SlideShare una empresa de Scribd logo
1 de 63
Universidad Autónoma de Baja
California
Facultad de Ciencias Administrativas
Segundo Semestre
Lógica para la
toma de
decisiones
Unidad II Lógica Formal
TORRES ESPINOZA LESLIE VANESSA
Propósito general del curso
Permitirá desarrollar en el alumno el pensamiento lógico que
facilite el raciocinio paralatomadedecisionesqueaplicaráen
todaslasáreasdelavida.
Competencia del curso
Aplicar el razonamiento ordenado que permita interpretar
mejor la solución de problemas por medio del
entendimiento de la naturaleza formal del razonamiento.
Evidencia de desempeño
Elaborar un diagrama de flujo de un proceso dentro de una
organización real que facilite la toma de decisiones.
Competencia
Formular razonamientos empleando métodos lógicos para
tomar decisiones en forma racional, Con compromiso y
positivismo.
Contenido Duración: 10
horas
2.1 Concepto
2.1.1 Definición y función del concepto
2.1.2 Extensión y contenido delosconceptos
2.1.3 Clasificación Metódicadelosconceptos
Unidad II: Lógica Formal
2.2 Juicio
2.2.1 El juicio como estructura de pensamiento
2.2.2 La clasificación de los juicios
2.2.3 Clasificación por categorías
2.2.4 Juicios tradicionales
2.3 El razonamiento y los métodos
2.3.1 Las inferencias simples o inmediatas
2.3.2 El razonamiento o método deductivo
2.3.2.1 El instrumento Silogístico de la
deducción
2.3.2.2 Formas y figuras del silogismo
2.3.2.3 Modos y valor del silogismo
2.3.2.4 Los sofismas de la deducción
2.3.3 El razonamiento o método
inductivo
2.3.3.1 Definición e importancia de
la inducción
2.3.3.2 Clases de inducción
2.3.3.3 Fundamento de la
inducción
2.1 Concepto
2.1.1 Definición y función del concepto
El concepto es la primera verdad en el proceso del
conocer: una primera forma lógica (cálida) aprehensiva
y captadora.
Etimológicamente, concepto es recipiente o
receptáculo.
El concepto es todo lo que sabemos acerca de las
cosas.
Los conceptos no son los nombres de las cosas.
Los conceptos no son meras ideas.
 El concepto es el conocimiento de lo que se llama objeto.
 El concepto es la fijación científica de una materia de
conocimiento.
 El concepto es un predicado de posibles juicios.
¿QUÉES UN
CONCEPTO?
 El punto de vista idéntico desde el cual agrupamos una
clase de objetos con ciertas diferencias entre ellos.
 Para hacer lo anterior, tenemos que saber separar las
características esenciales (fundamentales) de las no
esenciales (accidentales).
 Las características esenciales de un grupo de objetos son
aquellas que hacen que esa cosa sea lo que es y lo que
constituirá su definición.
 Las características accidentales son las que pueden darse
de una manera o de otra o no darse del todo y que no
intervienen en la función esencial del objeto (color,
tamaño, marca, etc.)
¿QUÉ ES UN CONCEPTO?
 El concepto tiene como función generalizar,
o clasificar los individuos, cualidades y
casos concretos conocidos en la
experiencia agrupando las cosas o los
aspectos y cualidades comunes a muchos y
se expresa y aplica mediante diversas
formas gramaticales del lenguaje.
¿Cuál es la función del concepto?
Cualidades esenciales (fundamentales):
 La función principal de este objeto es
transportar ropa u objetos diversos en un viaje.
 Una maleta debe ser de un material resistente y
de un tamaño de mediano a grande.
 Un elemento esencial de una maleta es que
tenga agarraderas, asas o correas para poderla
cargar y que se pueda cerrar completamente.
Cualidades no esenciales (accidentales):
Ser de piel, plástico, lona, etc.
Ser de color rojo, gris, negro, azul, etc.
Tener ruedas o no.
Ser de estructura dura o blanda.
Ser Samsonite, Tous, etc.
 Reloj
 Fundamentales (Función Principal)
 1-Marcar la hora
 2-Pila (Fuente de energía)
 3-Numeros
 Accidentales
 1-Rojo, azul, Café.
 2-Casio, puma, omega
 3-plastico, piel.
 Carro
 Fundamentales
 1-Transportar personas
 Motor
 Llanta
 Accidentales
 El Color
 La marca
 El material
Silla
Fundamentales
1-Sentarse
2-Que se pueda sostener
3-Que tenga respaldo
Accidentales
1-Color
2-Colchon
3-Comoda
2.1.2 Extensión y contenido de los conceptos
Extensión de un concepto es el alcance de lo que él expresa.
Extensión de un concepto es el número de casos que abarca.
Extensión de un concepto son los miembros comprendidos en
una misma predicación.
El contenido de los conceptos son las notas propias que los
distinguen o caracterizan.
Contenido de un concepto es la intención manifestada por
éste.
 La extensión de un concepto son todos los
casos que abarca.
 Todos los diversos objetos que comparten
una o varias características esenciales.
 En este caso, todas estas maletas, aunque
diferentes unas de otras, todas tienen las
características esenciales antes
mencionadas.
 Son las palabras o notas que le
podemos añadir a una idea o
concepto para hacerlo más
específica.
 Maleta, roja, con ruedas, de
plástico, Samsonite.
 En este caso las palabras: roja,
con ruedas, de plástico y
Samsonite son el contenido del
concepto.
 A mayor contenido la extensión del
concepto será menor.
 A menor contenido mayor extensión.
 No es igual la extensión del concepto
“maleta” que la del concepto “maleta
de lona mediana”.
Proporcionalidad entre la extensión y el
contenido de los conceptos.
 Escribe la extensión de: fruta, flor, pelota y
perro.
 Fruta
 Fruta Naranja
 Fruta Naranja Agria
 Fruta Naranja Agria con semilla
 Fruta Naranja Agria con semilla Madura.
 Flor
 Flor Azul
 Flor Azul Grande
 Flor Azul Grande Con espinas
 Flor Azul Grande Con espinas y hojas
 Pelota
 Pelota Grande
 Pelota Grande Verde
 Pelota Grande Verde
2.1.3 Clasificación Metódica de los conceptos
Por su contenido
1. Simple, el que consta de una sola nota, por ejemplo, ser,
uno, algo (el ser es uno, algo).
2. Compuesto, el que tiene varias notas, por ejemplo, ser
racional, figura regular.
3. Abstracto, el que se refiere sólo a la cualidad, sin el
sujeto que la soporta, por ejemplo, verdad, bondad.
4. Concreto, el que comprende la cualidad y portador
conjuntamente, por ejemplo, mamífero, ovíparo.
5. Absoluto, el de representación inteligible (que puede ser
entendido) univoca, por ejemplo, dinero, vejez.
6. Relativo, el de inteligibilidad que se corresponde, por
ejemplo, mayor, menor, padre.
7. Homogéneo, el que se refiere a un mismo género o clase,
por ejemplo, pentágono, hexágono.
8. Heterogéneo, el que se refiere a distintas clases
genéricas, por ejemplo, mamíferos y aves.
2.1.3 Clasificación Metódica de los conceptos
Por su extensión
1. Singular, el que se aplica a la individualidad, por ejemplo,
Cuauhtemoc, gas neón.
2. Particular, el que comprende más de la unidad sin llegar
a la totalidad, por ejemplo, animal mamífero.
3. Universal, el que abarca la totalidad de los casos
indistributivamente, por ejemplo, naturaleza, mineral.
4. Colectivo, el que comprende una unidad de la pluralidad,
por ejemplo, manada, cardumen.
2.1.3 Clasificación Metódica de los
conceptos
Una clasificación de objetos lógicos, como son los conceptos,
deben atenerse estrictamente a su estructura lógica.
En esta forma resultan tres clases de conceptos:
Supraordenados
Subordinados
Coordinados
Conceptos supraordenados
Corresponden a los conceptos más elevados o genéricos. Más
allá de éstos se encuentran los conceptos supremos. Por
ejemplo:
Supraordenados
Supremos Genéricos
Ser Metazoario
Ser orgánico Vertebrado
Mineral Pez
Conceptos subordinados o específicos
Quedarían en las partes bajas de ese ordenamiento (abajo en
el orden), al ir descendiendo se van especificando hasta llegar
a la individualidad.
Por ejemplo:
Cuerpo
Cuerpo redondo
Cilindro
Cilindro oblicuo
Conceptos coordinados
Estos son los que guardan una mínima posición frente al
supraordenado que les corresponde. Podríamos decir que
entre sí son las especies del género. Por ejemplo:
León
Tigre
Puma
Pantera
Son coordinados entre sí y subordinados de “felino”
Ejercicio 2
Da un ejemplo de los siguientes conceptos:
Simple = balón
Compuesto = baloncesto
Abstracto = Acertijo
Concreto = ovíparo
Absoluto = Cuadrado
Relativo = Madre
Homogéneo = agua y arena
Heterogéneo
Singular = Casa
Particular =
Universal = Avecedario
Colectivo
Supraordenados roca
Subordinados mineral
Coordinados zafiro
2.2 Juicio
2.2.1 El juicio como estructura de pensamiento
El juicio es una forma de pensamiento o también operación del
entendimiento que correlaciona dos conceptos, que los
compara y los juzga.
La expresión verbal del juicio es la proposición.
Una proposición es una oración o frase informativa, declarativa
o enunciativa.
El juicio consta de dos partes:
El sujeto
El predicado
El sujeto es la materia del juicio.
El predicado es el punto de vista que nos permite hacer los
enjuiciamientos.
2.2.2 La clasificación de los juicios
Juicios de esencia y de existencia
Juicios analíticos y sintéticos
Juicios a priori y a posteriori
Juicios sintéticos a priori
Juicio de esencia
Son juicios de esencia los que en el predicado señalan las notas
esenciales del objeto sujeto del juicio.
Por notas esenciales entendemos las más importantes, las que
en verdad determinan o permiten distinguir al objeto o
conceptuarlo unívocamente.
Una característica de ellos sería que responden a la pregunta
¿qué es?
Ejemplo: “El oro es un metal”.
Juicio de existencia
Son juicios de existencia los que en el predicado enuncian la
forma de existir o presentarse el objeto o materia del juicio.
Por forma de existir no debe entenderse estrictamente el carácter
ideal o real de la existencia, sino las características que pueden
atribuirse a los objetos.
Una nota distintiva es que responderían a la pregunta
¿cómo es?
Ejemplo: “El oro es muy dúctil”.
Juicio analítico
Llamo juicio analítico (dice Kant) aquel cuyo predicado P
pertenece al sujeto S como algo contenido en él de un modo
tácito.
Juicio analítico es aquel cuyo predicado no hace sino
descomponer las notas que en esencia pertenecen al sujeto (lo
analiza).
Ejemplo: “Toda línea está formada por infinito número de puntos”.
Juicio sintético
Llamo juicio sintético (dice Kant) aquel cuyo predicado P es
completamente extraño al sujeto S, si bien se halla enlazado con
él.
Juicio sintético es aquel cuyo predicado agrega nuevas notas que
no pertenecen en esencia al sujeto pero le convienen (lo amplía).
Ejemplo: “La línea recta es la más corta entre dos puntos”.
Juicio a priori
Son juicios a priori los que valen con antelación a la experiencia,
los que no se derivan de ella, sino que, al contrario, la posibilitan.
Ejemplo: “Todo efecto tiene una causa”.
Juicio a posteriori
Son juicios a posteriori los que se derivan de la experiencia por
observación, experimentación y verificación de los hechos
mismos. Su validez radica en el nexo empírico.
Ejemplo: “El calor derrite las grasas”.
Juicio sintéticos a priori
Juicios extensivos e informativos que no descansan en la
experiencia sino en la pura razón.
Ejemplo: “Todo movimiento es proporcional a la fuerza que lo
imprime”.
2.2.3 Clasificación por categorías
Por categorías
De la cantidad De la cualidad De la relación De la modalidad
Singulares
Particulares
Universales
Afirmativos
Negativos
Infinitos
Categóricos
Hipotéticos
Disyuntivos
Problemáticos
Asertóricos
Apodícticos
De la cantidad
Singulares. Son aquellos que hacen referencia a un solo individuo
de la especie. Ejemplo: Juan es leal.
Particulares. Son aquellos que se refieren a varios objetos sin
llegar a la totalidad, es decir, que se refieren tan solo a una parte
del todo. Ejemplo: Algunos hombres son leales.
Universales. Son aquellos que se refieren a todos los individuos de
la especie. Ejemplo: Todos los hombres son racionales.
De la cualidad
Afirmativos. Son aquellos juicios que expresan la compatibilidad
entre el sujeto y el predicado. Se realiza el predicado en el sujeto.
Ejemplo: Los hombres son racionales.
Negativos. Son aquellos que expresan la incompatibilidad entre el
sujeto y el predicado. Dan como resultado que en la relación
sujeto – predicado los separa entre sí. Ejemplo: Los animales no
son piedras. (Quedan separados, negados)
Infinitos.
De la relación
Categóricos. Son aquellos en los que la relación sujeto –
predicado se nos ofrece sin condiciones. Son juicios no sujetos a
otra condición. Ejemplo: Los minerales son seres inertes. (No lo
condicionamos a nada).
Hipotéticos. Son aquellos en los que la relación sujeto – predicado
se establece condicionalmente. Se hace un enunciado cuya
veracidad depende siempre de una condición. Ejemplo: Si llueve,
la cosecha será buena.
Disyuntivos. Son aquellos en los que se afirma alternativa o
exclusivamente uno u otro predicado, o varios predicados.
Ejemplo: Juan es estudiante o profesor.
De la modalidad
Problemáticos. Son aquellos que expresan una opinión no
demostrada por lo que hay posibilidad que esa opinión sea
verdadera o falsa.
Ejemplo: Es posible que Juan sea locutor.
Asertóricos. Son aquellos que expresan una verdad de hecho. El
predicado se relaciona con el sujeto de una manera real. Ejemplo:
Juan es locutor.
Apodícticos. Aquellos que expresan una necesidad, es el juicio
lógicamente necesario, no admiten contradicción.
Ejemplo: Los hombres son seres racionales.
2.2.4 Juicios tradicionales
1. Juicio universal afirmativo, simbolizado con la vocal A, en el
cual el predicado se identifica con todos los casos del sujeto.
Ejemplo: “Todos los veracruzanos son mexicanos”.
2. Juicio universal negativo, simbolizado con la vocal E, en el
cual el predicado es diverso de todos los casos del sujeto.
Ejemplo: “ningún hombre es infalible”.
3. Juicio particular afirmativo, simbolizado con la vocal I,
comprende lo mismo el caso singular (lo uno) que el plural (lo
vario), pero sin llegar a lo total de los universales.
Ejemplo: “Algunas plantas tienen flores”.
4. Juicio particular negativo, simbolizado con la vocal O,
también comprende tanto lo singular como lo plural, pero sin
llegar a lo total.
Ejemplo: “Algunos hongos no son venenosos”.
Ejercicio 3
Da un ejemplo de cada uno de los siguientes juicios:
Esencia = Que es la paloma? Es un ave.
Existencia como es la roca? Es muy dura
Analítico dos mas dos es 4
Sintético la mesa es marron
A priori
A posteriori
Sintético a posteriori
De la cantidad:
Singulares Andrea es Honesta
Particulares Algunos niños son mentirosos
Universales Todos los hombres son mortales.
De la cualidad:
Afirmativos Los animales son seres vivos.
Negativos Las personas no son juguetes.
Infinitos
sigue
De la relación:
Categóricos - Los animales son seres vivos.
Hipotéticos – si trabajo, ganare dinero.
Disyuntivos – Maria es maestra o doctora.
De la modalidad:
Problemáticos -- Es posible que Alejandra sea Maestra.
Asertóricos --- Alejandra es Maestra.
Apodícticos – Los humanos son seres vivos
Tradicionales:
Juicio universal afirmativo – Todos los humanos son mortales.
Juicio universal negativo – ningun animal marino puede volar.
Juicio particular afirmativo – Algunos animales son mamiferos.
Juicio particular negativo – Algunas flores no tienen espinas.
2.3 El razonamiento y los métodos
2.3.1 Las inferencias simples o inmediatas
Son breves y sencillos razonamientos que parten de una sola
premisa.
Con ellas damos a entender que la conclusión la obtenemos
rápidamente a partir del juicio premisa que ya teníamos.
Inferencias inmediatas por subalternación
Estas son las más sencillas y se apoyan en que “ lo que vale
para el todo vale para cada una de las partes”, o sea que de un
juicio universal válido se pasa o se infiere su juicio particular
referido a lo mismo.
Es decir, se hace únicamente un cambio de cantidad (de lo
universal a lo particular).
Ejemplo:
“Todos los textos son útiles”….es la premisa
Luego, “Este texto es útil”……..es la conclusión
Todas las pelotas son redonda– esta pelota es redonda.
Inferencias inmediatas por oposición
En las cuales cambia la cualidad por tratarse de opuestos, ya
contrarios o ya contradictorios.
Hay dos grupos de estas inferencias.
En el primero, se pasa de la veracidad a la falsedad, en el
segundo, se pasa de la falsedad a la veracidad.
Cada grupo comprende cuatro tipos de estas inferencias en
virtud de que se manejan los cuatro juicios tradicionales.
Inferencias inmediatas por conversión
Estas inferencias se obtienen haciendo un intercambio entre
los términos del juicio (el sujeto de la premisa pasa a ser
predicado de la conclusión y el predicado de la premisa
para a ser sujeto de la conclusión).
Existen dos clases de conversiones:
1. Por conversión simple.
2. Conversión por accidente.
1.Por conversión simple.
Cambiar sujeto por predicado. Los juicios tipo E, I y O no ofrecen ningún
problema en este tipo de inferencias, esto es, su valor de verdad no se
altera si aplican esta conversión.
En el caso de los juicio A, la cosa se complica: la conversión simple sí
puede, en la gran mayoría de los casos, alterar el valor de verdad.
Por ejemplo:
Todos los alemanes son europeos (juicio A verdadero)
Todos los europeos son alemanes conclusión falsa, por lo tanto, no
acepta conversión simple.
Ahora bien, en los otros tipos de juicios no hay alteración en el valor de
verdad:
I: Algunas naranjas son cítricas, por lo tanto, algo cítrico es una naranja.
O: Algunos osos no son reptiles, por lo tanto, algunos reptiles no son osos.
E: Ningún arquitecto es analfabeta, por lo tanto, nadie analfabeta es
arquitecto.
2. Conversión por accidente.
Consiste en cambiar el sujeto por el predicado y el
cuantificador universal a particular. Los únicos juicios que
aceptan esta conversión son los universales: A y E.
Todo metal es maleable, por lo tanto, algo maleable es metal.
Ningún sólido es indivisible, por lo tanto, algo indivisible no
es sólido.
 Ningún ave es cuadrúpedo. Por lo tanto, algún
cuadrúpedo no es ave. (accidente)
 Algún estudiante es responsable, Por lo tanto,
alguien responsable es estudiante (conversion
simple)
Inferencias inmediatas por contraposición
En las que el sujeto pasa a predicado y el predicado a sujeto
cambiando en la conclusión a su contrario y contradictorio.
2.3.2 El razonamiento o método deductivo
La deducción o método deductivo es la inferencia compuesta
que parte de dos o más juicios llamados premisas para obtener
otro llamado conclusión.
2.3.2.1 El instrumento silogístico de la
deducción.
Aristóteles define el silogismo como un razonamiento formado
por tres juicios tales que, dados los dos primeros, el tercero
resulta necesariamente.
2.3.2.2 Formas y figuras del silogismo
Existen tres tipos de silogismos según la clase de sus juicios
(como los de las categorías de la relación), a saber:
categóricos, hipotéticos y disyuntivos.
El silogismo categórico
Este tipo de silogismo está formado por tres juicios categóricos,
tres términos, cuatro figuras y diecinueve modos.
De los juicios
Consta de tres juicios categóricos colocados verticalmente. Los
dos primeros reciben el nombre de premisas y el tercero el de
conclusión.
De los términos
Consta de tres términos: mayor (P), menor (S) y medio (M), que,
repetidos una vez, ocupan los lugares del sujeto y del
predicado en los tres juicios.
De las figuras
Las figuras silogísticas son cuatro y se integran según la
colocación del termino medio (M), de la siguiente manera:
I II III IV
MP PM MP PM
SM SM MS MS
SP SP SP SP
2.3.2.3 De los modos
Los modos silogísticos son las distintas formas que toma el
silogismo como resultado de combinar las cuatro clases de
juicios (a e i o) con las cuatro figuras (4X4X4X4). Siendo válidos
únicamente 19 repartidos entre las 4 figuras de la siguiente
manera.
Primera
figura (4)
Segunda
figura (4)
Tercera
figura (6)
Cuarta figura
(5)
aaa
eae
aii
eio
eae
aee
eio
aoo
aai
eao
iai
aii
oao
eio
aai
aee
Iai
eao
eio
El silogismo hipotético
El segundo tipo de silogismo es el hipotético, que puede ser
hipotético puro si las dos premisas son juicios hipotéticos, o
hipotético impuro si solo la primera premisa es hipotética.
El silogismo disyuntivo
El tercer tipo de silogismo es el disyuntivo, en el que la premisa
mayor es un juicio disyuntivo, abarca solo dos modos: el
Ponendo Tollens y el Tollendo Ponens.
2.3.2.4 Los sofismas de la deducción
Sofisma es cualquier declaración falsa que aparenta haber sido
obtenida mediante una metodología sistemática.
También puede definirse de la siguiente manera:
Sofisma es cualquier argumentación adulterada que se usa
para defender una falacia.
Una falacia es una declaración, noción, creencia, razonamiento
o argumento basado en una deducción falsa, errónea o
inválida.
Sofisma por consiguiente
Sofisma de accidente
Sofisma de lo relativo
Paralogismo del cuarto término
Ignorancia de la cuestión
Petición del principio
El circulo vicioso
2.3.3 El razonamiento o método inductivo
2.3.3.1 Definición e importancia de la inducción
La inducción es un proceso inverso al de la deducción.
Si ésta parte de lo universal y concluye lo particular, la
inducción va de lo particular a lo universal, es decir, parte de la
observación de algunos casos singulares y obtiene una ley
universal.
Se puede definir de la siguiente manera: “Es el raciocinio en
donde a partir de la observación de una relación constante
entre fenómenos, se obtiene una relación esencial, y por lo
tanto universal y necesaria entre dichos fenómenos.
Raúl Gutiérrez Sáenz
Importancia de la inducción
Gracias a este tipo de raciocinio es como se obtienen las leyes
de las ciencias experimentales. De ahí su máxima importancia
en el tratamiento del conocimiento científico.
2.3.3.2 Clases de inducción
Se acostumbra dividir la inducción en total y parcial.
La inducción total consiste en observar todos los casos
contenidos dentro de una clase, y a partir de allí expresar la
propiedad captada en cada uno de esos casos.
La inducción parcial consiste en observar una propiedad en
un numero suficiente (no total) de casos singulares y de allí
inferir la ley universal.
2.3.3.3 Fundamento de la inducción
El fundamento de la inducción es la intuición de una esencia.
Cuando se observa una propiedad emanando de una
naturaleza se está captando un nexo necesario y por tanto, se
puede inferir una ley universal.

Más contenido relacionado

La actualidad más candente

LÓGICA PARA LA TOMA DE DECISIONES
LÓGICA PARA LA TOMA DE DECISIONES LÓGICA PARA LA TOMA DE DECISIONES
LÓGICA PARA LA TOMA DE DECISIONES CristianYoseri
 
Lógica para la toma de decisiones unidad ii 2016 (1)
Lógica para la toma de decisiones unidad ii 2016 (1)Lógica para la toma de decisiones unidad ii 2016 (1)
Lógica para la toma de decisiones unidad ii 2016 (1)esperanza garcia
 
Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016michelle vielledent
 
Logica para la toma de desiciones
Logica para la toma de desicionesLogica para la toma de desiciones
Logica para la toma de desicioneskelly leor
 
UNIDAD II LOGICA PARA LA TOMA DE DECISIONES
UNIDAD II LOGICA PARA LA TOMA DE DECISIONESUNIDAD II LOGICA PARA LA TOMA DE DECISIONES
UNIDAD II LOGICA PARA LA TOMA DE DECISIONESCristianYoseri
 
UNIDAD II CLAUDIA BELTRAN
UNIDAD II CLAUDIA BELTRANUNIDAD II CLAUDIA BELTRAN
UNIDAD II CLAUDIA BELTRANclaudiabm28
 
Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016gusmex
 
Kassandra figueroa
Kassandra figueroaKassandra figueroa
Kassandra figueroakass051214
 
Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016gusmex
 
Unidad II Logica para la toma de decisiones
Unidad II Logica para la toma de decisiones Unidad II Logica para la toma de decisiones
Unidad II Logica para la toma de decisiones UABC
 
Lógica para la toma de decisiones unidad ii 2016.mich
Lógica para la toma de decisiones unidad ii 2016.michLógica para la toma de decisiones unidad ii 2016.mich
Lógica para la toma de decisiones unidad ii 2016.michmichelle vielledent
 
Kassandra figueroa
Kassandra figueroaKassandra figueroa
Kassandra figueroakass051214
 
Logica para la toma de decisiones
Logica para la toma de decisionesLogica para la toma de decisiones
Logica para la toma de decisionesGeorgeth Gomez
 
Logica para la toma de desiciones
Logica para la toma de desicionesLogica para la toma de desiciones
Logica para la toma de desicionesJosue Ornelas
 

La actualidad más candente (20)

LÓGICA PARA LA TOMA DE DECISIONES
LÓGICA PARA LA TOMA DE DECISIONES LÓGICA PARA LA TOMA DE DECISIONES
LÓGICA PARA LA TOMA DE DECISIONES
 
Lógica para la toma de decisiones.
Lógica para la toma de decisiones. Lógica para la toma de decisiones.
Lógica para la toma de decisiones.
 
Lógica para la toma de decisiones unidad ii 2016 (1)
Lógica para la toma de decisiones unidad ii 2016 (1)Lógica para la toma de decisiones unidad ii 2016 (1)
Lógica para la toma de decisiones unidad ii 2016 (1)
 
Lógica axel
Lógica axelLógica axel
Lógica axel
 
Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016
 
Logica para la toma de desiciones
Logica para la toma de desicionesLogica para la toma de desiciones
Logica para la toma de desiciones
 
Point
PointPoint
Point
 
UNIDAD II LOGICA PARA LA TOMA DE DECISIONES
UNIDAD II LOGICA PARA LA TOMA DE DECISIONESUNIDAD II LOGICA PARA LA TOMA DE DECISIONES
UNIDAD II LOGICA PARA LA TOMA DE DECISIONES
 
UNIDAD II CLAUDIA BELTRAN
UNIDAD II CLAUDIA BELTRANUNIDAD II CLAUDIA BELTRAN
UNIDAD II CLAUDIA BELTRAN
 
Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016
 
Kassandra figueroa
Kassandra figueroaKassandra figueroa
Kassandra figueroa
 
Logica unidad 2
Logica unidad 2Logica unidad 2
Logica unidad 2
 
Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016
 
Unidad II Logica para la toma de decisiones
Unidad II Logica para la toma de decisiones Unidad II Logica para la toma de decisiones
Unidad II Logica para la toma de decisiones
 
Lógica para la toma de decisiones unidad ii 2016.mich
Lógica para la toma de decisiones unidad ii 2016.michLógica para la toma de decisiones unidad ii 2016.mich
Lógica para la toma de decisiones unidad ii 2016.mich
 
Logica 1
Logica 1Logica 1
Logica 1
 
Kassandra figueroa
Kassandra figueroaKassandra figueroa
Kassandra figueroa
 
Logica para la toma de decisiones
Logica para la toma de decisionesLogica para la toma de decisiones
Logica para la toma de decisiones
 
Logica unidad 2
Logica unidad 2Logica unidad 2
Logica unidad 2
 
Logica para la toma de desiciones
Logica para la toma de desicionesLogica para la toma de desiciones
Logica para la toma de desiciones
 

Destacado

ασκήσεις για εμπέδωση
ασκήσεις για εμπέδωσηασκήσεις για εμπέδωση
ασκήσεις για εμπέδωσηNansy Tzg
 
Apresentação1
Apresentação1Apresentação1
Apresentação1kksf
 
Keek search user name
Keek search user nameKeek search user name
Keek search user namewader987
 
Are my policies legal employment at will language under the nlrb
Are my policies legal     employment at will language under the nlrbAre my policies legal     employment at will language under the nlrb
Are my policies legal employment at will language under the nlrbAngie Atwood
 
What to Look For in a Billing Company
What to Look For in a Billing CompanyWhat to Look For in a Billing Company
What to Look For in a Billing CompanyCureMD
 
Hysi glosaio [autoguardado]
Hysi glosaio [autoguardado]Hysi glosaio [autoguardado]
Hysi glosaio [autoguardado]Juan Quintero
 
πρόσθεση και αφαίρεση με πάτημα στο 10 (2)
πρόσθεση και αφαίρεση με πάτημα στο 10 (2)πρόσθεση και αφαίρεση με πάτημα στο 10 (2)
πρόσθεση και αφαίρεση με πάτημα στο 10 (2)Nansy Tzg
 
Incidencia de la Segunda Residencia en el Espacio Rural (la Tabla de la Yedra)
Incidencia de la  Segunda  Residencia en el Espacio Rural (la Tabla de la Yedra)Incidencia de la  Segunda  Residencia en el Espacio Rural (la Tabla de la Yedra)
Incidencia de la Segunda Residencia en el Espacio Rural (la Tabla de la Yedra)Juan Martín Martín
 
The social and mobile relationship
The social and mobile relationshipThe social and mobile relationship
The social and mobile relationshipLisa Qualls
 
trabajo para los alumnos de secundaria
trabajo para los alumnos de secundariatrabajo para los alumnos de secundaria
trabajo para los alumnos de secundariaRebeca Pinto
 
130625searchenginegeneralletter
130625searchenginegeneralletter130625searchenginegeneralletter
130625searchenginegeneralletterGreg Sterling
 
Audience research
Audience researchAudience research
Audience researcha2media14f
 
02-03-2012 Inicia Gobernador Padrés, proyecto en materia de tecnología educat...
02-03-2012 Inicia Gobernador Padrés, proyecto en materia de tecnología educat...02-03-2012 Inicia Gobernador Padrés, proyecto en materia de tecnología educat...
02-03-2012 Inicia Gobernador Padrés, proyecto en materia de tecnología educat...Guillermo Padrés Elías
 
презентация никоненко михаил
презентация никоненко михаилпрезентация никоненко михаил
презентация никоненко михаилMichael Nikonenko
 

Destacado (17)

ασκήσεις για εμπέδωση
ασκήσεις για εμπέδωσηασκήσεις για εμπέδωση
ασκήσεις για εμπέδωση
 
торрент трекеры (2)1
торрент трекеры (2)1торрент трекеры (2)1
торрент трекеры (2)1
 
Apresentação1
Apresentação1Apresentação1
Apresentação1
 
Anfibios
AnfibiosAnfibios
Anfibios
 
Keek search user name
Keek search user nameKeek search user name
Keek search user name
 
Are my policies legal employment at will language under the nlrb
Are my policies legal     employment at will language under the nlrbAre my policies legal     employment at will language under the nlrb
Are my policies legal employment at will language under the nlrb
 
What to Look For in a Billing Company
What to Look For in a Billing CompanyWhat to Look For in a Billing Company
What to Look For in a Billing Company
 
La sociedad del siglo xix
La sociedad del siglo xixLa sociedad del siglo xix
La sociedad del siglo xix
 
Hysi glosaio [autoguardado]
Hysi glosaio [autoguardado]Hysi glosaio [autoguardado]
Hysi glosaio [autoguardado]
 
πρόσθεση και αφαίρεση με πάτημα στο 10 (2)
πρόσθεση και αφαίρεση με πάτημα στο 10 (2)πρόσθεση και αφαίρεση με πάτημα στο 10 (2)
πρόσθεση και αφαίρεση με πάτημα στο 10 (2)
 
Incidencia de la Segunda Residencia en el Espacio Rural (la Tabla de la Yedra)
Incidencia de la  Segunda  Residencia en el Espacio Rural (la Tabla de la Yedra)Incidencia de la  Segunda  Residencia en el Espacio Rural (la Tabla de la Yedra)
Incidencia de la Segunda Residencia en el Espacio Rural (la Tabla de la Yedra)
 
The social and mobile relationship
The social and mobile relationshipThe social and mobile relationship
The social and mobile relationship
 
trabajo para los alumnos de secundaria
trabajo para los alumnos de secundariatrabajo para los alumnos de secundaria
trabajo para los alumnos de secundaria
 
130625searchenginegeneralletter
130625searchenginegeneralletter130625searchenginegeneralletter
130625searchenginegeneralletter
 
Audience research
Audience researchAudience research
Audience research
 
02-03-2012 Inicia Gobernador Padrés, proyecto en materia de tecnología educat...
02-03-2012 Inicia Gobernador Padrés, proyecto en materia de tecnología educat...02-03-2012 Inicia Gobernador Padrés, proyecto en materia de tecnología educat...
02-03-2012 Inicia Gobernador Padrés, proyecto en materia de tecnología educat...
 
презентация никоненко михаил
презентация никоненко михаилпрезентация никоненко михаил
презентация никоненко михаил
 

Similar a Lógica para la toma de decisiones unidad ii 2016

Lógica para la toma de decisiones
Lógica para la toma de decisionesLógica para la toma de decisiones
Lógica para la toma de decisionesDavidFrndz
 
Logica para la toma de decisiones
Logica para la toma de decisionesLogica para la toma de decisiones
Logica para la toma de decisionesZAYRA URIBE SOTO
 
Logica para la toma de desiciones
Logica para la toma de desicionesLogica para la toma de desiciones
Logica para la toma de desicionesJosue Ornelas
 
Lógica para la toma de decisiones
Lógica para la toma de decisiones Lógica para la toma de decisiones
Lógica para la toma de decisiones Josue Ornelas
 
Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016orlando acosta silvas
 
Lógica para la toma de decisiones unidad ii 2016 rodolfo garcia roa
Lógica para la toma de decisiones unidad ii 2016 rodolfo garcia roaLógica para la toma de decisiones unidad ii 2016 rodolfo garcia roa
Lógica para la toma de decisiones unidad ii 2016 rodolfo garcia roaRodolfo Garcia Roa
 
Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016luis enrique perez ramirez
 
Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016esperanza garcia
 

Similar a Lógica para la toma de decisiones unidad ii 2016 (11)

Lógica axel
Lógica axelLógica axel
Lógica axel
 
Lógica para la toma de decisiones
Lógica para la toma de decisionesLógica para la toma de decisiones
Lógica para la toma de decisiones
 
Logica unidad 2
Logica unidad 2Logica unidad 2
Logica unidad 2
 
Logica para la toma de decisiones
Logica para la toma de decisionesLogica para la toma de decisiones
Logica para la toma de decisiones
 
Logica para la toma de desiciones
Logica para la toma de desicionesLogica para la toma de desiciones
Logica para la toma de desiciones
 
Lógica para la toma de decisiones
Lógica para la toma de decisiones Lógica para la toma de decisiones
Lógica para la toma de decisiones
 
Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016
 
Lógica para la toma de decisiones unidad ii 2016 rodolfo garcia roa
Lógica para la toma de decisiones unidad ii 2016 rodolfo garcia roaLógica para la toma de decisiones unidad ii 2016 rodolfo garcia roa
Lógica para la toma de decisiones unidad ii 2016 rodolfo garcia roa
 
Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016
 
Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016Lógica para la toma de decisiones unidad ii 2016
Lógica para la toma de decisiones unidad ii 2016
 
Logica para la toma de desiciones
Logica para la toma de desicionesLogica para la toma de desiciones
Logica para la toma de desiciones
 

Último

Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxdanalikcruz2000
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxOscarEduardoSanchezC
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptELENA GALLARDO PAÚLS
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFlor Idalia Espinoza Ortega
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptxJunkotantik
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteJuan Hernandez
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadAlejandrino Halire Ccahuana
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Baker Publishing Company
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...fcastellanos3
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
CULTURA NAZCA, presentación en aula para compartir
CULTURA NAZCA, presentación en aula para compartirCULTURA NAZCA, presentación en aula para compartir
CULTURA NAZCA, presentación en aula para compartirPaddySydney1
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialpatriciaines1993
 
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtweBROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwealekzHuri
 

Último (20)

Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamica
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptx
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parte
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdad
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
CULTURA NAZCA, presentación en aula para compartir
CULTURA NAZCA, presentación en aula para compartirCULTURA NAZCA, presentación en aula para compartir
CULTURA NAZCA, presentación en aula para compartir
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundial
 
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtweBROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
 

Lógica para la toma de decisiones unidad ii 2016

  • 1. Universidad Autónoma de Baja California Facultad de Ciencias Administrativas Segundo Semestre Lógica para la toma de decisiones Unidad II Lógica Formal TORRES ESPINOZA LESLIE VANESSA
  • 2. Propósito general del curso Permitirá desarrollar en el alumno el pensamiento lógico que facilite el raciocinio paralatomadedecisionesqueaplicaráen todaslasáreasdelavida. Competencia del curso Aplicar el razonamiento ordenado que permita interpretar mejor la solución de problemas por medio del entendimiento de la naturaleza formal del razonamiento. Evidencia de desempeño Elaborar un diagrama de flujo de un proceso dentro de una organización real que facilite la toma de decisiones.
  • 3. Competencia Formular razonamientos empleando métodos lógicos para tomar decisiones en forma racional, Con compromiso y positivismo. Contenido Duración: 10 horas 2.1 Concepto 2.1.1 Definición y función del concepto 2.1.2 Extensión y contenido delosconceptos 2.1.3 Clasificación Metódicadelosconceptos Unidad II: Lógica Formal
  • 4. 2.2 Juicio 2.2.1 El juicio como estructura de pensamiento 2.2.2 La clasificación de los juicios 2.2.3 Clasificación por categorías 2.2.4 Juicios tradicionales 2.3 El razonamiento y los métodos 2.3.1 Las inferencias simples o inmediatas 2.3.2 El razonamiento o método deductivo 2.3.2.1 El instrumento Silogístico de la deducción 2.3.2.2 Formas y figuras del silogismo 2.3.2.3 Modos y valor del silogismo 2.3.2.4 Los sofismas de la deducción
  • 5. 2.3.3 El razonamiento o método inductivo 2.3.3.1 Definición e importancia de la inducción 2.3.3.2 Clases de inducción 2.3.3.3 Fundamento de la inducción
  • 6. 2.1 Concepto 2.1.1 Definición y función del concepto El concepto es la primera verdad en el proceso del conocer: una primera forma lógica (cálida) aprehensiva y captadora. Etimológicamente, concepto es recipiente o receptáculo. El concepto es todo lo que sabemos acerca de las cosas. Los conceptos no son los nombres de las cosas. Los conceptos no son meras ideas.
  • 7.  El concepto es el conocimiento de lo que se llama objeto.  El concepto es la fijación científica de una materia de conocimiento.  El concepto es un predicado de posibles juicios. ¿QUÉES UN CONCEPTO?
  • 8.  El punto de vista idéntico desde el cual agrupamos una clase de objetos con ciertas diferencias entre ellos.  Para hacer lo anterior, tenemos que saber separar las características esenciales (fundamentales) de las no esenciales (accidentales).  Las características esenciales de un grupo de objetos son aquellas que hacen que esa cosa sea lo que es y lo que constituirá su definición.  Las características accidentales son las que pueden darse de una manera o de otra o no darse del todo y que no intervienen en la función esencial del objeto (color, tamaño, marca, etc.) ¿QUÉ ES UN CONCEPTO?
  • 9.  El concepto tiene como función generalizar, o clasificar los individuos, cualidades y casos concretos conocidos en la experiencia agrupando las cosas o los aspectos y cualidades comunes a muchos y se expresa y aplica mediante diversas formas gramaticales del lenguaje. ¿Cuál es la función del concepto?
  • 10. Cualidades esenciales (fundamentales):  La función principal de este objeto es transportar ropa u objetos diversos en un viaje.  Una maleta debe ser de un material resistente y de un tamaño de mediano a grande.  Un elemento esencial de una maleta es que tenga agarraderas, asas o correas para poderla cargar y que se pueda cerrar completamente.
  • 11. Cualidades no esenciales (accidentales): Ser de piel, plástico, lona, etc. Ser de color rojo, gris, negro, azul, etc. Tener ruedas o no. Ser de estructura dura o blanda. Ser Samsonite, Tous, etc.
  • 12.  Reloj  Fundamentales (Función Principal)  1-Marcar la hora  2-Pila (Fuente de energía)  3-Numeros  Accidentales  1-Rojo, azul, Café.  2-Casio, puma, omega  3-plastico, piel.  Carro  Fundamentales  1-Transportar personas  Motor  Llanta  Accidentales  El Color  La marca  El material Silla Fundamentales 1-Sentarse 2-Que se pueda sostener 3-Que tenga respaldo Accidentales 1-Color 2-Colchon 3-Comoda
  • 13. 2.1.2 Extensión y contenido de los conceptos Extensión de un concepto es el alcance de lo que él expresa. Extensión de un concepto es el número de casos que abarca. Extensión de un concepto son los miembros comprendidos en una misma predicación. El contenido de los conceptos son las notas propias que los distinguen o caracterizan. Contenido de un concepto es la intención manifestada por éste.
  • 14.  La extensión de un concepto son todos los casos que abarca.  Todos los diversos objetos que comparten una o varias características esenciales.  En este caso, todas estas maletas, aunque diferentes unas de otras, todas tienen las características esenciales antes mencionadas.
  • 15.  Son las palabras o notas que le podemos añadir a una idea o concepto para hacerlo más específica.  Maleta, roja, con ruedas, de plástico, Samsonite.  En este caso las palabras: roja, con ruedas, de plástico y Samsonite son el contenido del concepto.
  • 16.  A mayor contenido la extensión del concepto será menor.  A menor contenido mayor extensión.  No es igual la extensión del concepto “maleta” que la del concepto “maleta de lona mediana”. Proporcionalidad entre la extensión y el contenido de los conceptos.
  • 17.  Escribe la extensión de: fruta, flor, pelota y perro.  Fruta  Fruta Naranja  Fruta Naranja Agria  Fruta Naranja Agria con semilla  Fruta Naranja Agria con semilla Madura.  Flor  Flor Azul  Flor Azul Grande  Flor Azul Grande Con espinas  Flor Azul Grande Con espinas y hojas  Pelota  Pelota Grande  Pelota Grande Verde  Pelota Grande Verde
  • 18. 2.1.3 Clasificación Metódica de los conceptos Por su contenido 1. Simple, el que consta de una sola nota, por ejemplo, ser, uno, algo (el ser es uno, algo). 2. Compuesto, el que tiene varias notas, por ejemplo, ser racional, figura regular. 3. Abstracto, el que se refiere sólo a la cualidad, sin el sujeto que la soporta, por ejemplo, verdad, bondad. 4. Concreto, el que comprende la cualidad y portador conjuntamente, por ejemplo, mamífero, ovíparo.
  • 19. 5. Absoluto, el de representación inteligible (que puede ser entendido) univoca, por ejemplo, dinero, vejez. 6. Relativo, el de inteligibilidad que se corresponde, por ejemplo, mayor, menor, padre. 7. Homogéneo, el que se refiere a un mismo género o clase, por ejemplo, pentágono, hexágono. 8. Heterogéneo, el que se refiere a distintas clases genéricas, por ejemplo, mamíferos y aves.
  • 20. 2.1.3 Clasificación Metódica de los conceptos Por su extensión 1. Singular, el que se aplica a la individualidad, por ejemplo, Cuauhtemoc, gas neón. 2. Particular, el que comprende más de la unidad sin llegar a la totalidad, por ejemplo, animal mamífero. 3. Universal, el que abarca la totalidad de los casos indistributivamente, por ejemplo, naturaleza, mineral. 4. Colectivo, el que comprende una unidad de la pluralidad, por ejemplo, manada, cardumen.
  • 21. 2.1.3 Clasificación Metódica de los conceptos Una clasificación de objetos lógicos, como son los conceptos, deben atenerse estrictamente a su estructura lógica. En esta forma resultan tres clases de conceptos: Supraordenados Subordinados Coordinados
  • 22. Conceptos supraordenados Corresponden a los conceptos más elevados o genéricos. Más allá de éstos se encuentran los conceptos supremos. Por ejemplo: Supraordenados Supremos Genéricos Ser Metazoario Ser orgánico Vertebrado Mineral Pez
  • 23. Conceptos subordinados o específicos Quedarían en las partes bajas de ese ordenamiento (abajo en el orden), al ir descendiendo se van especificando hasta llegar a la individualidad. Por ejemplo: Cuerpo Cuerpo redondo Cilindro Cilindro oblicuo
  • 24. Conceptos coordinados Estos son los que guardan una mínima posición frente al supraordenado que les corresponde. Podríamos decir que entre sí son las especies del género. Por ejemplo: León Tigre Puma Pantera Son coordinados entre sí y subordinados de “felino”
  • 25. Ejercicio 2 Da un ejemplo de los siguientes conceptos: Simple = balón Compuesto = baloncesto Abstracto = Acertijo Concreto = ovíparo Absoluto = Cuadrado Relativo = Madre Homogéneo = agua y arena Heterogéneo Singular = Casa Particular = Universal = Avecedario Colectivo Supraordenados roca Subordinados mineral Coordinados zafiro
  • 26. 2.2 Juicio 2.2.1 El juicio como estructura de pensamiento El juicio es una forma de pensamiento o también operación del entendimiento que correlaciona dos conceptos, que los compara y los juzga. La expresión verbal del juicio es la proposición. Una proposición es una oración o frase informativa, declarativa o enunciativa.
  • 27. El juicio consta de dos partes: El sujeto El predicado El sujeto es la materia del juicio. El predicado es el punto de vista que nos permite hacer los enjuiciamientos.
  • 28. 2.2.2 La clasificación de los juicios Juicios de esencia y de existencia Juicios analíticos y sintéticos Juicios a priori y a posteriori Juicios sintéticos a priori
  • 29. Juicio de esencia Son juicios de esencia los que en el predicado señalan las notas esenciales del objeto sujeto del juicio. Por notas esenciales entendemos las más importantes, las que en verdad determinan o permiten distinguir al objeto o conceptuarlo unívocamente. Una característica de ellos sería que responden a la pregunta ¿qué es? Ejemplo: “El oro es un metal”.
  • 30. Juicio de existencia Son juicios de existencia los que en el predicado enuncian la forma de existir o presentarse el objeto o materia del juicio. Por forma de existir no debe entenderse estrictamente el carácter ideal o real de la existencia, sino las características que pueden atribuirse a los objetos. Una nota distintiva es que responderían a la pregunta ¿cómo es? Ejemplo: “El oro es muy dúctil”.
  • 31. Juicio analítico Llamo juicio analítico (dice Kant) aquel cuyo predicado P pertenece al sujeto S como algo contenido en él de un modo tácito. Juicio analítico es aquel cuyo predicado no hace sino descomponer las notas que en esencia pertenecen al sujeto (lo analiza). Ejemplo: “Toda línea está formada por infinito número de puntos”.
  • 32. Juicio sintético Llamo juicio sintético (dice Kant) aquel cuyo predicado P es completamente extraño al sujeto S, si bien se halla enlazado con él. Juicio sintético es aquel cuyo predicado agrega nuevas notas que no pertenecen en esencia al sujeto pero le convienen (lo amplía). Ejemplo: “La línea recta es la más corta entre dos puntos”.
  • 33. Juicio a priori Son juicios a priori los que valen con antelación a la experiencia, los que no se derivan de ella, sino que, al contrario, la posibilitan. Ejemplo: “Todo efecto tiene una causa”. Juicio a posteriori Son juicios a posteriori los que se derivan de la experiencia por observación, experimentación y verificación de los hechos mismos. Su validez radica en el nexo empírico. Ejemplo: “El calor derrite las grasas”.
  • 34. Juicio sintéticos a priori Juicios extensivos e informativos que no descansan en la experiencia sino en la pura razón. Ejemplo: “Todo movimiento es proporcional a la fuerza que lo imprime”.
  • 35. 2.2.3 Clasificación por categorías Por categorías De la cantidad De la cualidad De la relación De la modalidad Singulares Particulares Universales Afirmativos Negativos Infinitos Categóricos Hipotéticos Disyuntivos Problemáticos Asertóricos Apodícticos
  • 36. De la cantidad Singulares. Son aquellos que hacen referencia a un solo individuo de la especie. Ejemplo: Juan es leal. Particulares. Son aquellos que se refieren a varios objetos sin llegar a la totalidad, es decir, que se refieren tan solo a una parte del todo. Ejemplo: Algunos hombres son leales. Universales. Son aquellos que se refieren a todos los individuos de la especie. Ejemplo: Todos los hombres son racionales.
  • 37. De la cualidad Afirmativos. Son aquellos juicios que expresan la compatibilidad entre el sujeto y el predicado. Se realiza el predicado en el sujeto. Ejemplo: Los hombres son racionales. Negativos. Son aquellos que expresan la incompatibilidad entre el sujeto y el predicado. Dan como resultado que en la relación sujeto – predicado los separa entre sí. Ejemplo: Los animales no son piedras. (Quedan separados, negados) Infinitos.
  • 38. De la relación Categóricos. Son aquellos en los que la relación sujeto – predicado se nos ofrece sin condiciones. Son juicios no sujetos a otra condición. Ejemplo: Los minerales son seres inertes. (No lo condicionamos a nada). Hipotéticos. Son aquellos en los que la relación sujeto – predicado se establece condicionalmente. Se hace un enunciado cuya veracidad depende siempre de una condición. Ejemplo: Si llueve, la cosecha será buena. Disyuntivos. Son aquellos en los que se afirma alternativa o exclusivamente uno u otro predicado, o varios predicados. Ejemplo: Juan es estudiante o profesor.
  • 39. De la modalidad Problemáticos. Son aquellos que expresan una opinión no demostrada por lo que hay posibilidad que esa opinión sea verdadera o falsa. Ejemplo: Es posible que Juan sea locutor. Asertóricos. Son aquellos que expresan una verdad de hecho. El predicado se relaciona con el sujeto de una manera real. Ejemplo: Juan es locutor. Apodícticos. Aquellos que expresan una necesidad, es el juicio lógicamente necesario, no admiten contradicción. Ejemplo: Los hombres son seres racionales.
  • 40. 2.2.4 Juicios tradicionales 1. Juicio universal afirmativo, simbolizado con la vocal A, en el cual el predicado se identifica con todos los casos del sujeto. Ejemplo: “Todos los veracruzanos son mexicanos”. 2. Juicio universal negativo, simbolizado con la vocal E, en el cual el predicado es diverso de todos los casos del sujeto. Ejemplo: “ningún hombre es infalible”.
  • 41. 3. Juicio particular afirmativo, simbolizado con la vocal I, comprende lo mismo el caso singular (lo uno) que el plural (lo vario), pero sin llegar a lo total de los universales. Ejemplo: “Algunas plantas tienen flores”. 4. Juicio particular negativo, simbolizado con la vocal O, también comprende tanto lo singular como lo plural, pero sin llegar a lo total. Ejemplo: “Algunos hongos no son venenosos”.
  • 42. Ejercicio 3 Da un ejemplo de cada uno de los siguientes juicios: Esencia = Que es la paloma? Es un ave. Existencia como es la roca? Es muy dura Analítico dos mas dos es 4 Sintético la mesa es marron A priori A posteriori Sintético a posteriori De la cantidad: Singulares Andrea es Honesta Particulares Algunos niños son mentirosos Universales Todos los hombres son mortales. De la cualidad: Afirmativos Los animales son seres vivos. Negativos Las personas no son juguetes. Infinitos sigue
  • 43. De la relación: Categóricos - Los animales son seres vivos. Hipotéticos – si trabajo, ganare dinero. Disyuntivos – Maria es maestra o doctora. De la modalidad: Problemáticos -- Es posible que Alejandra sea Maestra. Asertóricos --- Alejandra es Maestra. Apodícticos – Los humanos son seres vivos Tradicionales: Juicio universal afirmativo – Todos los humanos son mortales. Juicio universal negativo – ningun animal marino puede volar. Juicio particular afirmativo – Algunos animales son mamiferos. Juicio particular negativo – Algunas flores no tienen espinas.
  • 44. 2.3 El razonamiento y los métodos 2.3.1 Las inferencias simples o inmediatas Son breves y sencillos razonamientos que parten de una sola premisa. Con ellas damos a entender que la conclusión la obtenemos rápidamente a partir del juicio premisa que ya teníamos.
  • 45. Inferencias inmediatas por subalternación Estas son las más sencillas y se apoyan en que “ lo que vale para el todo vale para cada una de las partes”, o sea que de un juicio universal válido se pasa o se infiere su juicio particular referido a lo mismo. Es decir, se hace únicamente un cambio de cantidad (de lo universal a lo particular). Ejemplo: “Todos los textos son útiles”….es la premisa Luego, “Este texto es útil”……..es la conclusión Todas las pelotas son redonda– esta pelota es redonda.
  • 46. Inferencias inmediatas por oposición En las cuales cambia la cualidad por tratarse de opuestos, ya contrarios o ya contradictorios. Hay dos grupos de estas inferencias. En el primero, se pasa de la veracidad a la falsedad, en el segundo, se pasa de la falsedad a la veracidad. Cada grupo comprende cuatro tipos de estas inferencias en virtud de que se manejan los cuatro juicios tradicionales.
  • 47. Inferencias inmediatas por conversión Estas inferencias se obtienen haciendo un intercambio entre los términos del juicio (el sujeto de la premisa pasa a ser predicado de la conclusión y el predicado de la premisa para a ser sujeto de la conclusión). Existen dos clases de conversiones: 1. Por conversión simple. 2. Conversión por accidente.
  • 48. 1.Por conversión simple. Cambiar sujeto por predicado. Los juicios tipo E, I y O no ofrecen ningún problema en este tipo de inferencias, esto es, su valor de verdad no se altera si aplican esta conversión. En el caso de los juicio A, la cosa se complica: la conversión simple sí puede, en la gran mayoría de los casos, alterar el valor de verdad. Por ejemplo: Todos los alemanes son europeos (juicio A verdadero) Todos los europeos son alemanes conclusión falsa, por lo tanto, no acepta conversión simple. Ahora bien, en los otros tipos de juicios no hay alteración en el valor de verdad: I: Algunas naranjas son cítricas, por lo tanto, algo cítrico es una naranja. O: Algunos osos no son reptiles, por lo tanto, algunos reptiles no son osos. E: Ningún arquitecto es analfabeta, por lo tanto, nadie analfabeta es arquitecto.
  • 49. 2. Conversión por accidente. Consiste en cambiar el sujeto por el predicado y el cuantificador universal a particular. Los únicos juicios que aceptan esta conversión son los universales: A y E. Todo metal es maleable, por lo tanto, algo maleable es metal. Ningún sólido es indivisible, por lo tanto, algo indivisible no es sólido.
  • 50.  Ningún ave es cuadrúpedo. Por lo tanto, algún cuadrúpedo no es ave. (accidente)  Algún estudiante es responsable, Por lo tanto, alguien responsable es estudiante (conversion simple)
  • 51. Inferencias inmediatas por contraposición En las que el sujeto pasa a predicado y el predicado a sujeto cambiando en la conclusión a su contrario y contradictorio.
  • 52. 2.3.2 El razonamiento o método deductivo La deducción o método deductivo es la inferencia compuesta que parte de dos o más juicios llamados premisas para obtener otro llamado conclusión. 2.3.2.1 El instrumento silogístico de la deducción. Aristóteles define el silogismo como un razonamiento formado por tres juicios tales que, dados los dos primeros, el tercero resulta necesariamente.
  • 53. 2.3.2.2 Formas y figuras del silogismo Existen tres tipos de silogismos según la clase de sus juicios (como los de las categorías de la relación), a saber: categóricos, hipotéticos y disyuntivos. El silogismo categórico Este tipo de silogismo está formado por tres juicios categóricos, tres términos, cuatro figuras y diecinueve modos.
  • 54. De los juicios Consta de tres juicios categóricos colocados verticalmente. Los dos primeros reciben el nombre de premisas y el tercero el de conclusión. De los términos Consta de tres términos: mayor (P), menor (S) y medio (M), que, repetidos una vez, ocupan los lugares del sujeto y del predicado en los tres juicios.
  • 55. De las figuras Las figuras silogísticas son cuatro y se integran según la colocación del termino medio (M), de la siguiente manera: I II III IV MP PM MP PM SM SM MS MS SP SP SP SP
  • 56. 2.3.2.3 De los modos Los modos silogísticos son las distintas formas que toma el silogismo como resultado de combinar las cuatro clases de juicios (a e i o) con las cuatro figuras (4X4X4X4). Siendo válidos únicamente 19 repartidos entre las 4 figuras de la siguiente manera. Primera figura (4) Segunda figura (4) Tercera figura (6) Cuarta figura (5) aaa eae aii eio eae aee eio aoo aai eao iai aii oao eio aai aee Iai eao eio
  • 57. El silogismo hipotético El segundo tipo de silogismo es el hipotético, que puede ser hipotético puro si las dos premisas son juicios hipotéticos, o hipotético impuro si solo la primera premisa es hipotética. El silogismo disyuntivo El tercer tipo de silogismo es el disyuntivo, en el que la premisa mayor es un juicio disyuntivo, abarca solo dos modos: el Ponendo Tollens y el Tollendo Ponens.
  • 58. 2.3.2.4 Los sofismas de la deducción Sofisma es cualquier declaración falsa que aparenta haber sido obtenida mediante una metodología sistemática. También puede definirse de la siguiente manera: Sofisma es cualquier argumentación adulterada que se usa para defender una falacia. Una falacia es una declaración, noción, creencia, razonamiento o argumento basado en una deducción falsa, errónea o inválida.
  • 59. Sofisma por consiguiente Sofisma de accidente Sofisma de lo relativo Paralogismo del cuarto término Ignorancia de la cuestión Petición del principio El circulo vicioso
  • 60. 2.3.3 El razonamiento o método inductivo 2.3.3.1 Definición e importancia de la inducción La inducción es un proceso inverso al de la deducción. Si ésta parte de lo universal y concluye lo particular, la inducción va de lo particular a lo universal, es decir, parte de la observación de algunos casos singulares y obtiene una ley universal. Se puede definir de la siguiente manera: “Es el raciocinio en donde a partir de la observación de una relación constante entre fenómenos, se obtiene una relación esencial, y por lo tanto universal y necesaria entre dichos fenómenos. Raúl Gutiérrez Sáenz
  • 61. Importancia de la inducción Gracias a este tipo de raciocinio es como se obtienen las leyes de las ciencias experimentales. De ahí su máxima importancia en el tratamiento del conocimiento científico.
  • 62. 2.3.3.2 Clases de inducción Se acostumbra dividir la inducción en total y parcial. La inducción total consiste en observar todos los casos contenidos dentro de una clase, y a partir de allí expresar la propiedad captada en cada uno de esos casos. La inducción parcial consiste en observar una propiedad en un numero suficiente (no total) de casos singulares y de allí inferir la ley universal.
  • 63. 2.3.3.3 Fundamento de la inducción El fundamento de la inducción es la intuición de una esencia. Cuando se observa una propiedad emanando de una naturaleza se está captando un nexo necesario y por tanto, se puede inferir una ley universal.