gasolina son newtonianos en condiciones normales. Si el fluido de la figura anterior es newtoniano entonces: tyx a du/dy Si consideramos la deformación de dos fluidos newtonianos diferentes, digamos glicerina y agua podemos darnos cuenta de que se deformarán a diferentes proporciones ante la acción del mismo esfuerzo de corte aplicado. La glicerina presenta una resistencia mucho mayor a la deformación que el agua y por ello podemos decir que es mucho más viscosa. La constante de proporcionalidad de la ecuación es la viscosidad absoluta (dinámica), m. Así, en términos de las coordenadas de la figura, la ley de viscosidad de Newton está dada para un flujo unidimensional por: tyx = m·(du/dy) Las dimensiones de la viscosidad dinámica son [Ft/L2] o en forma equivalente [M/Lt]. En el sistema métrico, la unidad básica de viscosidad se denomina poise (poise = g/cm*s). Fluidos no newtonianos. Los fluidos en los cuales el esfuerzo de corte no es directamente proporcional a la relación de deformación son no newtonianos. Estrictamente hablando la definición de un fluido es válida solo para materiales que tienen un esfuerzo de deformación cero. Por lo común, los fluidos no newtonianos se clasifican con respecto a su comportamiento en el tiempo, es decir, pueden ser dependientes del tiempo o independientes del mismo.
  • 3. Un gran número de ecuaciones empíricas se han propuesto para modelar las relaciones observadas entre tyx y du/dy para fluidos independientes del tiempo. Pueden representarse de manera adecuada para muchas aplicaciones de la ingeniería mediante un modelo de la ley de potencia, el cual se convierte para un flujo unidimensional en tyx = k·(du/dy)n donde el exponente n se llama índice de comportamiento del flujo y k el índice de consistencia. Esta ecuación se reduce a la ley de viscosidad de newton para n = 1 y k = m , para un fluido newtoniano. Los fluidos en los cuales la viscosidad aparente disminuye con el aumento de la relación de deformación (n < 1) se llaman seudoplásticos. Es decir con un incremento en la tasa de corte el liquido se adelgaza. Casi todos los fluidos no newtonianos entran en este grupo; los ejemplos incluyen soluciones poliméricas, suspensiones coloidales y pulpa de papel en agua. Si la viscosidad aparente aumenta con el incremento de la relación de deformación (n > 1) el fluido se nombra dilatante; aquí el fluido se engruesa con un aumento en la tasa de corte. Además, existen los llamados materiales lineales de Bingham, donde se presenta un desplazamiento finito para un esfuerzo cortante menor que un valor t1 y para el cual existe un comportamiento viscoso newtoniano cuando el esfuerzo es menor que t1. Para este comportamiento la ecuación correspondiente es: t=t1+mB du/dy El estudio de fluidos no newtonianos es aún más complicado por el hecho de que la viscosidad aparente puede depender del tiempo. Los fluidostixotrópicos como tintas de impresor , tiene una viscosidad que depende de la deformación angular inmediatamente anterior de la sustancia y tiende a solidificarce cuando se encuentra en reposo, estos fluidos muestran una reducción de n con el tiempo ante la aplicación de un esfuerzo de corte constante. Los fluidos reopécticos muestran un aumento de n con el tiempo. Después de la deformación, algunos regresan parcialmente a su forma original cuando se libera el esfuerzo aplicado. A tales fluidos se les llama viscoelásticos.