SlideShare una empresa de Scribd logo
1 de 32
Descargar para leer sin conexión
Métodos y Técnicas
de integración
G. Edgar Mata Ortiz
El trabajo colaborativo es fundamental
para aprender, requiere una actitud de
compromiso de todos los integrantes
del equipo.
Resolución individual de
problemas
En forma complementaria
al aprendizaje colaborativo,
es indispensable que el
alumno haga frente, en
forma individual, a los
problemas de matemáticas
para desarrollar sus
competencias.
Las técnicas de
integración
Son un conjunto de
artificios matemáticos que
se aplican cuando no es
posible realizar una
integración directamente,
ya sea porque al
diferencial le faltan
variables o le sobran.
Las técnicas de
integración
Son un conjunto de
artificios matemáticos que
se aplican cuando no es
posible realizar una
integración directamente,
ya sea porque al
diferencial le faltan
variables o le sobran.
Las técnicas de
integración
En esta presentación se
explica y resuelve, paso a
paso, un ejemplo por el
método de:
Fracciones
Parciales
Fracciones Parciales
Esta técnica se basa en la
suma de fracciones
algebraicas. Consiste en
invertir el proceso:
En la operación directa se
obtiene el resultado de sumar
dos o más fracciones.
En las fracciones parciales se
conoce el resultado de la suma
y se desea determinar cuáles
fueron las fracciones que lo
produjeron.
Como en los ejemplos anteriores, no existe
ninguna fórmula que pueda aplicarse,
directamente, a esta integración.
Ejemplo:
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 =
Ejemplo:
𝒙 𝟑 − 𝒙 = 𝒙(𝒙 𝟐 − 𝟏)
El primer paso consiste en factorizar el denominador.
න
−3𝑥 − 1
𝒙 𝟑 − 𝒙
𝑑𝑥 =
= 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Ejemplo:
Las fracciones parciales son:
න
−3𝑥 − 1
𝒙 𝟑 − 𝒙
𝑑𝑥 =
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
Factores:
𝒙
𝒙 + 𝟏
(𝒙 − 𝟏)
Los numeradores de estas fracciones no los
conocemos, será necesario determinarlos.
Ejemplo:
La fracción original debe ser igual a las fracciones parciales
න
−3𝑥 − 1
𝒙 𝟑 − 𝒙
𝑑𝑥 =
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
Factores:
𝒙
𝒙 + 𝟏
(𝒙 − 𝟏)
Efectuamos la suma indicada en el lado derecho del signo de igual
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Ejemplo: Se efectúan operaciones algebraicas
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨 𝒙 𝟐
− 𝟏 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Ejemplo: Se efectúan operaciones algebraicas
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨 𝒙 𝟐 − 𝟏 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Vamos a tomar
esta expresión
para obtener
los valores de A,
B y C
Ejemplo: Se efectúan operaciones algebraicas
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
En este paso es útil tomar en consideración que ambos denominadores son iguales, podemos
pasar multiplicando uno de ellos al lado contrario del signo de igual, y se eliminan.
−𝟑𝒙 − 𝟏 =
(𝒙 𝟑
− 𝒙)(𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
Ejemplo: Se efectúan operaciones algebraicas
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
En este paso es útil tomar en consideración que ambos denominadores son iguales, podemos
pasar multiplicando uno de ellos al lado contrario del signo de igual, y se eliminan.
−𝟑𝒙 − 𝟏 =
(𝒙 𝟑
− 𝒙)(𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙)
𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
−𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
Ejemplo: Se agrupan términos semejantes
Primero los términos que tienen equis cuadrada, luego los que tienen equis, y al final los
términos independientes.
−𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐
− 𝑨 + 𝑩𝒙 𝟐
− 𝑩𝒙 + 𝑪𝒙 𝟐
+ 𝑪𝒙
−𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐
+ −𝑩 + 𝑪 𝒙 − 𝑨
Con la finalidad de igualar término por término, en este paso se considera que la
expresión del lado izquierdo del signo igual, al no tener término cuadrático es cero equis
cuadrada.
𝟎𝒙 𝟐
− 𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐
+ −𝑩 + 𝑪 𝒙 − 𝑨
Ejemplo: Se igualan los coeficientes
Los coeficientes de equis cuadrada:
𝟎𝒙 𝟐
− 𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐
+ −𝑩 + 𝑪 𝒙 − 𝑨
𝑨 + 𝑩 + 𝑪 = 𝟎
Los coeficientes de equis: −𝑩 + 𝑪 = −𝟑
Los términos independientes: −𝑨 = −𝟏
Se obtiene un sistema de tres ecuaciones con tres incógnitas.
Sistemas de 3 ecuaciones
con 3 incógnitas (3x3)
Ejemplo: El sistema de ecuaciones obtenido puede resolverse
por cualquiera de los numerosos métodos existentes.
𝑨 + 𝑩 + 𝑪 = 𝟎
−𝑩 + 𝑪 = −𝟑
−𝑨 = −𝟏
Explicaciones y ejemplos acerca de estos métodos pueden encontrarse en:
http://licmata-math.blogspot.mx/2014/10/solving-cramers-method-determinants.html
http://licmata-math.blogspot.mx/2012/10/gauss-jordan-3-ecuaciones.html
http://licmata-math.blogspot.mx/2014/10/5-tips-on-cramer-method.html
http://licmata-math.blogspot.mx/2013/11/linear-equation-systems-problem-solving.html
http://licmata-math.blogspot.mx/2011/10/formato-gauss-jordan-3x3.html
Sistemas de 2 ecuaciones
con 2 incógnitas (2x2)
Ejemplo: Resolución del sistema de ecuaciones.
𝑨 + 𝑩 + 𝑪 = 𝟎 → 𝟏 + 𝑩 + 𝑪 = 𝟎 ∴
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
−𝑨 = −𝟏 ∴ 𝑨 = 𝟏
En este caso el sistema de ecuaciones puede simplificarse gracias a que la
tercera ecuación nos proporciona directamente el valor de una de las
incógnitas: A.
El valor de A es uno, y al sustituirla en la primera ecuación obtenemos un
sistema de dos ecuaciones con dos incógnitas.
Sistema de dos ecuaciones
con dos incógnitas
Sistemas de 2 ecuaciones
con 2 incógnitas (2x2)
Ejemplo: Resolución del sistema de ecuaciones.
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
Sistema de dos ecuaciones
con dos incógnitas
Los métodos empleados en la resolución de sistemas 3x3
también pueden emplearse en sistemas de 2x2, sin embargo,
frecuentemente resulta más sencillo emplear otros métodos:
Método de Reducción
Método de Sustitución
Método de Igualación
Método Gráfico
Sistemas de 2 ecuaciones
con 2 incógnitas (2x2)
Ejemplo: Resolución del sistema de ecuaciones.
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
Sistema de dos ecuaciones
con dos incógnitas
En este ejemplo, debido a los coeficientes de las ecuaciones es
conveniente aplicar el:
Método de Reducción o de suma y resta
Se elige este método porque al sumar las dos ecuaciones, se
eliminará la incógnita B, obteniéndose una sencilla ecuación de
primer grado con una incógnita (C), de la que se despeja y
obtiene el valor de C.
Sistemas de 2 ecuaciones
con 2 incógnitas (2x2)
Ejemplo: Resolución del sistema de ecuaciones.
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
Sistema de dos ecuaciones
con dos incógnitas
Método de Reducción o de suma y resta
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
𝟐𝑪 = −𝟒
𝑪 =
−𝟒
𝟐
∴
Obtenemos el
valor de la
incógnita C
𝑪 = −𝟐
Sistemas de 2 ecuaciones
con 2 incógnitas (2x2)
Ejemplo: Resolución del sistema de ecuaciones.
Método de Reducción o de suma y resta
𝑩 + 𝑪 = −𝟏
−𝑩 + 𝑪 = −𝟑
𝟐𝑪 = −𝟒
𝑪 =
−𝟒
𝟐
∴
𝑪 = −𝟐
El valor de la incógnita C, se sustituye en cualquiera de las dos ecuaciones
que conforman el sistema de 2x2 y se despeja la incógnita faltante (B).
𝑩 + 𝑪 = −𝟏 → 𝑩 − 𝟐 = −𝟏 → 𝑩 = −𝟏 + 𝟐
𝑩 = 𝟏
Sistemas de 3 ecuaciones
con 3 incógnitas (3x3)
Ejemplo: No olvidemos que todo este proceso fue realizado
para determinar los valores de las tres incógnitas que
conforman el sistema original.
𝑨 + 𝑩 + 𝑪 = 𝟎
−𝑩 + 𝑪 = −𝟑
−𝑨 = −𝟏
Las soluciones fueron:
𝑨 = 𝟏 𝑪 = −𝟐𝑩 = 𝟏
Sistemas de 3 ecuaciones
con 3 incógnitas (3x3)
Ejemplo: Significado de las soluciones del sistema de 3x3
Las soluciones fueron:
𝑨 = 𝟏 𝑪 = −𝟐𝑩 = 𝟏
Estas soluciones son los
numeradores de las
fracciones parciales
planteadas para
descomponer la fracción
propia que se desea
integrar
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 =
Ejemplo: Ahora conocemos los numeradores de las fracciones parciales.
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝑨
𝒙
+
𝑩
𝒙 + 𝟏
+
𝑪
𝒙 − 𝟏
−𝟑𝒙 − 𝟏
𝒙 𝟑 − 𝒙
=
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
Ejemplo: En lugar de integrar la fracción original, se integrarán sus
fracciones parciales.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = න
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
𝑑𝑥
= න
1
𝑥
𝑑𝑥 + න
1
𝑥 + 1
𝑑𝑥 + න
−2
𝑥 − 1
𝑑𝑥
= න
𝑑𝑥
𝑥
+ න
𝑑𝑥
𝑥 + 1
− 2 න
𝑑𝑥
𝑥 − 1
Ejemplo: En lugar de integrar la fracción original,
se integrarán sus fracciones parciales.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = න
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
𝑑𝑥
= න
1
𝑥
𝑑𝑥 + න
1
𝑥 + 1
𝑑𝑥 + න
−2
𝑥 − 1
𝑑𝑥
= න
𝑑𝑥
𝑥
+ න
𝑑𝑥
𝑥 + 1
− 2 න
𝑑𝑥
𝑥 − 1
= ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝑙𝑛𝐶
Ejemplo: Aplicando propiedades de logaritmos
podemos simplificar el resultado.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = න
𝟏
𝒙
+
𝟏
𝒙 + 𝟏
+
−𝟐
𝒙 − 𝟏
𝑑𝑥
= ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝑙𝑛𝐶
= ln 𝑥 + ln 𝑥 + 1 + ln 𝑥 − 1 −2 + 𝑙𝑛𝐶
= ln 𝑥 𝑥 + 1 𝑥 − 1 −2
𝐶
= ln 𝐶
𝑥 𝑥 + 1
𝑥 − 1 2
Solución del problema:
El objetivo de las fracciones parciales es expresar una fracción propia que
no puede integrarse directamente, en sus fracciones parciales que sí
pueden integrase con alguna de las fórmulas básicas de integración.
න
−3𝑥 − 1
𝑥3 − 𝑥
𝑑𝑥 = ln 𝐶
𝑥 𝑥 + 1
𝑥 − 1 2
Mi 03   integración por fracciones parciales

Más contenido relacionado

La actualidad más candente

Resolucion problemas de movimiento ondulatorio
Resolucion problemas de movimiento ondulatorioResolucion problemas de movimiento ondulatorio
Resolucion problemas de movimiento ondulatorioJosé Miranda
 
Integracion numérica
Integracion numéricaIntegracion numérica
Integracion numéricaKike Prieto
 
Algebra lineal -_eduardo_espinoza_ramos
Algebra lineal -_eduardo_espinoza_ramosAlgebra lineal -_eduardo_espinoza_ramos
Algebra lineal -_eduardo_espinoza_ramosirwin eca eca
 
Solucionario demidovich tomo III
Solucionario demidovich tomo IIISolucionario demidovich tomo III
Solucionario demidovich tomo IIIDarwin Chilan L
 
Homomorfismo de monoide y de cuerpo
Homomorfismo de monoide y de cuerpoHomomorfismo de monoide y de cuerpo
Homomorfismo de monoide y de cuerpoPatricia Herrera
 
Ecuaciones diferenciales _parciales
Ecuaciones diferenciales _parcialesEcuaciones diferenciales _parciales
Ecuaciones diferenciales _parcialesSabena29
 
5.metodo del punto fijo
5.metodo del punto fijo5.metodo del punto fijo
5.metodo del punto fijorjvillon
 
Aplicaciones de ecuaciones diferenciales
Aplicaciones de ecuaciones diferencialesAplicaciones de ecuaciones diferenciales
Aplicaciones de ecuaciones diferencialesvictormanuelmar
 
EJERCICIOS CON LA ECUACION DE CAUCHY RIEMANN DEL 1 AL 15 (1).pdf
EJERCICIOS CON LA ECUACION DE CAUCHY RIEMANN DEL 1 AL 15 (1).pdfEJERCICIOS CON LA ECUACION DE CAUCHY RIEMANN DEL 1 AL 15 (1).pdf
EJERCICIOS CON LA ECUACION DE CAUCHY RIEMANN DEL 1 AL 15 (1).pdfgianella57
 
MAT150-U2-2 Diferencial total-Derivada total.pdf
MAT150-U2-2 Diferencial total-Derivada total.pdfMAT150-U2-2 Diferencial total-Derivada total.pdf
MAT150-U2-2 Diferencial total-Derivada total.pdfluis calizaya
 
5.4 integrales en_coordenadas_polares
5.4 integrales en_coordenadas_polares5.4 integrales en_coordenadas_polares
5.4 integrales en_coordenadas_polaresortari2014
 
Formulario de Calculo Diferencial-Integral
Formulario de Calculo Diferencial-IntegralFormulario de Calculo Diferencial-Integral
Formulario de Calculo Diferencial-IntegralErick Chevez
 

La actualidad más candente (20)

Resolucion problemas de movimiento ondulatorio
Resolucion problemas de movimiento ondulatorioResolucion problemas de movimiento ondulatorio
Resolucion problemas de movimiento ondulatorio
 
Propagación de la incertidumbre
Propagación de la incertidumbrePropagación de la incertidumbre
Propagación de la incertidumbre
 
Serie de fourier
Serie de fourierSerie de fourier
Serie de fourier
 
Integracion numérica
Integracion numéricaIntegracion numérica
Integracion numérica
 
Algebra lineal -_eduardo_espinoza_ramos
Algebra lineal -_eduardo_espinoza_ramosAlgebra lineal -_eduardo_espinoza_ramos
Algebra lineal -_eduardo_espinoza_ramos
 
Solucionario demidovich tomo III
Solucionario demidovich tomo IIISolucionario demidovich tomo III
Solucionario demidovich tomo III
 
Homomorfismo de monoide y de cuerpo
Homomorfismo de monoide y de cuerpoHomomorfismo de monoide y de cuerpo
Homomorfismo de monoide y de cuerpo
 
Ecuaciones diferenciales _parciales
Ecuaciones diferenciales _parcialesEcuaciones diferenciales _parciales
Ecuaciones diferenciales _parciales
 
Regla de la cadena
Regla de la cadenaRegla de la cadena
Regla de la cadena
 
5.metodo del punto fijo
5.metodo del punto fijo5.metodo del punto fijo
5.metodo del punto fijo
 
Relaciones
RelacionesRelaciones
Relaciones
 
Integrales complejas
Integrales complejasIntegrales complejas
Integrales complejas
 
Aplicaciones de ecuaciones diferenciales
Aplicaciones de ecuaciones diferencialesAplicaciones de ecuaciones diferenciales
Aplicaciones de ecuaciones diferenciales
 
Aplicaciones funciones vectoriales
Aplicaciones funciones vectorialesAplicaciones funciones vectoriales
Aplicaciones funciones vectoriales
 
EJERCICIOS CON LA ECUACION DE CAUCHY RIEMANN DEL 1 AL 15 (1).pdf
EJERCICIOS CON LA ECUACION DE CAUCHY RIEMANN DEL 1 AL 15 (1).pdfEJERCICIOS CON LA ECUACION DE CAUCHY RIEMANN DEL 1 AL 15 (1).pdf
EJERCICIOS CON LA ECUACION DE CAUCHY RIEMANN DEL 1 AL 15 (1).pdf
 
MAT150-U2-2 Diferencial total-Derivada total.pdf
MAT150-U2-2 Diferencial total-Derivada total.pdfMAT150-U2-2 Diferencial total-Derivada total.pdf
MAT150-U2-2 Diferencial total-Derivada total.pdf
 
5.4 integrales en_coordenadas_polares
5.4 integrales en_coordenadas_polares5.4 integrales en_coordenadas_polares
5.4 integrales en_coordenadas_polares
 
Tabla de derivadas e integrales
Tabla de derivadas e integralesTabla de derivadas e integrales
Tabla de derivadas e integrales
 
Ecuación de Schrodinger
Ecuación de SchrodingerEcuación de Schrodinger
Ecuación de Schrodinger
 
Formulario de Calculo Diferencial-Integral
Formulario de Calculo Diferencial-IntegralFormulario de Calculo Diferencial-Integral
Formulario de Calculo Diferencial-Integral
 

Similar a Mi 03 integración por fracciones parciales

Integ by part frac01
Integ by part frac01Integ by part frac01
Integ by part frac01Edgar Mata
 
Mi 03 integration by partial fractions
Mi 03   integration by partial fractionsMi 03   integration by partial fractions
Mi 03 integration by partial fractionsEdgar Mata
 
Mi 03 partial fractions integration 01
Mi 03 partial fractions integration 01Mi 03 partial fractions integration 01
Mi 03 partial fractions integration 01Edgar Mata
 
Examen unidad iii
Examen unidad iiiExamen unidad iii
Examen unidad iiiadolfop692
 
1- Sistemas de Ecuaciones Lineales.pdf
1- Sistemas de Ecuaciones Lineales.pdf1- Sistemas de Ecuaciones Lineales.pdf
1- Sistemas de Ecuaciones Lineales.pdfMarquitosQuiroga
 
Determinantes
DeterminantesDeterminantes
DeterminantesDaniel
 
DIDCLTFCIMPROPIAS-octubre 23 2022-II-TELLO GODOY.pptx
DIDCLTFCIMPROPIAS-octubre 23 2022-II-TELLO GODOY.pptxDIDCLTFCIMPROPIAS-octubre 23 2022-II-TELLO GODOY.pptx
DIDCLTFCIMPROPIAS-octubre 23 2022-II-TELLO GODOY.pptxJulioRodrguezBerroca1
 
Oblique triangles interesting example
Oblique triangles interesting exampleOblique triangles interesting example
Oblique triangles interesting exampleEdgar Mata
 
Matematica daniel parra
Matematica daniel parraMatematica daniel parra
Matematica daniel parraDaniel Parra
 
Resumen psu matemática 2016
Resumen psu matemática 2016Resumen psu matemática 2016
Resumen psu matemática 2016Sergio Barrios
 
SISTEMA DE DOS ECUACIONES utilizando difentes petodos para solucionar.pptx
SISTEMA DE DOS ECUACIONES utilizando difentes petodos para solucionar.pptxSISTEMA DE DOS ECUACIONES utilizando difentes petodos para solucionar.pptx
SISTEMA DE DOS ECUACIONES utilizando difentes petodos para solucionar.pptxDemsshillCoutino
 
Confessssssssssssssssssssss_sis_ecu.pptx
Confessssssssssssssssssssss_sis_ecu.pptxConfessssssssssssssssssssss_sis_ecu.pptx
Confessssssssssssssssssssss_sis_ecu.pptxZuriJimnez1
 
Semianual_Álgebra_semana6.pdf
Semianual_Álgebra_semana6.pdfSemianual_Álgebra_semana6.pdf
Semianual_Álgebra_semana6.pdfPetuniaofc
 

Similar a Mi 03 integración por fracciones parciales (20)

Integ by part frac01
Integ by part frac01Integ by part frac01
Integ by part frac01
 
Mi 03 integration by partial fractions
Mi 03   integration by partial fractionsMi 03   integration by partial fractions
Mi 03 integration by partial fractions
 
Mi 03 partial fractions integration 01
Mi 03 partial fractions integration 01Mi 03 partial fractions integration 01
Mi 03 partial fractions integration 01
 
Ecuaciones de matrices (INFORME)
Ecuaciones de matrices (INFORME)Ecuaciones de matrices (INFORME)
Ecuaciones de matrices (INFORME)
 
Diferenciación e Integración Numérica
Diferenciación e Integración NuméricaDiferenciación e Integración Numérica
Diferenciación e Integración Numérica
 
Examen unidad iii
Examen unidad iiiExamen unidad iii
Examen unidad iii
 
Determinantes
DeterminantesDeterminantes
Determinantes
 
1- Sistemas de Ecuaciones Lineales.pdf
1- Sistemas de Ecuaciones Lineales.pdf1- Sistemas de Ecuaciones Lineales.pdf
1- Sistemas de Ecuaciones Lineales.pdf
 
Determinantes
DeterminantesDeterminantes
Determinantes
 
DIDCLTFCIMPROPIAS-octubre 23 2022-II-TELLO GODOY.pptx
DIDCLTFCIMPROPIAS-octubre 23 2022-II-TELLO GODOY.pptxDIDCLTFCIMPROPIAS-octubre 23 2022-II-TELLO GODOY.pptx
DIDCLTFCIMPROPIAS-octubre 23 2022-II-TELLO GODOY.pptx
 
Integrales ciclicas
Integrales ciclicasIntegrales ciclicas
Integrales ciclicas
 
Oblique triangles interesting example
Oblique triangles interesting exampleOblique triangles interesting example
Oblique triangles interesting example
 
Matematica daniel parra
Matematica daniel parraMatematica daniel parra
Matematica daniel parra
 
Resumen psu matemática 2016
Resumen psu matemática 2016Resumen psu matemática 2016
Resumen psu matemática 2016
 
SISTEMA DE DOS ECUACIONES utilizando difentes petodos para solucionar.pptx
SISTEMA DE DOS ECUACIONES utilizando difentes petodos para solucionar.pptxSISTEMA DE DOS ECUACIONES utilizando difentes petodos para solucionar.pptx
SISTEMA DE DOS ECUACIONES utilizando difentes petodos para solucionar.pptx
 
Confessssssssssssssssssssss_sis_ecu.pptx
Confessssssssssssssssssssss_sis_ecu.pptxConfessssssssssssssssssssss_sis_ecu.pptx
Confessssssssssssssssssssss_sis_ecu.pptx
 
14_MATRIZ INVERSA AL 2022-2.pdf
14_MATRIZ INVERSA AL 2022-2.pdf14_MATRIZ INVERSA AL 2022-2.pdf
14_MATRIZ INVERSA AL 2022-2.pdf
 
Números reales
Números realesNúmeros reales
Números reales
 
Números reales
Números realesNúmeros reales
Números reales
 
Semianual_Álgebra_semana6.pdf
Semianual_Álgebra_semana6.pdfSemianual_Álgebra_semana6.pdf
Semianual_Álgebra_semana6.pdf
 

Más de Edgar Mata

Activity 12 c numb
Activity 12 c numbActivity 12 c numb
Activity 12 c numbEdgar Mata
 
Pw roo complex numbers 2021
Pw roo complex numbers 2021Pw roo complex numbers 2021
Pw roo complex numbers 2021Edgar Mata
 
Ar complex num 2021
Ar complex num 2021Ar complex num 2021
Ar complex num 2021Edgar Mata
 
Formato 1 1-limits - solved example 01
Formato 1 1-limits - solved example 01Formato 1 1-limits - solved example 01
Formato 1 1-limits - solved example 01Edgar Mata
 
Activity 1 1 part 2 exer ea2021
Activity 1 1 part 2 exer ea2021Activity 1 1 part 2 exer ea2021
Activity 1 1 part 2 exer ea2021Edgar Mata
 
Problem identification 2021
Problem identification 2021Problem identification 2021
Problem identification 2021Edgar Mata
 
Formato 1 1-limits ea2021
Formato 1 1-limits ea2021Formato 1 1-limits ea2021
Formato 1 1-limits ea2021Edgar Mata
 
Activity 1 1 real numbers
Activity 1 1 real numbersActivity 1 1 real numbers
Activity 1 1 real numbersEdgar Mata
 
Activity 1 1 limits and continuity ea2021
Activity 1 1 limits and continuity ea2021Activity 1 1 limits and continuity ea2021
Activity 1 1 limits and continuity ea2021Edgar Mata
 
Course presentation differential calculus ea2021
Course presentation differential calculus ea2021Course presentation differential calculus ea2021
Course presentation differential calculus ea2021Edgar Mata
 
Course presentation linear algebra ea2021
Course presentation linear algebra ea2021Course presentation linear algebra ea2021
Course presentation linear algebra ea2021Edgar Mata
 
Formato cramer 3x3
Formato cramer 3x3Formato cramer 3x3
Formato cramer 3x3Edgar Mata
 
Exercise 2 2 - area under the curve 2020
Exercise 2 2 - area under the curve 2020Exercise 2 2 - area under the curve 2020
Exercise 2 2 - area under the curve 2020Edgar Mata
 
Exercise 4 1 - vector algebra
Exercise 4 1 - vector algebraExercise 4 1 - vector algebra
Exercise 4 1 - vector algebraEdgar Mata
 
Exercise 3 2 - cubic function
Exercise 3 2 - cubic functionExercise 3 2 - cubic function
Exercise 3 2 - cubic functionEdgar Mata
 
Problemas cramer 3x3 nl
Problemas cramer 3x3 nlProblemas cramer 3x3 nl
Problemas cramer 3x3 nlEdgar Mata
 
Cramer method in excel
Cramer method in excelCramer method in excel
Cramer method in excelEdgar Mata
 
Cramer method sd2020
Cramer method sd2020Cramer method sd2020
Cramer method sd2020Edgar Mata
 
Exercise 2 1 - area under the curve 2020
Exercise 2 1 - area under the curve 2020Exercise 2 1 - area under the curve 2020
Exercise 2 1 - area under the curve 2020Edgar Mata
 
Template 4 1 word problems 2 unk 2020
Template 4 1 word problems 2 unk 2020Template 4 1 word problems 2 unk 2020
Template 4 1 word problems 2 unk 2020Edgar Mata
 

Más de Edgar Mata (20)

Activity 12 c numb
Activity 12 c numbActivity 12 c numb
Activity 12 c numb
 
Pw roo complex numbers 2021
Pw roo complex numbers 2021Pw roo complex numbers 2021
Pw roo complex numbers 2021
 
Ar complex num 2021
Ar complex num 2021Ar complex num 2021
Ar complex num 2021
 
Formato 1 1-limits - solved example 01
Formato 1 1-limits - solved example 01Formato 1 1-limits - solved example 01
Formato 1 1-limits - solved example 01
 
Activity 1 1 part 2 exer ea2021
Activity 1 1 part 2 exer ea2021Activity 1 1 part 2 exer ea2021
Activity 1 1 part 2 exer ea2021
 
Problem identification 2021
Problem identification 2021Problem identification 2021
Problem identification 2021
 
Formato 1 1-limits ea2021
Formato 1 1-limits ea2021Formato 1 1-limits ea2021
Formato 1 1-limits ea2021
 
Activity 1 1 real numbers
Activity 1 1 real numbersActivity 1 1 real numbers
Activity 1 1 real numbers
 
Activity 1 1 limits and continuity ea2021
Activity 1 1 limits and continuity ea2021Activity 1 1 limits and continuity ea2021
Activity 1 1 limits and continuity ea2021
 
Course presentation differential calculus ea2021
Course presentation differential calculus ea2021Course presentation differential calculus ea2021
Course presentation differential calculus ea2021
 
Course presentation linear algebra ea2021
Course presentation linear algebra ea2021Course presentation linear algebra ea2021
Course presentation linear algebra ea2021
 
Formato cramer 3x3
Formato cramer 3x3Formato cramer 3x3
Formato cramer 3x3
 
Exercise 2 2 - area under the curve 2020
Exercise 2 2 - area under the curve 2020Exercise 2 2 - area under the curve 2020
Exercise 2 2 - area under the curve 2020
 
Exercise 4 1 - vector algebra
Exercise 4 1 - vector algebraExercise 4 1 - vector algebra
Exercise 4 1 - vector algebra
 
Exercise 3 2 - cubic function
Exercise 3 2 - cubic functionExercise 3 2 - cubic function
Exercise 3 2 - cubic function
 
Problemas cramer 3x3 nl
Problemas cramer 3x3 nlProblemas cramer 3x3 nl
Problemas cramer 3x3 nl
 
Cramer method in excel
Cramer method in excelCramer method in excel
Cramer method in excel
 
Cramer method sd2020
Cramer method sd2020Cramer method sd2020
Cramer method sd2020
 
Exercise 2 1 - area under the curve 2020
Exercise 2 1 - area under the curve 2020Exercise 2 1 - area under the curve 2020
Exercise 2 1 - area under the curve 2020
 
Template 4 1 word problems 2 unk 2020
Template 4 1 word problems 2 unk 2020Template 4 1 word problems 2 unk 2020
Template 4 1 word problems 2 unk 2020
 

Último

Introduction to Satellite Communication_esp_FINAL.ppt
Introduction to Satellite Communication_esp_FINAL.pptIntroduction to Satellite Communication_esp_FINAL.ppt
Introduction to Satellite Communication_esp_FINAL.pptReYMaStERHD
 
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheAportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheElisaLen4
 
Desigualdades e inecuaciones-convertido.pdf
Desigualdades e inecuaciones-convertido.pdfDesigualdades e inecuaciones-convertido.pdf
Desigualdades e inecuaciones-convertido.pdfRonaldLozano11
 
FUNCION DE ESTADO EN LA TERMODINAMICA.pdf
FUNCION DE ESTADO EN LA TERMODINAMICA.pdfFUNCION DE ESTADO EN LA TERMODINAMICA.pdf
FUNCION DE ESTADO EN LA TERMODINAMICA.pdfalfredoivan1
 
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf  PARA TRABAJO SEGUROATS-FORMATO cara.pdf  PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf PARA TRABAJO SEGUROalejandrocrisostomo2
 
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTOPRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTOwillanpedrazaperez
 
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCarlosGabriel96
 
Sistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptxSistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptx170766
 
Presentación de Redes de alcantarillado y agua potable
Presentación de Redes de alcantarillado y agua potablePresentación de Redes de alcantarillado y agua potable
Presentación de Redes de alcantarillado y agua potableFabricioMogroMantill
 
Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...Dr. Edwin Hernandez
 
ingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptxingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptxjhorbycoralsanchez
 
Cereales tecnología de los alimentos. Cereales
Cereales tecnología de los alimentos. CerealesCereales tecnología de los alimentos. Cereales
Cereales tecnología de los alimentos. Cerealescarlosjuliogermanari1
 
SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONAL
SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONALSESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONAL
SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONALEdwinC23
 
semana-08-clase-transformadores-y-norma-eep.ppt
semana-08-clase-transformadores-y-norma-eep.pptsemana-08-clase-transformadores-y-norma-eep.ppt
semana-08-clase-transformadores-y-norma-eep.pptKelinnRiveraa
 
Quimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfQuimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfs7yl3dr4g0n01
 
Clasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docxClasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docxwilliam801689
 
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZgustavoiashalom
 
Suelo, tratamiento saneamiento y mejoramiento
Suelo, tratamiento saneamiento y mejoramientoSuelo, tratamiento saneamiento y mejoramiento
Suelo, tratamiento saneamiento y mejoramientoluishumbertoalvarezv1
 
ELASTICIDAD PRECIO DE LA DEMaaanANDA.ppt
ELASTICIDAD PRECIO DE LA DEMaaanANDA.pptELASTICIDAD PRECIO DE LA DEMaaanANDA.ppt
ELASTICIDAD PRECIO DE LA DEMaaanANDA.pptRobertoCastao8
 
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVOESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVOeldermishti
 

Último (20)

Introduction to Satellite Communication_esp_FINAL.ppt
Introduction to Satellite Communication_esp_FINAL.pptIntroduction to Satellite Communication_esp_FINAL.ppt
Introduction to Satellite Communication_esp_FINAL.ppt
 
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheAportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
 
Desigualdades e inecuaciones-convertido.pdf
Desigualdades e inecuaciones-convertido.pdfDesigualdades e inecuaciones-convertido.pdf
Desigualdades e inecuaciones-convertido.pdf
 
FUNCION DE ESTADO EN LA TERMODINAMICA.pdf
FUNCION DE ESTADO EN LA TERMODINAMICA.pdfFUNCION DE ESTADO EN LA TERMODINAMICA.pdf
FUNCION DE ESTADO EN LA TERMODINAMICA.pdf
 
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf  PARA TRABAJO SEGUROATS-FORMATO cara.pdf  PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
 
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTOPRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
 
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
 
Sistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptxSistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptx
 
Presentación de Redes de alcantarillado y agua potable
Presentación de Redes de alcantarillado y agua potablePresentación de Redes de alcantarillado y agua potable
Presentación de Redes de alcantarillado y agua potable
 
Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...
 
ingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptxingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptx
 
Cereales tecnología de los alimentos. Cereales
Cereales tecnología de los alimentos. CerealesCereales tecnología de los alimentos. Cereales
Cereales tecnología de los alimentos. Cereales
 
SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONAL
SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONALSESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONAL
SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONAL
 
semana-08-clase-transformadores-y-norma-eep.ppt
semana-08-clase-transformadores-y-norma-eep.pptsemana-08-clase-transformadores-y-norma-eep.ppt
semana-08-clase-transformadores-y-norma-eep.ppt
 
Quimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfQuimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdf
 
Clasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docxClasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docx
 
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
 
Suelo, tratamiento saneamiento y mejoramiento
Suelo, tratamiento saneamiento y mejoramientoSuelo, tratamiento saneamiento y mejoramiento
Suelo, tratamiento saneamiento y mejoramiento
 
ELASTICIDAD PRECIO DE LA DEMaaanANDA.ppt
ELASTICIDAD PRECIO DE LA DEMaaanANDA.pptELASTICIDAD PRECIO DE LA DEMaaanANDA.ppt
ELASTICIDAD PRECIO DE LA DEMaaanANDA.ppt
 
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVOESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
 

Mi 03 integración por fracciones parciales

  • 1. Métodos y Técnicas de integración G. Edgar Mata Ortiz
  • 2.
  • 3. El trabajo colaborativo es fundamental para aprender, requiere una actitud de compromiso de todos los integrantes del equipo.
  • 4. Resolución individual de problemas En forma complementaria al aprendizaje colaborativo, es indispensable que el alumno haga frente, en forma individual, a los problemas de matemáticas para desarrollar sus competencias.
  • 5. Las técnicas de integración Son un conjunto de artificios matemáticos que se aplican cuando no es posible realizar una integración directamente, ya sea porque al diferencial le faltan variables o le sobran.
  • 6. Las técnicas de integración Son un conjunto de artificios matemáticos que se aplican cuando no es posible realizar una integración directamente, ya sea porque al diferencial le faltan variables o le sobran.
  • 7. Las técnicas de integración En esta presentación se explica y resuelve, paso a paso, un ejemplo por el método de: Fracciones Parciales
  • 8. Fracciones Parciales Esta técnica se basa en la suma de fracciones algebraicas. Consiste en invertir el proceso: En la operación directa se obtiene el resultado de sumar dos o más fracciones. En las fracciones parciales se conoce el resultado de la suma y se desea determinar cuáles fueron las fracciones que lo produjeron.
  • 9. Como en los ejemplos anteriores, no existe ninguna fórmula que pueda aplicarse, directamente, a esta integración. Ejemplo: න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 =
  • 10. Ejemplo: 𝒙 𝟑 − 𝒙 = 𝒙(𝒙 𝟐 − 𝟏) El primer paso consiste en factorizar el denominador. න −3𝑥 − 1 𝒙 𝟑 − 𝒙 𝑑𝑥 = = 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
  • 11. Ejemplo: Las fracciones parciales son: න −3𝑥 − 1 𝒙 𝟑 − 𝒙 𝑑𝑥 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 Factores: 𝒙 𝒙 + 𝟏 (𝒙 − 𝟏) Los numeradores de estas fracciones no los conocemos, será necesario determinarlos.
  • 12. Ejemplo: La fracción original debe ser igual a las fracciones parciales න −3𝑥 − 1 𝒙 𝟑 − 𝒙 𝑑𝑥 = −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 Factores: 𝒙 𝒙 + 𝟏 (𝒙 − 𝟏) Efectuamos la suma indicada en el lado derecho del signo de igual −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
  • 13. Ejemplo: Se efectúan operaciones algebraicas −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 𝟐 − 𝟏 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
  • 14. Ejemplo: Se efectúan operaciones algebraicas −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝟏 𝒙 − 𝟏 + 𝑩𝒙 𝒙 − 𝟏 + 𝑪𝒙(𝒙 + 𝟏) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 𝟐 − 𝟏 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) Vamos a tomar esta expresión para obtener los valores de A, B y C
  • 15. Ejemplo: Se efectúan operaciones algebraicas −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) En este paso es útil tomar en consideración que ambos denominadores son iguales, podemos pasar multiplicando uno de ellos al lado contrario del signo de igual, y se eliminan. −𝟑𝒙 − 𝟏 = (𝒙 𝟑 − 𝒙)(𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏)
  • 16. Ejemplo: Se efectúan operaciones algebraicas −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) En este paso es útil tomar en consideración que ambos denominadores son iguales, podemos pasar multiplicando uno de ellos al lado contrario del signo de igual, y se eliminan. −𝟑𝒙 − 𝟏 = (𝒙 𝟑 − 𝒙)(𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙) 𝒙(𝒙 + 𝟏)(𝒙 − 𝟏) −𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙
  • 17. Ejemplo: Se agrupan términos semejantes Primero los términos que tienen equis cuadrada, luego los que tienen equis, y al final los términos independientes. −𝟑𝒙 − 𝟏 = 𝑨𝒙 𝟐 − 𝑨 + 𝑩𝒙 𝟐 − 𝑩𝒙 + 𝑪𝒙 𝟐 + 𝑪𝒙 −𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐 + −𝑩 + 𝑪 𝒙 − 𝑨 Con la finalidad de igualar término por término, en este paso se considera que la expresión del lado izquierdo del signo igual, al no tener término cuadrático es cero equis cuadrada. 𝟎𝒙 𝟐 − 𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐 + −𝑩 + 𝑪 𝒙 − 𝑨
  • 18. Ejemplo: Se igualan los coeficientes Los coeficientes de equis cuadrada: 𝟎𝒙 𝟐 − 𝟑𝒙 − 𝟏 = 𝑨 + 𝑩 + 𝑪 𝒙 𝟐 + −𝑩 + 𝑪 𝒙 − 𝑨 𝑨 + 𝑩 + 𝑪 = 𝟎 Los coeficientes de equis: −𝑩 + 𝑪 = −𝟑 Los términos independientes: −𝑨 = −𝟏 Se obtiene un sistema de tres ecuaciones con tres incógnitas.
  • 19. Sistemas de 3 ecuaciones con 3 incógnitas (3x3) Ejemplo: El sistema de ecuaciones obtenido puede resolverse por cualquiera de los numerosos métodos existentes. 𝑨 + 𝑩 + 𝑪 = 𝟎 −𝑩 + 𝑪 = −𝟑 −𝑨 = −𝟏 Explicaciones y ejemplos acerca de estos métodos pueden encontrarse en: http://licmata-math.blogspot.mx/2014/10/solving-cramers-method-determinants.html http://licmata-math.blogspot.mx/2012/10/gauss-jordan-3-ecuaciones.html http://licmata-math.blogspot.mx/2014/10/5-tips-on-cramer-method.html http://licmata-math.blogspot.mx/2013/11/linear-equation-systems-problem-solving.html http://licmata-math.blogspot.mx/2011/10/formato-gauss-jordan-3x3.html
  • 20. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. 𝑨 + 𝑩 + 𝑪 = 𝟎 → 𝟏 + 𝑩 + 𝑪 = 𝟎 ∴ 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 −𝑨 = −𝟏 ∴ 𝑨 = 𝟏 En este caso el sistema de ecuaciones puede simplificarse gracias a que la tercera ecuación nos proporciona directamente el valor de una de las incógnitas: A. El valor de A es uno, y al sustituirla en la primera ecuación obtenemos un sistema de dos ecuaciones con dos incógnitas. Sistema de dos ecuaciones con dos incógnitas
  • 21. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 Sistema de dos ecuaciones con dos incógnitas Los métodos empleados en la resolución de sistemas 3x3 también pueden emplearse en sistemas de 2x2, sin embargo, frecuentemente resulta más sencillo emplear otros métodos: Método de Reducción Método de Sustitución Método de Igualación Método Gráfico
  • 22. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 Sistema de dos ecuaciones con dos incógnitas En este ejemplo, debido a los coeficientes de las ecuaciones es conveniente aplicar el: Método de Reducción o de suma y resta Se elige este método porque al sumar las dos ecuaciones, se eliminará la incógnita B, obteniéndose una sencilla ecuación de primer grado con una incógnita (C), de la que se despeja y obtiene el valor de C.
  • 23. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 Sistema de dos ecuaciones con dos incógnitas Método de Reducción o de suma y resta 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 𝟐𝑪 = −𝟒 𝑪 = −𝟒 𝟐 ∴ Obtenemos el valor de la incógnita C 𝑪 = −𝟐
  • 24. Sistemas de 2 ecuaciones con 2 incógnitas (2x2) Ejemplo: Resolución del sistema de ecuaciones. Método de Reducción o de suma y resta 𝑩 + 𝑪 = −𝟏 −𝑩 + 𝑪 = −𝟑 𝟐𝑪 = −𝟒 𝑪 = −𝟒 𝟐 ∴ 𝑪 = −𝟐 El valor de la incógnita C, se sustituye en cualquiera de las dos ecuaciones que conforman el sistema de 2x2 y se despeja la incógnita faltante (B). 𝑩 + 𝑪 = −𝟏 → 𝑩 − 𝟐 = −𝟏 → 𝑩 = −𝟏 + 𝟐 𝑩 = 𝟏
  • 25. Sistemas de 3 ecuaciones con 3 incógnitas (3x3) Ejemplo: No olvidemos que todo este proceso fue realizado para determinar los valores de las tres incógnitas que conforman el sistema original. 𝑨 + 𝑩 + 𝑪 = 𝟎 −𝑩 + 𝑪 = −𝟑 −𝑨 = −𝟏 Las soluciones fueron: 𝑨 = 𝟏 𝑪 = −𝟐𝑩 = 𝟏
  • 26. Sistemas de 3 ecuaciones con 3 incógnitas (3x3) Ejemplo: Significado de las soluciones del sistema de 3x3 Las soluciones fueron: 𝑨 = 𝟏 𝑪 = −𝟐𝑩 = 𝟏 Estas soluciones son los numeradores de las fracciones parciales planteadas para descomponer la fracción propia que se desea integrar න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 =
  • 27. Ejemplo: Ahora conocemos los numeradores de las fracciones parciales. −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝑨 𝒙 + 𝑩 𝒙 + 𝟏 + 𝑪 𝒙 − 𝟏 −𝟑𝒙 − 𝟏 𝒙 𝟑 − 𝒙 = 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏
  • 28. Ejemplo: En lugar de integrar la fracción original, se integrarán sus fracciones parciales. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = න 1 𝑥 𝑑𝑥 + න 1 𝑥 + 1 𝑑𝑥 + න −2 𝑥 − 1 𝑑𝑥 = න 𝑑𝑥 𝑥 + න 𝑑𝑥 𝑥 + 1 − 2 න 𝑑𝑥 𝑥 − 1
  • 29. Ejemplo: En lugar de integrar la fracción original, se integrarán sus fracciones parciales. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = න 1 𝑥 𝑑𝑥 + න 1 𝑥 + 1 𝑑𝑥 + න −2 𝑥 − 1 𝑑𝑥 = න 𝑑𝑥 𝑥 + න 𝑑𝑥 𝑥 + 1 − 2 න 𝑑𝑥 𝑥 − 1 = ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝑙𝑛𝐶
  • 30. Ejemplo: Aplicando propiedades de logaritmos podemos simplificar el resultado. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = න 𝟏 𝒙 + 𝟏 𝒙 + 𝟏 + −𝟐 𝒙 − 𝟏 𝑑𝑥 = ln 𝑥 + ln 𝑥 + 1 − 2 ln 𝑥 − 1 + 𝑙𝑛𝐶 = ln 𝑥 + ln 𝑥 + 1 + ln 𝑥 − 1 −2 + 𝑙𝑛𝐶 = ln 𝑥 𝑥 + 1 𝑥 − 1 −2 𝐶 = ln 𝐶 𝑥 𝑥 + 1 𝑥 − 1 2
  • 31. Solución del problema: El objetivo de las fracciones parciales es expresar una fracción propia que no puede integrarse directamente, en sus fracciones parciales que sí pueden integrase con alguna de las fórmulas básicas de integración. න −3𝑥 − 1 𝑥3 − 𝑥 𝑑𝑥 = ln 𝐶 𝑥 𝑥 + 1 𝑥 − 1 2