SlideShare una empresa de Scribd logo
1 de 14
Descargar para leer sin conexión
República Bolivariana de Venezuela
Ministerio del Poder Popular para la Educación
Universitaria
Universidad Politécnica Territorial Andrés Eloy Blanco
(UPTAEB)
Barquisimeto Estado Lara
Participantes : Torrealba Yerdelin CI :24.158243
Matemática
Sección: 0303
Programa Nacional de Formación en Administración
Números Reales
Definición de Conjuntos
En matemáticas, un conjunto es una colección de elementos con características similares considerada en
sí misma como un objeto. Los elementos de un conjunto, pueden ser las siguientes: personas, números,
colores, letras, figuras, etc. Se dice que un elemento (o miembro) pertenece al conjunto si está definido
como incluido de algún modo dentro de él.
Ejemplo: el conjunto de los colores del arcoíris es:
AI = {rojo, naranja, amarillo, verde, azul, añil, violeta}.
En ocasiones un conjunto viene expresado por la propiedad (o propiedades) que cumplen sus elementos,
por ejemplo:
Es el conjunto de los números reales comprendidos entre el 1 y el 2 ( incluidos ambos).
Dos conjuntos A y B son iguales, expresado A = B, solamente cuando constan de los mismos
elementos.
‒ Operaciones con conjuntos.
Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten
realizar operaciones sobre los conjuntos para obtener otro conjunto.
‒ Unión o reunión de conjuntos.
Es la operación que nos permite unir dos o más conjuntos para formar otro
conjunto que contendrá a todos los elementos que queremos unir pero sin que se
repitan.
Ejemplo.
Dados dos conjuntos A={1,2,3,4,5,6,7,} y B={8,9,10,11} la unión de estos conjuntos será
A∪B={1,2,3,4,5,6,7,8,9,10,11}. Usando diagramas de Venn se tendría lo siguiente:
También se puede graficar del siguiente modo:
‒ Intersección de conjuntos.
Es la operación que nos permite formar un conjunto, sólo con los elementos comunes
involucrados en la operación. Es decir dados dos conjuntos A y B, la de intersección de los
conjuntos A y B, estará formado por los elementos de A y los elementos de B que sean
comunes, los elementos no comunes A y B, será excluidos. El símbolo que se usa para indicar
la operación de intersección es el siguiente: ∩.
Ejemplo
Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la intersección de estos conjuntos será
A∩B={4,5}. Usando diagramas de Venn se tendría lo siguiente:
‒ Diferencia de conjuntos.
Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el
conjunto resultante es el que tendrá todos los elementos que pertenecen al primero pero
no al segundo. Es decir dados dos conjuntos A y B, la diferencia de los conjuntos entra A y
B, estará formado por todos los elementos de A que no pertenezcan a B. El símbolo que
se usa para esta operación es el mismo que se usa para la resta o sustracción, que es el
siguiente: -.
Ejemplo
Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia de estos conjuntos será
A-B={1,2,3}. Usando diagramas de Venn se tendría lo siguiente:
‒ Diferencia de simétrica de conjuntos.
Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto
resultante es el que tendrá todos los elementos que no sean comunes a ambos conjuntos. Es
decir dados dos conjuntos A y B, la diferencia simétrica estará formado por todos los elementos
no comunes a los conjuntos A y B. El símbolo que se usa para indicar la operación de diferencia
simétrica es el siguiente: △.
Ejemplo
Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia simétrica de estos conjuntos
será A △ B={1,2,3,6,7,8,9}. Usando diagramas de Venn se tendría lo siguiente
‒ Complemento de un conjunto.
Es la operación que nos permite formar un conjunto con todos los elementos del conjunto de
referencia o universal, que no están en el conjunto. Es decir dado un conjunto A que esta
incluido en el conjunto universal U, entonces el conjunto complemento de A es el conjunto
formado por todos los elementos del conjunto universal pero sin considerar a los elementos
que pertenezcan al conjunto A. el conjunto del cual se hace la operación de complemento.
Ejemplo
Dado el conjunto Universal U={1,2,3,4,5,6,7,8,9} y el conjunto A={1,2,9}, el conjunto A' estará
formado por los siguientes elementos A'={3,4,5,6,7,8}. Usando diagramas de Venn se tendría
lo siguiente:
Números reales
Los números reales son el conjunto que incluye los números naturales, enteros,
racionales e irracionales. Se representa con la letra ℜ.
La palabra real se usa para distinguir estos números del número imaginario i, que es
igual a la raíz cuadrada de -1, o √-1.
, el conjunto de los números reales se define como la unión de dos tipos de números, a
saber; los números racionales, los números irracionales. A su vez, los números racionales
se clasifican en:
Diversos conjuntos numéricos.
En Matemáticas empleamos diversos conjuntos de números, los más elementales son:
N = {0, 1, 2, 3, 4, 5, ... } . El conjunto de los números naturales, o números que sirven para contar.
Z = {..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ... } . El conjunto de los números enteros, o números que
sirven para designar cantidades enteras (positivas o negativas).
Q = {...., -7/2,..., -7/3, ..., -5/4,... -5/1, ...0, ..., 2/133, ... 4/7 ... } . El conjunto de los números racionales,
o números que pueden ser expresados como un cociente (quotient) entre dos enteros, fracción, p/q.
Observen que algunos números con infinitos decimales tal como el 2,33333... pertenece a este
conjunto, puesto que: 2,33333... = 7/3.
No obstante, en Q no se hallan algunos números como 1,4142136... (raíz cuadrada de 2) , o el
3,141592... (el número p ) que poseen infinitos decimales pero no pueden expresarse en la forma p/q.
A estos números se les llama "números irracionales".
R = Q U {"números irracionales"} . El conjunto de los números reales, formado por la unión de Q y de
todos los números irracionales. Este conjunto suele denominarse recta real , pues los puntos de una
recta pueden ponerse en correspondencia con los infinitos números de R.
Segmento de una recta, [a, b], son todos los números reales comprendidos entre a y b, es decir, los
números x tales que son mayores (o iguales) a "a" y menores (o iguales) a "b".
En matemáticas, una desigualdad es una relación de orden que se da entre dos valores
cuando estos son distintos (en caso de ser iguales, lo que se tiene es una igualdad).
Si los valores en cuestión son elementos de un conjunto ordenado, como los enteros o los
reales, entonces pueden ser comparados.
• La notación a < b significa a es menor que b;
• La notación a > b significa a es mayor que b
Estas relaciones se conocen como desigualdades estrictas, puesto que a no puede ser igual
a b; también puede leerse como "estrictamente menor que" o "estrictamente mayor que"
• La notación a ≤ b significa a es menor o igual que b;
• La notación a ≥ b significa a es mayor o igual que b;
estos tipos de desigualdades reciben el nombre de desigualdades amplias (o no estrictas).
Desigualdades
< Menor que
2x − 1 < 7≤
Menor o igual que
2x − 1 ≤ 7
> Mayor que
2x − 1 > 7
≥Mayor o igual que
2x − 1 ≥ 7
VALOR ABSOLUTO
Cualquier número a tiene su representación en la recta real. El valor absoluto
de un número representa la distancia del punto a al origen. Observe en el
dibujo que la distancia del 3 al origen es 3 unidades, igualmente la distancia del
punto -3 al origen es 3. En notación, esto es − 3 = 3. Las barras se leen como
el valor absoluto de lo que esta dentro de ellas. En el valor absoluto no importa
en que lado de la recta real está representado el número. Analíticamente
podemos ver que si a es positivo, es decir esta a la derecha del cero, entonces
a = a y si está a la izquierda del origen, es decir si a es negativo, entonces
a = −a . Esto lo escribimos en la siguiente definición.
DESIGUALDADES CON VALORES ABSOLUTOS
La expresión |x|<2 la podemos interpretar como los x cuya distancia al origen
es menor que 2, estos x son todos los números que están entre -2 y 2. Así la
desigualdad
|x|<2 es equivalente a -2<x<2
La expresión |x|>2 la podemos interpretar como los x cuya distancia al origen
es mayor que 2, estos x son todos los números mayores que 2 y los menores
que -2 . Así la desigualdad
|x|>2 es equivalente a x<-2 ó x>2
http://www.ehu.eus/juancarlos.gorostizaga/apoyo/conjuntos.htm
https://www.conoce3000.com/html/espaniol/Libros/Matematica01/Cap10-03-
OperacionesConjuntos.php
https://www.todamateria.com/numeros-reales/
https://es.wikipedia.org/wiki/Desigualdad_matem%C3%A1tica
https://matematicasiesoja.files.wordpress.com/2018/09/valor-absoluto.pdf
https://www.fca.unl.edu.ar/Limite/1.2%20Desigual.htm#:~:text=Una%20inecuaci%C3%B3n%20es%
20una%20desigualdad,para%20los%20cuales%20es%20verdadera.&text=Todos%20los%20n%C3
%BAmeros%20que%20satisfacen,Ejemplo.
Bibliografía
Definición de conjuntos, números reales y desigualdades

Más contenido relacionado

La actualidad más candente

Conjuntos, números reales, desigualdades y valor absoluto.
Conjuntos, números reales, desigualdades y valor absoluto.Conjuntos, números reales, desigualdades y valor absoluto.
Conjuntos, números reales, desigualdades y valor absoluto.luisrodriguez1873
 
Numeros reales y_plano_numerico.
Numeros reales y_plano_numerico.Numeros reales y_plano_numerico.
Numeros reales y_plano_numerico.Aryeliz Rodriguez
 
NUMEROS REALES Y PLANO NUMERICO
NUMEROS REALES Y PLANO NUMERICONUMEROS REALES Y PLANO NUMERICO
NUMEROS REALES Y PLANO NUMERICOFranklinDiaz42
 
Sandra lucena matematicas
Sandra lucena matematicasSandra lucena matematicas
Sandra lucena matematicasSandraLucena10
 
Matematica unidad II andrelis perez
Matematica unidad II andrelis perezMatematica unidad II andrelis perez
Matematica unidad II andrelis perezANDRELISPEREZ
 
Verona chirinos ad0105
Verona chirinos ad0105Verona chirinos ad0105
Verona chirinos ad0105VeronaChirinos
 
Números Reales y Plano Numérico
Números Reales y Plano NuméricoNúmeros Reales y Plano Numérico
Números Reales y Plano NuméricoJosuSnchez26
 
Presentacion de matematicas
Presentacion de matematicasPresentacion de matematicas
Presentacion de matematicasSantiago Parada
 
Numeros reales conjuntos desigualdades valor numerico
Numeros reales conjuntos desigualdades valor numericoNumeros reales conjuntos desigualdades valor numerico
Numeros reales conjuntos desigualdades valor numericoMailenCelesteCortezG
 

La actualidad más candente (20)

Números reales
Números realesNúmeros reales
Números reales
 
Presentacion numero Reales
Presentacion numero RealesPresentacion numero Reales
Presentacion numero Reales
 
Numeros complejos
Numeros complejosNumeros complejos
Numeros complejos
 
Conjuntos, números reales, desigualdades y valor absoluto.
Conjuntos, números reales, desigualdades y valor absoluto.Conjuntos, números reales, desigualdades y valor absoluto.
Conjuntos, números reales, desigualdades y valor absoluto.
 
Numeros reales y_plano_numerico.
Numeros reales y_plano_numerico.Numeros reales y_plano_numerico.
Numeros reales y_plano_numerico.
 
Números reales
Números realesNúmeros reales
Números reales
 
Matemática
MatemáticaMatemática
Matemática
 
El conjunto jose miguel medina
El conjunto jose miguel medinaEl conjunto jose miguel medina
El conjunto jose miguel medina
 
NUMEROS REALES Y PLANO NUMERICO
NUMEROS REALES Y PLANO NUMERICONUMEROS REALES Y PLANO NUMERICO
NUMEROS REALES Y PLANO NUMERICO
 
Sandra lucena matematicas
Sandra lucena matematicasSandra lucena matematicas
Sandra lucena matematicas
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Cálculo
CálculoCálculo
Cálculo
 
Matematica unidad II andrelis perez
Matematica unidad II andrelis perezMatematica unidad II andrelis perez
Matematica unidad II andrelis perez
 
Números Reales
Números RealesNúmeros Reales
Números Reales
 
Verona chirinos ad0105
Verona chirinos ad0105Verona chirinos ad0105
Verona chirinos ad0105
 
Números Reales y Plano Numérico
Números Reales y Plano NuméricoNúmeros Reales y Plano Numérico
Números Reales y Plano Numérico
 
Presentación
Presentación  Presentación
Presentación
 
Matematicas
MatematicasMatematicas
Matematicas
 
Presentacion de matematicas
Presentacion de matematicasPresentacion de matematicas
Presentacion de matematicas
 
Numeros reales conjuntos desigualdades valor numerico
Numeros reales conjuntos desigualdades valor numericoNumeros reales conjuntos desigualdades valor numerico
Numeros reales conjuntos desigualdades valor numerico
 

Similar a Definición de conjuntos, números reales y desigualdades

Numeros reales y plano numerico
Numeros reales y plano numericoNumeros reales y plano numerico
Numeros reales y plano numericorogerscaizalez
 
Presentación números reales
Presentación números realesPresentación números reales
Presentación números realesKeishmer Amaro
 
Conjunto matematica Andres y Diego.pptx.
Conjunto matematica Andres y Diego.pptx.Conjunto matematica Andres y Diego.pptx.
Conjunto matematica Andres y Diego.pptx.diegoarmando515673
 
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docxDefinición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docxYesseniaDaza1
 
Matematicas- Presentacion 2- PDF.pdf
Matematicas- Presentacion 2- PDF.pdfMatematicas- Presentacion 2- PDF.pdf
Matematicas- Presentacion 2- PDF.pdfalelirs
 
Matematica Inicial UPTAEB
Matematica Inicial UPTAEBMatematica Inicial UPTAEB
Matematica Inicial UPTAEBhenryGonzales28
 
Numeros reales.docx
Numeros reales.docxNumeros reales.docx
Numeros reales.docxDueinRada
 
Números Reales y Plano Numérico.pptx
Números Reales y Plano Numérico.pptxNúmeros Reales y Plano Numérico.pptx
Números Reales y Plano Numérico.pptxLeopoldo Torres
 
numeros reales.pptx
numeros reales.pptxnumeros reales.pptx
numeros reales.pptxNaimarRiera
 
NÚMEROS NATURALES (PRESENTACION).pdf
NÚMEROS NATURALES (PRESENTACION).pdfNÚMEROS NATURALES (PRESENTACION).pdf
NÚMEROS NATURALES (PRESENTACION).pdfAndersonFreitez1
 
Presentacin de conjuntos. convertido
Presentacin de conjuntos. convertidoPresentacin de conjuntos. convertido
Presentacin de conjuntos. convertidoeclipsevnzlaanzolabr
 

Similar a Definición de conjuntos, números reales y desigualdades (20)

Numeros reales y plano numerico
Numeros reales y plano numericoNumeros reales y plano numerico
Numeros reales y plano numerico
 
Números reales
Números realesNúmeros reales
Números reales
 
Matemáticas.pdf
Matemáticas.pdfMatemáticas.pdf
Matemáticas.pdf
 
Presentación
PresentaciónPresentación
Presentación
 
Presentación números reales
Presentación números realesPresentación números reales
Presentación números reales
 
Conjunto matematica Andres y Diego.pptx.
Conjunto matematica Andres y Diego.pptx.Conjunto matematica Andres y Diego.pptx.
Conjunto matematica Andres y Diego.pptx.
 
Numeros reales
Numeros realesNumeros reales
Numeros reales
 
Conjuntos
Conjuntos Conjuntos
Conjuntos
 
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docxDefinición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
 
Números Reales
Números RealesNúmeros Reales
Números Reales
 
Angeline 2
Angeline 2Angeline 2
Angeline 2
 
Matematicas- Presentacion 2- PDF.pdf
Matematicas- Presentacion 2- PDF.pdfMatematicas- Presentacion 2- PDF.pdf
Matematicas- Presentacion 2- PDF.pdf
 
Matematica Inicial UPTAEB
Matematica Inicial UPTAEBMatematica Inicial UPTAEB
Matematica Inicial UPTAEB
 
Numeros reales.docx
Numeros reales.docxNumeros reales.docx
Numeros reales.docx
 
Números Reales y Plano Numérico.pptx
Números Reales y Plano Numérico.pptxNúmeros Reales y Plano Numérico.pptx
Números Reales y Plano Numérico.pptx
 
NUMEROS REALES UNIDAD II.pdf
NUMEROS REALES UNIDAD II.pdfNUMEROS REALES UNIDAD II.pdf
NUMEROS REALES UNIDAD II.pdf
 
numeros reales.pptx
numeros reales.pptxnumeros reales.pptx
numeros reales.pptx
 
Unidad ii
Unidad iiUnidad ii
Unidad ii
 
NÚMEROS NATURALES (PRESENTACION).pdf
NÚMEROS NATURALES (PRESENTACION).pdfNÚMEROS NATURALES (PRESENTACION).pdf
NÚMEROS NATURALES (PRESENTACION).pdf
 
Presentacin de conjuntos. convertido
Presentacin de conjuntos. convertidoPresentacin de conjuntos. convertido
Presentacin de conjuntos. convertido
 

Último

Amor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAmor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAlejandrino Halire Ccahuana
 
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADO
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADOCUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADO
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADOEveliaHernandez8
 
Campaña Verano 2024 en Bergara - Colonias 2024
Campaña Verano 2024 en Bergara - Colonias 2024Campaña Verano 2024 en Bergara - Colonias 2024
Campaña Verano 2024 en Bergara - Colonias 2024Bergarako Udala
 
Biografía del General Eloy Alfaro Delgado
Biografía del General Eloy Alfaro DelgadoBiografía del General Eloy Alfaro Delgado
Biografía del General Eloy Alfaro DelgadoJosé Luis Palma
 
Catálogo general de libros de la Editorial Albatros
Catálogo general de libros de la Editorial AlbatrosCatálogo general de libros de la Editorial Albatros
Catálogo general de libros de la Editorial AlbatrosGustavoCanevaro
 
Actividades eclipse solar 2024 Educacion
Actividades eclipse solar 2024 EducacionActividades eclipse solar 2024 Educacion
Actividades eclipse solar 2024 Educacionviviantorres91
 
Acuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdfAcuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdfmiriamguevara21
 
5º SOY LECTOR PART1- MD EDUCATIVO.pdfde
5º SOY LECTOR PART1- MD  EDUCATIVO.pdfde5º SOY LECTOR PART1- MD  EDUCATIVO.pdfde
5º SOY LECTOR PART1- MD EDUCATIVO.pdfdeBelnRosales2
 
Programa sintetico fase 2 - Preescolar.pdf
Programa sintetico fase 2 - Preescolar.pdfPrograma sintetico fase 2 - Preescolar.pdf
Programa sintetico fase 2 - Preescolar.pdfHannyDenissePinedaOr
 
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfMEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfJosé Hecht
 
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsa
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsaPresentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsa
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsaFarid Abud
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxNataliaGonzalez619348
 
Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxRosabel UA
 
Docencia en la Era de la Inteligencia Artificial UB4 Ccesa007.pdf
Docencia en la Era de la Inteligencia Artificial UB4  Ccesa007.pdfDocencia en la Era de la Inteligencia Artificial UB4  Ccesa007.pdf
Docencia en la Era de la Inteligencia Artificial UB4 Ccesa007.pdfDemetrio Ccesa Rayme
 
Filosofía del gobierno del general Alfaro
Filosofía del gobierno del general AlfaroFilosofía del gobierno del general Alfaro
Filosofía del gobierno del general AlfaroJosé Luis Palma
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAJesus Gonzalez Losada
 
Libro Ecuador Realidad Nacional ECUADOR.
Libro Ecuador Realidad Nacional ECUADOR.Libro Ecuador Realidad Nacional ECUADOR.
Libro Ecuador Realidad Nacional ECUADOR.Edith Liccioni
 
LOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejorLOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejormrcrmnrojasgarcia
 

Último (20)

Amor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAmor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdf
 
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADO
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADOCUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADO
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADO
 
Campaña Verano 2024 en Bergara - Colonias 2024
Campaña Verano 2024 en Bergara - Colonias 2024Campaña Verano 2024 en Bergara - Colonias 2024
Campaña Verano 2024 en Bergara - Colonias 2024
 
Biografía del General Eloy Alfaro Delgado
Biografía del General Eloy Alfaro DelgadoBiografía del General Eloy Alfaro Delgado
Biografía del General Eloy Alfaro Delgado
 
Catálogo general de libros de la Editorial Albatros
Catálogo general de libros de la Editorial AlbatrosCatálogo general de libros de la Editorial Albatros
Catálogo general de libros de la Editorial Albatros
 
Actividades eclipse solar 2024 Educacion
Actividades eclipse solar 2024 EducacionActividades eclipse solar 2024 Educacion
Actividades eclipse solar 2024 Educacion
 
Acuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdfAcuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdf
 
5º SOY LECTOR PART1- MD EDUCATIVO.pdfde
5º SOY LECTOR PART1- MD  EDUCATIVO.pdfde5º SOY LECTOR PART1- MD  EDUCATIVO.pdfde
5º SOY LECTOR PART1- MD EDUCATIVO.pdfde
 
Programa sintetico fase 2 - Preescolar.pdf
Programa sintetico fase 2 - Preescolar.pdfPrograma sintetico fase 2 - Preescolar.pdf
Programa sintetico fase 2 - Preescolar.pdf
 
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfMEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
 
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsa
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsaPresentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsa
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsa
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
 
Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptx
 
Docencia en la Era de la Inteligencia Artificial UB4 Ccesa007.pdf
Docencia en la Era de la Inteligencia Artificial UB4  Ccesa007.pdfDocencia en la Era de la Inteligencia Artificial UB4  Ccesa007.pdf
Docencia en la Era de la Inteligencia Artificial UB4 Ccesa007.pdf
 
Filosofía del gobierno del general Alfaro
Filosofía del gobierno del general AlfaroFilosofía del gobierno del general Alfaro
Filosofía del gobierno del general Alfaro
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICA
 
Unidad 1 | Metodología de la Investigación
Unidad 1 | Metodología de la InvestigaciónUnidad 1 | Metodología de la Investigación
Unidad 1 | Metodología de la Investigación
 
¿Amor o egoísmo? Esa es la cuestión.pptx
¿Amor o egoísmo? Esa es la cuestión.pptx¿Amor o egoísmo? Esa es la cuestión.pptx
¿Amor o egoísmo? Esa es la cuestión.pptx
 
Libro Ecuador Realidad Nacional ECUADOR.
Libro Ecuador Realidad Nacional ECUADOR.Libro Ecuador Realidad Nacional ECUADOR.
Libro Ecuador Realidad Nacional ECUADOR.
 
LOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejorLOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejor
 

Definición de conjuntos, números reales y desigualdades

  • 1. República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Universitaria Universidad Politécnica Territorial Andrés Eloy Blanco (UPTAEB) Barquisimeto Estado Lara Participantes : Torrealba Yerdelin CI :24.158243 Matemática Sección: 0303 Programa Nacional de Formación en Administración Números Reales
  • 2. Definición de Conjuntos En matemáticas, un conjunto es una colección de elementos con características similares considerada en sí misma como un objeto. Los elementos de un conjunto, pueden ser las siguientes: personas, números, colores, letras, figuras, etc. Se dice que un elemento (o miembro) pertenece al conjunto si está definido como incluido de algún modo dentro de él. Ejemplo: el conjunto de los colores del arcoíris es: AI = {rojo, naranja, amarillo, verde, azul, añil, violeta}. En ocasiones un conjunto viene expresado por la propiedad (o propiedades) que cumplen sus elementos, por ejemplo: Es el conjunto de los números reales comprendidos entre el 1 y el 2 ( incluidos ambos). Dos conjuntos A y B son iguales, expresado A = B, solamente cuando constan de los mismos elementos.
  • 3. ‒ Operaciones con conjuntos. Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten realizar operaciones sobre los conjuntos para obtener otro conjunto. ‒ Unión o reunión de conjuntos. Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto que contendrá a todos los elementos que queremos unir pero sin que se repitan. Ejemplo. Dados dos conjuntos A={1,2,3,4,5,6,7,} y B={8,9,10,11} la unión de estos conjuntos será A∪B={1,2,3,4,5,6,7,8,9,10,11}. Usando diagramas de Venn se tendría lo siguiente: También se puede graficar del siguiente modo:
  • 4. ‒ Intersección de conjuntos. Es la operación que nos permite formar un conjunto, sólo con los elementos comunes involucrados en la operación. Es decir dados dos conjuntos A y B, la de intersección de los conjuntos A y B, estará formado por los elementos de A y los elementos de B que sean comunes, los elementos no comunes A y B, será excluidos. El símbolo que se usa para indicar la operación de intersección es el siguiente: ∩. Ejemplo Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la intersección de estos conjuntos será A∩B={4,5}. Usando diagramas de Venn se tendría lo siguiente:
  • 5. ‒ Diferencia de conjuntos. Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que pertenecen al primero pero no al segundo. Es decir dados dos conjuntos A y B, la diferencia de los conjuntos entra A y B, estará formado por todos los elementos de A que no pertenezcan a B. El símbolo que se usa para esta operación es el mismo que se usa para la resta o sustracción, que es el siguiente: -. Ejemplo Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia de estos conjuntos será A-B={1,2,3}. Usando diagramas de Venn se tendría lo siguiente:
  • 6. ‒ Diferencia de simétrica de conjuntos. Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que no sean comunes a ambos conjuntos. Es decir dados dos conjuntos A y B, la diferencia simétrica estará formado por todos los elementos no comunes a los conjuntos A y B. El símbolo que se usa para indicar la operación de diferencia simétrica es el siguiente: △. Ejemplo Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia simétrica de estos conjuntos será A △ B={1,2,3,6,7,8,9}. Usando diagramas de Venn se tendría lo siguiente
  • 7. ‒ Complemento de un conjunto. Es la operación que nos permite formar un conjunto con todos los elementos del conjunto de referencia o universal, que no están en el conjunto. Es decir dado un conjunto A que esta incluido en el conjunto universal U, entonces el conjunto complemento de A es el conjunto formado por todos los elementos del conjunto universal pero sin considerar a los elementos que pertenezcan al conjunto A. el conjunto del cual se hace la operación de complemento. Ejemplo Dado el conjunto Universal U={1,2,3,4,5,6,7,8,9} y el conjunto A={1,2,9}, el conjunto A' estará formado por los siguientes elementos A'={3,4,5,6,7,8}. Usando diagramas de Venn se tendría lo siguiente:
  • 8. Números reales Los números reales son el conjunto que incluye los números naturales, enteros, racionales e irracionales. Se representa con la letra ℜ. La palabra real se usa para distinguir estos números del número imaginario i, que es igual a la raíz cuadrada de -1, o √-1. , el conjunto de los números reales se define como la unión de dos tipos de números, a saber; los números racionales, los números irracionales. A su vez, los números racionales se clasifican en:
  • 9. Diversos conjuntos numéricos. En Matemáticas empleamos diversos conjuntos de números, los más elementales son: N = {0, 1, 2, 3, 4, 5, ... } . El conjunto de los números naturales, o números que sirven para contar. Z = {..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ... } . El conjunto de los números enteros, o números que sirven para designar cantidades enteras (positivas o negativas). Q = {...., -7/2,..., -7/3, ..., -5/4,... -5/1, ...0, ..., 2/133, ... 4/7 ... } . El conjunto de los números racionales, o números que pueden ser expresados como un cociente (quotient) entre dos enteros, fracción, p/q. Observen que algunos números con infinitos decimales tal como el 2,33333... pertenece a este conjunto, puesto que: 2,33333... = 7/3. No obstante, en Q no se hallan algunos números como 1,4142136... (raíz cuadrada de 2) , o el 3,141592... (el número p ) que poseen infinitos decimales pero no pueden expresarse en la forma p/q. A estos números se les llama "números irracionales". R = Q U {"números irracionales"} . El conjunto de los números reales, formado por la unión de Q y de todos los números irracionales. Este conjunto suele denominarse recta real , pues los puntos de una recta pueden ponerse en correspondencia con los infinitos números de R. Segmento de una recta, [a, b], son todos los números reales comprendidos entre a y b, es decir, los números x tales que son mayores (o iguales) a "a" y menores (o iguales) a "b".
  • 10. En matemáticas, una desigualdad es una relación de orden que se da entre dos valores cuando estos son distintos (en caso de ser iguales, lo que se tiene es una igualdad). Si los valores en cuestión son elementos de un conjunto ordenado, como los enteros o los reales, entonces pueden ser comparados. • La notación a < b significa a es menor que b; • La notación a > b significa a es mayor que b Estas relaciones se conocen como desigualdades estrictas, puesto que a no puede ser igual a b; también puede leerse como "estrictamente menor que" o "estrictamente mayor que" • La notación a ≤ b significa a es menor o igual que b; • La notación a ≥ b significa a es mayor o igual que b; estos tipos de desigualdades reciben el nombre de desigualdades amplias (o no estrictas). Desigualdades < Menor que 2x − 1 < 7≤ Menor o igual que 2x − 1 ≤ 7 > Mayor que 2x − 1 > 7 ≥Mayor o igual que 2x − 1 ≥ 7
  • 11. VALOR ABSOLUTO Cualquier número a tiene su representación en la recta real. El valor absoluto de un número representa la distancia del punto a al origen. Observe en el dibujo que la distancia del 3 al origen es 3 unidades, igualmente la distancia del punto -3 al origen es 3. En notación, esto es − 3 = 3. Las barras se leen como el valor absoluto de lo que esta dentro de ellas. En el valor absoluto no importa en que lado de la recta real está representado el número. Analíticamente podemos ver que si a es positivo, es decir esta a la derecha del cero, entonces a = a y si está a la izquierda del origen, es decir si a es negativo, entonces a = −a . Esto lo escribimos en la siguiente definición.
  • 12. DESIGUALDADES CON VALORES ABSOLUTOS La expresión |x|<2 la podemos interpretar como los x cuya distancia al origen es menor que 2, estos x son todos los números que están entre -2 y 2. Así la desigualdad |x|<2 es equivalente a -2<x<2 La expresión |x|>2 la podemos interpretar como los x cuya distancia al origen es mayor que 2, estos x son todos los números mayores que 2 y los menores que -2 . Así la desigualdad |x|>2 es equivalente a x<-2 ó x>2