SlideShare una empresa de Scribd logo
1 de 77
Principles of Biochemistry
Fourth Edition
Chapter 10
Introduction to Metabolism
Copyright © 2006 Pearson Prentice Hall, Inc.
Horton • Moran • Scrimgeour • Perry • Rawn
Catabolismo
Utilización de
energía
Anabolismo
Síntesis
Metabolismo
20-30% de los genes
130/900 E. coli
1200/5300 S. cerevisiae
5300/19100 C. elegans
2400/14100 D. melanogaster
5000/22000 H. sapiens
Variabilidad metabólica
Rutas metabólicas
Linear
Circular
Espiral
Catabolismo
Las rutas metabólicas pueden tener ramificaciones
Anabolismo
Reacciones metabólicas
en multipasos
Flujo metabólico
El metabolismo o flujo metabólico es regulado por:
•concentración de la enzimas
•concentración del sustrato
•modulaciones alostéricas
•modificaciones covalentes
Retroalimentación negativa
Feedback inhibition or Negative feedback
Alimentación positiva
Feed-forward activation
Autotrophs
Photoautrotophs & Chemoautrotophs
Heterototrophs
Chemoheterotrotophs
Catabolismo
Anabolismo
Compartimentos celulares
ATP y NADH
* Fosfocreatina 5X más que ATP en músculo en reposo
Creatine kinase
Principles of Biochemistry
Fourth Edition
Chapter 11
Glycolysis
Copyright © 2006 Pearson Prentice Hall, Inc.
Horton • Moran • Scrimgeour • Perry • Rawn
DisaccharidesDisaccharides
PolysaccharidesPolysaccharides
 StarchStarch
Glycogen
 StarchStarch • Glycogen
Aerobic RespirationAerobic Respiration
Bacterias andBacterias and
EukaryotsEukaryots
 Glycolysis occurs in theGlycolysis occurs in the cytosolcytosol
 All other stages in theAll other stages in the mitochondriamitochondria
Dehidrogenasas NAD+
-- NADH2
Bacteria Gram -
Glucolysis + Citric Cycle
En el hígado las hexocinasas I, II y III son inhibida
alostéricamente por glucosa 6-P
Glucocinasa en hígado (hexocinasa IV)
no es inhibida por glucosa 6-P
*
*
5
*
*
2,3 BPG
eritrocitos
cuando baja
pH
*
-2 ATP
+4 ATP
2 ATP +
2NADH
2 ATP + 2NADH
Regulación
SGLT1, Na+
->
GLUT1, GLUT3 ->
GLUT2 <->
GLUT4 -> (insulin dep)
GLUT7 -> G-P -> ER
GLUT5-> fructosa
Glucose 6-phosphate is at a pivotal position in carbohydrate metabolism in the liver
En el hígado las hexocinasas
I, II y III son inhibida
alostéricamente por glucosa 6-P
Glucocinasa en hígado
(hexocinasa IV)
no es inhibida por glucosa 6-P
Es inhibida por fructosa 6-P y
una proteína reguladora.
incubated with glucagon,
pyruvate kinase is
phosphorylated
glucokinase
&
(Fructose 6P)
pyruvate kinase is
phosphorylated by
protein kinase A

Más contenido relacionado

Destacado (9)

AMR Profile
AMR ProfileAMR Profile
AMR Profile
 
Student ID Number 150578905
Student ID Number 150578905Student ID Number 150578905
Student ID Number 150578905
 
Agile ncr pramila hitachi consulting_future_coaching
Agile ncr pramila hitachi consulting_future_coachingAgile ncr pramila hitachi consulting_future_coaching
Agile ncr pramila hitachi consulting_future_coaching
 
Resume Incident Manager 2
Resume Incident Manager 2Resume Incident Manager 2
Resume Incident Manager 2
 
фото отчёт по пожарной безопасности
фото отчёт по пожарной безопасностифото отчёт по пожарной безопасности
фото отчёт по пожарной безопасности
 
Materi NARKOBA dari BNK Kota Semarang
Materi NARKOBA dari BNK Kota SemarangMateri NARKOBA dari BNK Kota Semarang
Materi NARKOBA dari BNK Kota Semarang
 
Swell Bottle Pitch2
Swell Bottle Pitch2Swell Bottle Pitch2
Swell Bottle Pitch2
 
01 07-2016 приложение2
01 07-2016 приложение201 07-2016 приложение2
01 07-2016 приложение2
 
How to Upload iOS App (IPA file) to iTunes Connect
How to Upload iOS App (IPA file) to iTunes ConnectHow to Upload iOS App (IPA file) to iTunes Connect
How to Upload iOS App (IPA file) to iTunes Connect
 

Similar a Metabolismo 1

METABOLISMO CELULAR - 2022 (1).pptxhhhhh
METABOLISMO CELULAR - 2022 (1).pptxhhhhhMETABOLISMO CELULAR - 2022 (1).pptxhhhhh
METABOLISMO CELULAR - 2022 (1).pptxhhhhh
PuelloDleonLuis
 
Metabolismo.pdfmm.jgh6262728277272098799
Metabolismo.pdfmm.jgh6262728277272098799Metabolismo.pdfmm.jgh6262728277272098799
Metabolismo.pdfmm.jgh6262728277272098799
nikolezunigaalvarado
 
T 11 metabolismo celular, enzimas vitaminas
T 11 metabolismo celular, enzimas vitaminasT 11 metabolismo celular, enzimas vitaminas
T 11 metabolismo celular, enzimas vitaminas
Fsanperg
 
Farmacocinetica excrecion 8
Farmacocinetica excrecion 8Farmacocinetica excrecion 8
Farmacocinetica excrecion 8
RUSTICA
 

Similar a Metabolismo 1 (20)

Metabolismo intermediario
Metabolismo intermediario Metabolismo intermediario
Metabolismo intermediario
 
Citocromo p450
Citocromo p450Citocromo p450
Citocromo p450
 
Expobiofarmacia metabolismo
Expobiofarmacia metabolismoExpobiofarmacia metabolismo
Expobiofarmacia metabolismo
 
Expocision farmacologia.pptx
Expocision farmacologia.pptxExpocision farmacologia.pptx
Expocision farmacologia.pptx
 
Expocision farmacologia.pptx
Expocision farmacologia.pptxExpocision farmacologia.pptx
Expocision farmacologia.pptx
 
Metabolismo durante el ayuno
Metabolismo durante el ayunoMetabolismo durante el ayuno
Metabolismo durante el ayuno
 
Introduccion metabolismo 21644
Introduccion metabolismo 21644Introduccion metabolismo 21644
Introduccion metabolismo 21644
 
METABOLISMO CELULAR - 2022 (1).pptxhhhhh
METABOLISMO CELULAR - 2022 (1).pptxhhhhhMETABOLISMO CELULAR - 2022 (1).pptxhhhhh
METABOLISMO CELULAR - 2022 (1).pptxhhhhh
 
REGULACION ENZIMÁTICA (OFICIAL).ppt
REGULACION ENZIMÁTICA (OFICIAL).pptREGULACION ENZIMÁTICA (OFICIAL).ppt
REGULACION ENZIMÁTICA (OFICIAL).ppt
 
Metabolismo.pdfmm.jgh6262728277272098799
Metabolismo.pdfmm.jgh6262728277272098799Metabolismo.pdfmm.jgh6262728277272098799
Metabolismo.pdfmm.jgh6262728277272098799
 
Hepat Pancrea
Hepat PancreaHepat Pancrea
Hepat Pancrea
 
T 11 metabolismo celular, enzimas vitaminas
T 11 metabolismo celular, enzimas vitaminasT 11 metabolismo celular, enzimas vitaminas
T 11 metabolismo celular, enzimas vitaminas
 
Cuestionario guía metabolismo de aminoácidos
Cuestionario guía metabolismo de aminoácidosCuestionario guía metabolismo de aminoácidos
Cuestionario guía metabolismo de aminoácidos
 
Anatomía
AnatomíaAnatomía
Anatomía
 
metabolismo de far.pdf
metabolismo de far.pdfmetabolismo de far.pdf
metabolismo de far.pdf
 
Biotransformación (Metabolismo) de Fármacos
Biotransformación (Metabolismo) de FármacosBiotransformación (Metabolismo) de Fármacos
Biotransformación (Metabolismo) de Fármacos
 
Farmacocinetica excrecion 8
Farmacocinetica excrecion 8Farmacocinetica excrecion 8
Farmacocinetica excrecion 8
 
Integración del metabolismo curso bioq 2018
Integración del metabolismo curso bioq 2018Integración del metabolismo curso bioq 2018
Integración del metabolismo curso bioq 2018
 
Farmacocinetica
FarmacocineticaFarmacocinetica
Farmacocinetica
 
Revista farmaco
Revista farmacoRevista farmaco
Revista farmaco
 

Más de jlquinonesrivera (13)

Cancer
CancerCancer
Cancer
 
Citoesqueleto matriz excl 429
Citoesqueleto matriz excl 429Citoesqueleto matriz excl 429
Citoesqueleto matriz excl 429
 
Cell signaling transduction mechanisms
Cell signaling transduction mechanismsCell signaling transduction mechanisms
Cell signaling transduction mechanisms
 
Plasma membrane structure and transport
Plasma membrane structure and transportPlasma membrane structure and transport
Plasma membrane structure and transport
 
Organización célula#2 b 429
Organización célula#2 b 429Organización célula#2 b 429
Organización célula#2 b 429
 
Moléculas org prot-429
Moléculas org prot-429Moléculas org prot-429
Moléculas org prot-429
 
Tecnologías con DNA
Tecnologías con DNATecnologías con DNA
Tecnologías con DNA
 
DNA Traducción
DNA TraducciónDNA Traducción
DNA Traducción
 
DNA- replicación - transcripción
DNA- replicación - transcripciónDNA- replicación - transcripción
DNA- replicación - transcripción
 
Metabolismo 2
Metabolismo 2Metabolismo 2
Metabolismo 2
 
Membrana bioquímica
Membrana  bioquímicaMembrana  bioquímica
Membrana bioquímica
 
Enzimas y cinética enzimas
Enzimas y cinética enzimasEnzimas y cinética enzimas
Enzimas y cinética enzimas
 
Moléculas orgánicas proteina Qui403 USC
Moléculas orgánicas proteina Qui403 USCMoléculas orgánicas proteina Qui403 USC
Moléculas orgánicas proteina Qui403 USC
 

Último

Contreras & Cueto. - Historia del Perú contemporáneo [ocr] [2007].pdf
Contreras & Cueto. - Historia del Perú contemporáneo [ocr] [2007].pdfContreras & Cueto. - Historia del Perú contemporáneo [ocr] [2007].pdf
Contreras & Cueto. - Historia del Perú contemporáneo [ocr] [2007].pdf
frank0071
 
Ovulos y Supositorio facultad de ciencias.pptx
Ovulos y Supositorio facultad de ciencias.pptxOvulos y Supositorio facultad de ciencias.pptx
Ovulos y Supositorio facultad de ciencias.pptx
manujimenez8
 
Estequiometria, balanceo de ecuaciones, métodos y ejercicios
Estequiometria, balanceo de ecuaciones, métodos y ejerciciosEstequiometria, balanceo de ecuaciones, métodos y ejercicios
Estequiometria, balanceo de ecuaciones, métodos y ejercicios
KathyColumba
 
Husserl, Edmund. - Lecciones de fenomenología de la conciencia interna [ocr] ...
Husserl, Edmund. - Lecciones de fenomenología de la conciencia interna [ocr] ...Husserl, Edmund. - Lecciones de fenomenología de la conciencia interna [ocr] ...
Husserl, Edmund. - Lecciones de fenomenología de la conciencia interna [ocr] ...
frank0071
 

Último (20)

EL ORIGEN DEL UNIVERSO DE TODO EL UNIVERSO .pdf
EL ORIGEN DEL UNIVERSO DE TODO EL UNIVERSO .pdfEL ORIGEN DEL UNIVERSO DE TODO EL UNIVERSO .pdf
EL ORIGEN DEL UNIVERSO DE TODO EL UNIVERSO .pdf
 
Prueba de Disolucion aparatos de FDA clasificacion
Prueba de Disolucion aparatos de FDA clasificacionPrueba de Disolucion aparatos de FDA clasificacion
Prueba de Disolucion aparatos de FDA clasificacion
 
Examen Parcial 2021-II ES832G Diseño en acero
Examen Parcial 2021-II ES832G Diseño en aceroExamen Parcial 2021-II ES832G Diseño en acero
Examen Parcial 2021-II ES832G Diseño en acero
 
Listado florístico de la Sierra de Santa Rosa, Guanajuato, México
Listado florístico de la Sierra de Santa Rosa, Guanajuato, MéxicoListado florístico de la Sierra de Santa Rosa, Guanajuato, México
Listado florístico de la Sierra de Santa Rosa, Guanajuato, México
 
1. Principios basicos panaderia y pasteleria
1. Principios basicos panaderia y pasteleria1. Principios basicos panaderia y pasteleria
1. Principios basicos panaderia y pasteleria
 
Derechos humanos: Historia de los derechos humanos
Derechos humanos: Historia de los derechos humanosDerechos humanos: Historia de los derechos humanos
Derechos humanos: Historia de los derechos humanos
 
LA ELECTROQUIMICA.pptx..................
LA ELECTROQUIMICA.pptx..................LA ELECTROQUIMICA.pptx..................
LA ELECTROQUIMICA.pptx..................
 
Anatomía y fisiología del rumen 000000000
Anatomía y fisiología del rumen 000000000Anatomía y fisiología del rumen 000000000
Anatomía y fisiología del rumen 000000000
 
Mecanización Agrícola: Introducción, Antecedentes
Mecanización Agrícola: Introducción, AntecedentesMecanización Agrícola: Introducción, Antecedentes
Mecanización Agrícola: Introducción, Antecedentes
 
Contreras & Cueto. - Historia del Perú contemporáneo [ocr] [2007].pdf
Contreras & Cueto. - Historia del Perú contemporáneo [ocr] [2007].pdfContreras & Cueto. - Historia del Perú contemporáneo [ocr] [2007].pdf
Contreras & Cueto. - Historia del Perú contemporáneo [ocr] [2007].pdf
 
GENERALIDADES DE CANCER DE TIROIDES.pptx
GENERALIDADES DE CANCER DE TIROIDES.pptxGENERALIDADES DE CANCER DE TIROIDES.pptx
GENERALIDADES DE CANCER DE TIROIDES.pptx
 
FICHA MATEMÁTICA comparamos numeros.pdf
FICHA MATEMÁTICA  comparamos numeros.pdfFICHA MATEMÁTICA  comparamos numeros.pdf
FICHA MATEMÁTICA comparamos numeros.pdf
 
Hormonas y sus formulas quimicas - grupo 6.pdf
Hormonas y sus formulas quimicas - grupo 6.pdfHormonas y sus formulas quimicas - grupo 6.pdf
Hormonas y sus formulas quimicas - grupo 6.pdf
 
Anatomía y fisiología del rumen pdf.pdf0000000
Anatomía y fisiología del rumen pdf.pdf0000000Anatomía y fisiología del rumen pdf.pdf0000000
Anatomía y fisiología del rumen pdf.pdf0000000
 
2023 TRASTORNOS HIPERTENSIVOS DEL EMBARAZO.pdf
2023 TRASTORNOS HIPERTENSIVOS DEL EMBARAZO.pdf2023 TRASTORNOS HIPERTENSIVOS DEL EMBARAZO.pdf
2023 TRASTORNOS HIPERTENSIVOS DEL EMBARAZO.pdf
 
NOM 036 STPS 2018 MANIPULACION MANUAL DE CARGAS.pdf
NOM 036 STPS 2018  MANIPULACION MANUAL DE CARGAS.pdfNOM 036 STPS 2018  MANIPULACION MANUAL DE CARGAS.pdf
NOM 036 STPS 2018 MANIPULACION MANUAL DE CARGAS.pdf
 
Ovulos y Supositorio facultad de ciencias.pptx
Ovulos y Supositorio facultad de ciencias.pptxOvulos y Supositorio facultad de ciencias.pptx
Ovulos y Supositorio facultad de ciencias.pptx
 
Estequiometria, balanceo de ecuaciones, métodos y ejercicios
Estequiometria, balanceo de ecuaciones, métodos y ejerciciosEstequiometria, balanceo de ecuaciones, métodos y ejercicios
Estequiometria, balanceo de ecuaciones, métodos y ejercicios
 
Nuñez S., X. M. - El frente del Este. Historia y memoria de la guerra german...
Nuñez S., X.  M. - El frente del Este. Historia y memoria de la guerra german...Nuñez S., X.  M. - El frente del Este. Historia y memoria de la guerra german...
Nuñez S., X. M. - El frente del Este. Historia y memoria de la guerra german...
 
Husserl, Edmund. - Lecciones de fenomenología de la conciencia interna [ocr] ...
Husserl, Edmund. - Lecciones de fenomenología de la conciencia interna [ocr] ...Husserl, Edmund. - Lecciones de fenomenología de la conciencia interna [ocr] ...
Husserl, Edmund. - Lecciones de fenomenología de la conciencia interna [ocr] ...
 

Metabolismo 1

Notas del editor

  1. Figure 10.1 Anabolism and catabolism. Anabolic reactions use small molecules and chemical energy in the synthesis of organic molecules and in the performance of cellular work. Solar energy is an important source of metabolic energy in photosynthetic bacteria and plants. Some molecules, including those obtained from food, are catabolized to release energy and either monomeric building blocks or waste products. In the remaining figures in this chapter, blue arrows represent biosynthesis pathways and red arrows represent catabolism pathways.
  2. Figure 10.2 Forms of metabolic pathways. (a) The biosynthesis of serine is an example of a linear metabolic pathway. The product of each step is the substrate for the next step. (b) The sequence of reactions in a cyclic pathway forms a closed loop. In the citric acid cycle, an acetyl group is metabolized via reactions that regenerate the intermediates of the cycle. (c) In fatty acid biosynthesis, a spiral pathway, the same set of enzymes catalyzes a progressive lengthening of the acyl chain.
  3. Figure 10.2 Forms of metabolic pathways. (a) The biosynthesis of serine is an example of a linear metabolic pathway. The product of each step is the substrate for the next step. (b) The sequence of reactions in a cyclic pathway forms a closed loop. In the citric acid cycle, an acetyl group is metabolized via reactions that regenerate the intermediates of the cycle. (c) In fatty acid biosynthesis, a spiral pathway, the same set of enzymes catalyzes a progressive lengthening of the acyl chain.
  4. Figure 10.2 Forms of metabolic pathways. (a) The biosynthesis of serine is an example of a linear metabolic pathway. The product of each step is the substrate for the next step. (b) The sequence of reactions in a cyclic pathway forms a closed loop. In the citric acid cycle, an acetyl group is metabolized via reactions that regenerate the intermediates of the cycle. (c) In fatty acid biosynthesis, a spiral pathway, the same set of enzymes catalyzes a progressive lengthening of the acyl chain.
  5. Figure 10.6 Overview of catabolic pathways. Amino acids, nucleotides, monosaccharides, and fatty acids are formed by enzymatic hydrolysis of their respective polymers. They are then degraded in oxidative reactions and energy is conserved in ATP and reduced coenzymes (mostly NADH). (Numbers in parentheses refer to the chapters and section in this book.)
  6. Figure 10.5 Overview of anabolic pathways. Large molecules are synthesized from smaller ones by adding carbon (usually derived from CO2) and nitrogen (usually as NH3+). The main pathways include the citric acid cycle, which supplies the intermediates in amino acid biosynthesis, and gluconeogenesis, which results in the production of glucose. The energy for biosynthetic pathways is supplied by light in photosynthetic organisms or by the breakdown of inorganic molecules in other autotrophs. (Numbers in parentheses refer to the chapters and section in this book.)
  7. Figure 10.3 Single-step versus multistep pathways. (a) The synthesis of glucose cannot be accomplished in a single step. Multistep biosynthesis is coupled to the input of small quanta of energy from ATP and NADH. (b) The uncontrolled combustion of glucose releases a large amount of energy all at once. A multistep enzyme catalyzed pathway releases the same amount of energy but conserves much of it in a manageable form.
  8. Figure 10.4 Regulatory role of a protein kinase. The effect of the initial signal is amplified by the signaling cascade. Phosphorylation of different cellular proteins by the activated kinase results in coordinated regulation of different metabolic pathways. Some pathways may be activated, whereas others are inhibited. —P represents a protein-bound phosphate group.
  9. Figure 10.6 Overview of catabolic pathways. Amino acids, nucleotides, monosaccharides, and fatty acids are formed by enzymatic hydrolysis of their respective polymers. They are then degraded in oxidative reactions and energy is conserved in ATP and reduced coenzymes (mostly NADH). (Numbers in parentheses refer to the chapters and section in this book.)
  10. Figure 10.5 Overview of anabolic pathways. Large molecules are synthesized from smaller ones by adding carbon (usually derived from CO2) and nitrogen (usually as NH3+). The main pathways include the citric acid cycle, which supplies the intermediates in amino acid biosynthesis, and gluconeogenesis, which results in the production of glucose. The energy for biosynthetic pathways is supplied by light in photosynthetic organisms or by the breakdown of inorganic molecules in other autotrophs. (Numbers in parentheses refer to the chapters and section in this book.)
  11. Figure 10.9 Hydrolysis of ATP to (1) ADP and inorganic phosphate (Pi) and (2) AMP and inorganic pyrophosphate (PPi).
  12. Figure 10.11 Relative phosphoryl group–transfer potentials. A compound with a high group–transfer potential (i.e., a large negative value of G°hydrolysis) can donate its phosphoryl group to a compound that is less energy-rich. The reaction arrows indicate the predominant direction of phosphoryl-group transfer under standard conditions.
  13. Figure 11.1 Gluconeogenesis, glycolysis, and the citric acid cycle. Glucose is synthesized from pyruvate via oxaloacetate and phosphoenolpyruvate. In glycolysis, glucose is degraded to pyruvate. Many (but not all) of the steps in glycolysis are the reverse of the gluconeogenesis reactions. The acetyl group of pyruvate is transferred to coenzyme A (CoA) and oxidized to carbon dioxide by the citric acid cycle. Energy in the form of ATP equivalents is required for the synthesis of glucose. Some of this energy is recovered in glycolysis but much more is recovered as a result of the citric acid cycle.
  14. Figure 10.9 Hydrolysis of ATP to (1) ADP and inorganic phosphate (Pi) and (2) AMP and inorganic pyrophosphate (PPi).
  15. Figure 11.2 Conversion of glucose to pyruvate by glycolysis. At Step 4, the hexose molecule is split in two, and the remaining reactions of glycolysis are traversed by two triose molecules. ATP is consumed in the hexose stage and generated in the triose stage.
  16. Figure 11.2 Conversion of glucose to pyruvate by glycolysis. At Step 4, the hexose molecule is split in two, and the remaining reactions of glycolysis are traversed by two triose molecules. ATP is consumed in the hexose stage and generated in the triose stage.
  17. Figure 11.4 Conversion of glucose 6-phosphate to fructose 6-phosphate. This aldose–ketose isomerization is catalyzed by glucose-6-phosphate isomerase.
  18. Figure 11.2 Conversion of glucose to pyruvate by glycolysis. At Step 4, the hexose molecule is split in two, and the remaining reactions of glycolysis are traversed by two triose molecules. ATP is consumed in the hexose stage and generated in the triose stage.
  19. Figure 11.2 Conversion of glucose to pyruvate by glycolysis. At Step 4, the hexose molecule is split in two, and the remaining reactions of glycolysis are traversed by two triose molecules. ATP is consumed in the hexose stage and generated in the triose stage.
  20. Figure 11.6 Fate of carbon atoms from the hexose stage to the triose stage of glycolysis. All numbers refer to the carbon atoms in the original glucose molecule.
  21. Figure 11.2 Conversion of glucose to pyruvate by glycolysis. At Step 4, the hexose molecule is split in two, and the remaining reactions of glycolysis are traversed by two triose molecules. ATP is consumed in the hexose stage and generated in the triose stage.
  22. Figure 11.2 Conversion of glucose to pyruvate by glycolysis. At Step 4, the hexose molecule is split in two, and the remaining reactions of glycolysis are traversed by two triose molecules. ATP is consumed in the hexose stage and generated in the triose stage.
  23. Formation of 2,3-bisphosphoglycerate (2,3BPG) in red blood cells.
  24. Figure 11.2 Conversion of glucose to pyruvate by glycolysis. At Step 4, the hexose molecule is split in two, and the remaining reactions of glycolysis are traversed by two triose molecules. ATP is consumed in the hexose stage and generated in the triose stage.
  25. Figure 11.2 Conversion of glucose to pyruvate by glycolysis. At Step 4, the hexose molecule is split in two, and the remaining reactions of glycolysis are traversed by two triose molecules. ATP is consumed in the hexose stage and generated in the triose stage.
  26. Figure 11.2 Conversion of glucose to pyruvate by glycolysis. At Step 4, the hexose molecule is split in two, and the remaining reactions of glycolysis are traversed by two triose molecules. ATP is consumed in the hexose stage and generated in the triose stage.
  27. Figure 10.9 Hydrolysis of ATP to (1) ADP and inorganic phosphate (Pi) and (2) AMP and inorganic pyrophosphate (PPi).
  28. Figure 11.9 Four major fates of pyruvate: (a) Under aerobic conditions, pyruvate is oxidized to the acetyl group of acetyl CoA, which can enter the citric acid cycle for further oxidation. (b) Pyruvate can be converted to oxaloacetate, which can be a precursor in gluconeogenesis. (c) Under anaerobic conditions certain microorganisms ferment glucose to ethanol via pyruvate. (d) Glucose undergoes anaerobic glycolysis to lactate in vigorously exercising muscles, red blood cells, and certain other cells. Pyruvate also enters anabolic pathways that are not shown here.
  29. Figure 11.13 Regulation of glucose transport by insulin. The binding of insulin to cell-surface receptors stimulates intracellular vesicles containing membrane-embedded GLUT4 transporters to fuse with the plasma membrane. This delivers GLUT4 transporters to the cell surface and thereby increases the capacity of the cell to transport glucose.
  30. Glucose 6-phosphate is at a pivotal position in carbohydrate metabolism in the liver.
  31. Figure 11.12 Summary of the metabolic regulation of the glycolytic pathway in mammals. Not shown are the effects of ADP on PFK-1, which vary among species.
  32. Figure 11.14 Plot of initial velocity (v0) versus glucose concentration for glucokinase. The addition of a regulatory protein lowers the enzyme’s affinity for glucose. The blood glucose concentration is 5 to 10 mM.
  33. Figure 11.15 Regulation of PFK-1 by ATP and AMP. In the absence of AMP, PFK-1 is almost completely inhibited by physiological concentrations of ATP. In the range of AMP concentrations found in the cell, the inhibition of PFK-1 by ATP is almost completely relieved. [Adapted from Martin, B. R. (1987). Metabolic Regulation: A Molecular Approach (Oxford: Blackwell Scientific Publications), p. 222.]
  34. Figure 11.16 Interconversion of -D-fructose 6-phosphate and -D-fructose 2,6-bisphosphate.
  35. Figure 11.17 Effect of glucagon on glycolysis in the liver. The hormone glucagon is released from the pancreas into the blood when blood glucose levels are low. When glucagon binds to its receptor, protein kinase A is activated by cyclic AMP via the adenylyl cyclase signaling pathway. The protein kinase catalyzes phosphorylation of the bifunctional enzyme PFK-2, inhibiting its kinase activity and stimulating its fructose 2,6-bisphosphatase activity. When the concentration of glucagon is high, the formation of the potent PFK-1 activator fructose 2,6-bisphosphate is decreased and its degradation is increased. As a result, the major pathway—glycolysis—slows, using less glucose. Glucagon also signals the liver to increase both the synthesis of glucose and the mobilization of glucose from glycogen.
  36. Figure 11.18 Plots of initial velocity (v0) versus phosphoenolpyruvate concentration for pyruvate kinase. (a) For isozymes in some cells, the presence of fructose 1,6-bisphosphate shifts the curve to the left, indicating that fructose 1,6-bisphosphate is an activator of the enzymes. (b) When liver or intestinal cells are incubated with glucagon, pyruvate kinase is phosphorylated by the action of protein kinase A. The curve shifts to the right, indicating less activity for pyruvate kinase.
  37. Figure 11.18 Plots of initial velocity (v0) versus phosphoenolpyruvate concentration for pyruvate kinase. (a) For isozymes in some cells, the presence of fructose 1,6-bisphosphate shifts the curve to the left, indicating that fructose 1,6-bisphosphate is an activator of the enzymes. (b) When liver or intestinal cells are incubated with glucagon, pyruvate kinase is phosphorylated by the action of protein kinase A. The curve shifts to the right, indicating less activity for pyruvate kinase.