SlideShare una empresa de Scribd logo
1 de 4
PREINFORME
“Principio de Arquímedes”
LABORATORIO DE FISICA II
Estudiante :
NOMBRE CODIGO
1 Daniel pinillos 141310971
GRUPO:
J1D
DOCENTE :
Iván Mendoza
UNIVERSIDAD AUTONOMA DEL CARIBE
FACULTAD DE INGENIERIA
DEPARTAMENTO DE CIENCIAS BASICAS
LABORATORIO DE FISICA
BARRANQUILLA
2013-08
Principiode Arquímedes
El principio de Arquímedes afirma que todo cuerpo sumergido en un fluido experimenta
un empuje vertical y hacia arriba igual al peso de fluido desalojado.
La explicación del principio de Arquímedes consta de dos partes como se indica en las
figuras:
El estudio de las fuerzas sobre una porción de fluido en equilibrio con el resto del fluido.
La sustitución de dicha porción de fluido por un cuerpo sólido de la misma forma y
dimensiones.
Porción de fluido en equilibrio con el resto del fluido.
Consideremos, en primer lugar, las fuerzas sobre una porción de fluido en equilibrio con el
resto de fluido. La fuerza que ejerce la presión del fluido sobre la superficie de separación
es igual a p·dS, donde p solamente depende de la profundidad y dS es un elemento de
superficie.
Puesto que la porción de fluido se encuentra en equilibrio, la resultante de las fuerzas
debidas a la presión se debe anular con el peso de dicha porción de fluido. A esta
resultante la denominamos empuje y su punto de aplicación es el centro de masa de la
porción de fluido, denominado centro de empuje.
De este modo, para una porción de fluido en equilibrio con el resto, se cumple
Empuje=peso=rf·gV
El peso de la porción de fluido es igual al producto de la densidad del fluido rf por la
aceleración de la gravedad g y por el volumen de dicha porción V.
Conceptode flotabilidad
La flotabilidad es la capacidad de un cuerpo para sostenerse dentro de un fluido. Este flota
básicamente por el aire almacenado en el cuerpo humano
Se dice que un cuerpo está en flotación cuando permanece suspendido en un entorno
líquido o gaseoso, es decir en un fluido. "Un objeto flotará sobre un fluido (ambos bajo el
efecto de la fuerza de una gravedad dominante) siempre que el número de partículas que
componen el objeto sea menor al número de partículas del fluido desplazadas".
Modelos matemáticos del principiode Arquímedes
El principio de Arquímedes se puede demostrar al estudiar las fuerzas que un fluido ejerce
sobre un objeto suspendido. Considérese un disco de área A y altura H el cual está
completamente sumergido en un fluido. Recuérdese que la presión a cualquier
profundidad h en un fluido está dada por:
P = pg h
En donde p es la densidad de masa del fluido y g la aceleración de la gravedad. Si se desea
representar la presión absoluta dentro del fluido, se debe sumar la presión externa
ejercida por la atmósfera. La presión total hacia abajo P1 en la cara superior del disco, es
por tanto
P1 = Pa + pg h1 hacia abajo
En donde Pa es la presión atmosférica y h1 es la profundidad superior del disco.
Analógicamente, la presión hacia arriba P2 sobre el fondo del disco
P2 = Pa + pg h2 hacia arriba
Donde h2 es la profundidad a la parte inferior del disco. Puesto que h2 es mayor que h1, la
presión sobre la base del disco excederá la presión sobre la cara superior, y el resultado
será una fuerza neta hacia arriba. Si la fuerza hacia abajo se representa por F1 y la fuerza
hacia arriba por F2, puede escribirse
F1 = P1 A F2 = P2 A
La fuerza hacia arriba ejercida por el fluido sobre el disco se llama empuje y se expresa
mediante
Fe = F2 - F1 = A (P2 - P1)
= A (Pa + pg h2 - Pa - pg h1)
= Apg (h2 - h1) = Apg H
Donde H = h1 - h2 es la altura del disco. Finalmente si se recuerda que el volumen del
disco es V = A H, se obtiene el siguiente resultado importante
Fe = pg V = m g
Empuje = Peso del fluido desalojado
Ejemplos de la vida diaria de este principio
1. Cuando nos sumergimos en una piscina o en el mar parece que somos más ligeros,
decimos que pesamos menos.
2. Los globos que se venden para niños se elevan en el aire al soltarlos.
3. Un trozo de hierro no flota, en general, sobre el agua, pero si le damos la forma
adecuada, pensemos en un barco, vemos que flota.

Más contenido relacionado

La actualidad más candente (20)

Hidrostática
HidrostáticaHidrostática
Hidrostática
 
Hidrostatica
HidrostaticaHidrostatica
Hidrostatica
 
Hidrostática
HidrostáticaHidrostática
Hidrostática
 
hidrostática
hidrostáticahidrostática
hidrostática
 
Hidrostática
HidrostáticaHidrostática
Hidrostática
 
Hidrostatica
Hidrostatica Hidrostatica
Hidrostatica
 
HIDROSTÁTICA
HIDROSTÁTICAHIDROSTÁTICA
HIDROSTÁTICA
 
HIDROSTÁTICA
HIDROSTÁTICAHIDROSTÁTICA
HIDROSTÁTICA
 
Hidrostatica (1)
Hidrostatica (1)Hidrostatica (1)
Hidrostatica (1)
 
Hidrostática
HidrostáticaHidrostática
Hidrostática
 
Presión hidrostatica
Presión hidrostaticaPresión hidrostatica
Presión hidrostatica
 
Principio de arquímedes
Principio de arquímedesPrincipio de arquímedes
Principio de arquímedes
 
Fluidos
FluidosFluidos
Fluidos
 
Tema 3 EstáTica De Fluidos
Tema 3 EstáTica De FluidosTema 3 EstáTica De Fluidos
Tema 3 EstáTica De Fluidos
 
Hidrostática
HidrostáticaHidrostática
Hidrostática
 
Hidrostática
HidrostáticaHidrostática
Hidrostática
 
Hidrostática
HidrostáticaHidrostática
Hidrostática
 
Hidrostática
HidrostáticaHidrostática
Hidrostática
 
El principio de arquimides
El principio de arquimidesEl principio de arquimides
El principio de arquimides
 
Principio de arquímedes
Principio de arquímedesPrincipio de arquímedes
Principio de arquímedes
 

Similar a Preinforme (20)

Fluidos
FluidosFluidos
Fluidos
 
Apuntes de hidrostática
Apuntes de hidrostáticaApuntes de hidrostática
Apuntes de hidrostática
 
Propiedades de los fluidos
Propiedades de los fluidosPropiedades de los fluidos
Propiedades de los fluidos
 
hidrostatica.pdf
hidrostatica.pdfhidrostatica.pdf
hidrostatica.pdf
 
Hidrostática
HidrostáticaHidrostática
Hidrostática
 
Hidrostática
HidrostáticaHidrostática
Hidrostática
 
Estática de fluidos
Estática de fluidosEstática de fluidos
Estática de fluidos
 
Hidrostatica diego
Hidrostatica diegoHidrostatica diego
Hidrostatica diego
 
Tema 3 EstáTica De Fluidos
Tema 3 EstáTica De FluidosTema 3 EstáTica De Fluidos
Tema 3 EstáTica De Fluidos
 
Tema 3 EstáTica De Fluidos
Tema 3 EstáTica De FluidosTema 3 EstáTica De Fluidos
Tema 3 EstáTica De Fluidos
 
Módulo de física 2010 parte 9 (mecánica de fluidos)
Módulo de física  2010 parte 9 (mecánica de fluidos)Módulo de física  2010 parte 9 (mecánica de fluidos)
Módulo de física 2010 parte 9 (mecánica de fluidos)
 
Hidrostática
HidrostáticaHidrostática
Hidrostática
 
Capitulo 4 - Mecanica de Fluidos Parte 1.pdf
Capitulo 4 - Mecanica de Fluidos Parte 1.pdfCapitulo 4 - Mecanica de Fluidos Parte 1.pdf
Capitulo 4 - Mecanica de Fluidos Parte 1.pdf
 
Hidrostatica
HidrostaticaHidrostatica
Hidrostatica
 
Principio de arquímedes
Principio de arquímedesPrincipio de arquímedes
Principio de arquímedes
 
Hidrostatica
HidrostaticaHidrostatica
Hidrostatica
 
Hidrostatica1
Hidrostatica1Hidrostatica1
Hidrostatica1
 
Hidrostatica
HidrostaticaHidrostatica
Hidrostatica
 
Hidrostatica
HidrostaticaHidrostatica
Hidrostatica
 
Módulo de física 2010 parte 9 (mecánica de fluidos)
Módulo de física  2010 parte 9 (mecánica de fluidos)Módulo de física  2010 parte 9 (mecánica de fluidos)
Módulo de física 2010 parte 9 (mecánica de fluidos)
 

Último

ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdffredyflores58
 
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa  tipos y funcionamientoCaldera Recuperadora de químicos en celulosa  tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa tipos y funcionamientoRobertoAlejandroCast6
 
Introducción a los sistemas neumaticos.ppt
Introducción a los sistemas neumaticos.pptIntroducción a los sistemas neumaticos.ppt
Introducción a los sistemas neumaticos.pptEduardoCorado
 
Residente de obra y sus funciones que realiza .pdf
Residente de obra y sus funciones que realiza  .pdfResidente de obra y sus funciones que realiza  .pdf
Residente de obra y sus funciones que realiza .pdfevin1703e
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALKATHIAMILAGRITOSSANC
 
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIACLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIAMayraOchoa35
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.ALEJANDROLEONGALICIA
 
CICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaCICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaSHERELYNSAMANTHAPALO1
 
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.ariannytrading
 
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfMirthaFernandez12
 
Unidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptxUnidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptxEverardoRuiz8
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023ANDECE
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPJosLuisFrancoCaldern
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxEduardoSnchezHernnde5
 
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdfCENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdfpaola110264
 
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptxGARCIARAMIREZCESAR
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfedsonzav8
 
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...SuannNeyraChongShing
 
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASTEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASfranzEmersonMAMANIOC
 

Último (20)

ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
 
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa  tipos y funcionamientoCaldera Recuperadora de químicos en celulosa  tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
 
Introducción a los sistemas neumaticos.ppt
Introducción a los sistemas neumaticos.pptIntroducción a los sistemas neumaticos.ppt
Introducción a los sistemas neumaticos.ppt
 
Residente de obra y sus funciones que realiza .pdf
Residente de obra y sus funciones que realiza  .pdfResidente de obra y sus funciones que realiza  .pdf
Residente de obra y sus funciones que realiza .pdf
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
 
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIACLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.
 
CICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaCICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresa
 
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.
 
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
 
Unidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptxUnidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptx
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptx
 
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdfCENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
 
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdfVALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
 
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdf
 
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
 
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASTEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
 

Preinforme

  • 1. PREINFORME “Principio de Arquímedes” LABORATORIO DE FISICA II Estudiante : NOMBRE CODIGO 1 Daniel pinillos 141310971 GRUPO: J1D DOCENTE : Iván Mendoza UNIVERSIDAD AUTONOMA DEL CARIBE FACULTAD DE INGENIERIA DEPARTAMENTO DE CIENCIAS BASICAS LABORATORIO DE FISICA BARRANQUILLA 2013-08
  • 2. Principiode Arquímedes El principio de Arquímedes afirma que todo cuerpo sumergido en un fluido experimenta un empuje vertical y hacia arriba igual al peso de fluido desalojado. La explicación del principio de Arquímedes consta de dos partes como se indica en las figuras: El estudio de las fuerzas sobre una porción de fluido en equilibrio con el resto del fluido. La sustitución de dicha porción de fluido por un cuerpo sólido de la misma forma y dimensiones. Porción de fluido en equilibrio con el resto del fluido. Consideremos, en primer lugar, las fuerzas sobre una porción de fluido en equilibrio con el resto de fluido. La fuerza que ejerce la presión del fluido sobre la superficie de separación es igual a p·dS, donde p solamente depende de la profundidad y dS es un elemento de superficie. Puesto que la porción de fluido se encuentra en equilibrio, la resultante de las fuerzas debidas a la presión se debe anular con el peso de dicha porción de fluido. A esta resultante la denominamos empuje y su punto de aplicación es el centro de masa de la porción de fluido, denominado centro de empuje. De este modo, para una porción de fluido en equilibrio con el resto, se cumple Empuje=peso=rf·gV El peso de la porción de fluido es igual al producto de la densidad del fluido rf por la aceleración de la gravedad g y por el volumen de dicha porción V.
  • 3. Conceptode flotabilidad La flotabilidad es la capacidad de un cuerpo para sostenerse dentro de un fluido. Este flota básicamente por el aire almacenado en el cuerpo humano Se dice que un cuerpo está en flotación cuando permanece suspendido en un entorno líquido o gaseoso, es decir en un fluido. "Un objeto flotará sobre un fluido (ambos bajo el efecto de la fuerza de una gravedad dominante) siempre que el número de partículas que componen el objeto sea menor al número de partículas del fluido desplazadas". Modelos matemáticos del principiode Arquímedes El principio de Arquímedes se puede demostrar al estudiar las fuerzas que un fluido ejerce sobre un objeto suspendido. Considérese un disco de área A y altura H el cual está completamente sumergido en un fluido. Recuérdese que la presión a cualquier profundidad h en un fluido está dada por: P = pg h En donde p es la densidad de masa del fluido y g la aceleración de la gravedad. Si se desea representar la presión absoluta dentro del fluido, se debe sumar la presión externa ejercida por la atmósfera. La presión total hacia abajo P1 en la cara superior del disco, es por tanto P1 = Pa + pg h1 hacia abajo En donde Pa es la presión atmosférica y h1 es la profundidad superior del disco. Analógicamente, la presión hacia arriba P2 sobre el fondo del disco P2 = Pa + pg h2 hacia arriba Donde h2 es la profundidad a la parte inferior del disco. Puesto que h2 es mayor que h1, la presión sobre la base del disco excederá la presión sobre la cara superior, y el resultado será una fuerza neta hacia arriba. Si la fuerza hacia abajo se representa por F1 y la fuerza hacia arriba por F2, puede escribirse F1 = P1 A F2 = P2 A La fuerza hacia arriba ejercida por el fluido sobre el disco se llama empuje y se expresa mediante Fe = F2 - F1 = A (P2 - P1) = A (Pa + pg h2 - Pa - pg h1)
  • 4. = Apg (h2 - h1) = Apg H Donde H = h1 - h2 es la altura del disco. Finalmente si se recuerda que el volumen del disco es V = A H, se obtiene el siguiente resultado importante Fe = pg V = m g Empuje = Peso del fluido desalojado Ejemplos de la vida diaria de este principio 1. Cuando nos sumergimos en una piscina o en el mar parece que somos más ligeros, decimos que pesamos menos. 2. Los globos que se venden para niños se elevan en el aire al soltarlos. 3. Un trozo de hierro no flota, en general, sobre el agua, pero si le damos la forma adecuada, pensemos en un barco, vemos que flota.