SlideShare una empresa de Scribd logo
1 de 10
aCentro de enseñanza técnica industrialAplicaciones a las Ecuaciones Diferenciales de primer ordenVariables separables, Homogéneas, Exactas por factor integrante, Lineales y de BernoulliLuis A. León González07/03/2011Contiene aplicaciones de cada una de las ecuaciones diferenciales de primer orden como son: Variables separables, Homogéneas, Exactas, Exactas por factor integrante, Lineales y de Bernoulli.<br />Ecuación Diferencial por variables separables<br />Crecimiento y descomposición<br />Existen en el mundo físico, en biología, medicina, demografía, economía,<br />etc. cantidades cuya rapidez de crecimiento o descomposición varía en forma proporcional a la cantidad presente, es decir,  dxdt=kx    con   xt0=x0 , o sea que<br />dxdt-kx=0<br />Que es una ED de variables separables o lineal en x de primer orden y cuya solución es x=Cekt<br />Como xt0=x0=Cekt0->C=x0e-kto<br />Por lo tanto la solución particular es x=x0e-ktoekt=x0ekt-to<br />En particular cuando t=0, entonces x=x0ekt<br />Ecuación Diferencial Lineal<br />Caída con resistencia del aire<br />Por la segunda ley de Newton (ver textos de Física), se llega a qué:<br />md2xdt2=mg-kv<br />Dividiendo entre m<br />d2xdt2=g-kmv<br />dvdt=g-kmv<br />Obtenemos la Ecuación Diferencial Lineal en v<br />dvdt+kmv=g<br />Hallemos el factor integrante<br />μ=ekmdt=ektm<br />Resolviéndola<br />vektm=ektmgdt+C<br />vektm=mkgektmdt+C<br />v=mkg+Ce-kmt<br />Supongamos que las condiciones iniciales son t=0, v=0 (es decir, parte del reposo), entonces<br />0=mgk+C     ⇒                   C=-mgk<br />v=mgk-mgk(e-kmt= mgk1-e-kmt;<br />Obsérvese que cuandot->∞,v ->  mgk<br />Resolviendo para x y teniendo como condiciones iniciales t=0 y x=0 se llega a que<br />x=mgkt-m2gk21-e-kmt<br />Ecuación Diferencial Exactas<br />Trayectorias octogonales<br />En ingeniería se presentan a menudo el problema geométrico de encontrar una familia de curvas (trayectorias octogonales) que interceptan octogonalmente en cada punto de una familia dada de curvas.<br />Por ejemplo, es posible que se den las líneas de fuerza y se pida obtener la ecuación de las líneas equipotenciales. Consideremos la familia de curvas descrita por la ecuación F(x,y) = K donde K es un parámetro real.<br />I)Usando diferenciación implícita, demostrar que, para cada curva de la familia, la pendiente está dada por<br />dydx=-∂F∂x∂F∂y<br />II)Usando que la pendiente de una curva octogonal (perpendicular) a una curva es la inversa de la pendiente de la curva dada, demuestra que las curvas octogonales a la familia F(x,y) = K satisfacen la ecuación diferencial<br />∂F∂yx,ydx-∂F∂xx,ydy=0<br />III)Utilizando la ecuación diferencial procedente, demuestra que las trayectorias octogonales de la familia de circunferencias x2+y2=K son rectas que pasan por el origen<br />Ecuación Diferencial Lineal<br />Modelado de Concentración/Desleimiento de Soluciones<br />Otro de los problemas típicos donde se aplican exitosamente las ecuaciones diferenciales son los problemas de manejo de concentración de sustancias en soluciones líquidas. El principal objetivo, consiste en plantear el problema en término del problema de valores iniciales que gobierna el fenómeno (ecuación diferencial + condiciones iniciales). Para ello, en este tipo de problemas, siempre utilizaremos la regla intuitiva de<br />Tasa de Cambio de la Concentración = Tasa de Ingreso - Tasa de Egreso<br />Así, tendremos que para un problema típico en el cual inicialmente se encuentran diluidos en un recipiente (un tanque) y0 gr de una sustancia en V0 litros de un líquido. A este tanque le cae otro líquido con una concentración distinta de la misma sustancia a ventrada lit/min, mientras que vsalida lit/min salen del tanque. Si suponemos que dentro del tanque sucede algún proceso de homogenización de la solución, la pregunta típica es que queremos saber la cantidad de sustancia que se encuentra en el tanque en un tiempo t: A la concentración de la sustancia en el líquido de entrada (gr/lit), en un tiempo t; la denotaremos como C (t) gr/lit. La figura (3) ilustra este proceso.<br />Para empezar notemos que, en esta situación el volumen no es constante. Por lo tanto, con el mismo espíritu de la ey de balanceoquot;
 que hemos propuesto, si las velocidades de ingreso y egreso son constantes, nos queda que la variación del volumen inicial viene dada por la diferencia de estas velocidades, esto es<br />V't=Ventrada-Vsalida<br />Vt=V0(Ventrada-Vsalida)t<br />Con lo cual también hemos integrado una ecuación diferencial para encontrar como variará el volumen con el tiempo.<br />Para la construcción de la ecuación diferencial, procedemos de manera similar y si describimos la cantidad de sustancia en el tanque como y (t) ; nos queda que la tasa de cambio de la cantidad de sustancia en el tanque será<br />y't=VentradaLitminCtgrLit-VsalidaLitminy(t)V0+(Ventrada-Vsalida)tgrLit<br />                                       Tasa de ingreso                                                Tasa de egreso<br />Por lo tanto la ecuación diferencial tomará la forma típica de una ecuación diferencial lineal de primer orden no homogénea<br />y't+ytVsalidaV0+Ventrada-Vsalidat=VentradaCt<br />Figura 3: Soluciones y tanques<br />que tendrá por solución<br />yt=y0-V0-VsalidaVentrada-VsalidaVentrada+Vsalidat-V0VsalidaVentrada-Vsalida—((-Ventrada+Vsalida)t-V0)-Ventrada+Vsalida0tVentradaCuuVentrada-Vsalida+V0VsalidaVentrada-Vsalidadu<br />Respuesta a las condiciones iniciales<br />Respuesta a la excitación externa<br />Nótese lo genérico de esta solución. Por un lado, la concentración de la sustancia, C (t); en la solución que entra al sistema es distinta a la concentración de la sustancia presente en el tanque, más aún, puede ser variable con el tiempo. Por otro lado esta solución presenta una singularidad (un infinito) cuando la velocidad de ingreso es igual a la velocidad de egreso. Para este caso en el cual el volumen del tanque permanece constante tendremos que resolver la ecuación diferencial<br />y't+ytVsalidaV0=VentradaCt<br />yt=(0tC(u)VentradaeVsalidauVdu+y0)e-VsalidatV<br />Tal y como hemos mencionado varias veces (y seguiremos mencionando) la solución general para una ecuación diferencial no homogénea se compone de dos soluciones, la solución de la ecuación diferencial homogénea más la solución de la no homogénea.<br />ygeneralx=yhomogéneax+yno homogéneax<br />Este ejemplo nos permite constatar el sentido cada una de estas soluciones, vale decir<br />yt=y0e-vsalidatv+e-vsalidatv0tC(u)VentradaeVsalidauVdu<br />Respuesta a las condiciones inicialesRespuesta a la Excitación externa<br />En esta es una visión que debemos conservar, en general para todas las ecuaciones lineales no homogéneas independientes del orden de la ecuación diferencial, así recordando, dada una ecuación diferencial y su solución tal que se cumple la condición inicial y (0) = y0 entonces siempre es posible<br />ddxyx+pxyx=gx<br />yx=y0e0x-pudu+e0x-pudu0xg(u)epududu<br />    <br />                                                       Solución homogénea           Solución no homogénea<br />donde ahora vemos claramente que la solución de la homogénea da cuenta a las condiciones iniciales del proceso y la solución de la no homogénea provee la respuesta a la excitación externa al sistema.<br />Este comportamiento de las soluciones es útil si nos planteamos que al tratar de impiarquot;
 una piscina, a la cual le hemos añadido el doble de la cantidad de sulfatos permitida, y queremos saber cuánto tiempo tenemos que mantener abierta una entrada de 120 lits/min de agua sin sulfatos y la salida de la piscina que responde a 60 lits/min. La piscina en cuestión tiene 20 m de longitud, 10 m de ancho y 2 m de profundidad. Siguiendo los pasos anteriormente planteados, tendremos que<br />y't+ytVsalidaV0+Ventrada-Vsalidat=0<br />y't+yt60Litmin4x105Lit+60Litmint=0<br />yt=2000(y03t+2000)<br />Donde el volumen es V = 400m3 = 400 (100cm)3 = 4 x 108cm3 = 4 x 108 (10-3lit) = 4 x 105lit. Con lo cual el tiempo para que la cantidad final decaiga a la mitad de la inicial surge de<br />y0=20002y03t+2000<br />t≈6,666.66 minutos ‼!<br />Ecuación Diferencial de Bernoulli<br />Dinámica de fluidos<br />La dinámica de los líquidos, está regida por el mismo principio de la conservación de la energía, el cual fue aplicado a ellos por el físico suizo Daniel Bernoulli (1700−1782), obteniendo como resultado una ecuación muy útil en este estudio, que se conoce con su nombre.<br />Para ello se puede considerar los puntos 1 y 2, de un fluido en movimiento, determinando la energía mecánica de una porción de éste, a lo largo del filete de fluido en movimiento que los une.<br />Si m es la porción de masa considerada,  su rapidez,  la altura sobre el nivel tomado como base,  la presión y  la densidad en cada uno de los puntos, se puede escribir utilizando el teorema trabajo−energía cinética:<br />Si ahora se divide a todos los términos de los dos miembros, entre la masa considerada, se obtendrá la ecuación de Bernoulli, que corresponde a la ley de la conservación de la energía por unidad de masa. Si el fluido es incompresible, como supondremos en lo sucesivo, donde <br /> , la ecuación de Bernoulli adopta la forma: <br /> <br />Así como la estática de una partícula es un caso particular de la dinámica de la partícula, igualmente la estática de los fluidos es un caso especial de la dinámica de fluidos. Por lo tanto, la ecuación (6.10) debe contener a la ecuación (6.5) para la ley de la variación de presión con la altura para un fluido en reposo. En efecto, considerando un fluido en reposo, y reemplazando <br /> <br />En la ecuación de Bernoulli, se obtiene:<br /> <br /> Que es precisamente la ecuación fundamental de la estática de fluidos. <br />Ejemplo:<br />La presión del agua que entra a un edificio es 3 atmósfera, siendo el diámetro de la tubería 2[cm] y su rapidez de <br />Si el baño de un departamento del 4º piso está a 6[m] de la entrada y la tubería tiene un diámetro de 4[cm], calcule:<br />La presión y rapidez del agua en el baño,<br />La presión en el baño si se corta el agua a la entrada.<br />Solución.<br />a. Usando la ecuación de Bernoulli a la entrada (región 1) y en el baño del 4º piso (región):<br />y la ecuación de continuidad,<br />Donde:<br /> <br />Encontramos:<br />b. Si el agua se corta en la entrada, donde<br /> <br />
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer orden

Más contenido relacionado

La actualidad más candente

Modelos matemáticos
Modelos matemáticosModelos matemáticos
Modelos matemáticosBuap
 
Solucionario ecuaciones1
Solucionario ecuaciones1Solucionario ecuaciones1
Solucionario ecuaciones1ERICK CONDE
 
Solucionario de dennis g zill ecuaciones diferenciales
Solucionario de dennis g zill   ecuaciones diferencialesSolucionario de dennis g zill   ecuaciones diferenciales
Solucionario de dennis g zill ecuaciones diferencialesjhonpablo8830
 
Aplicaciones EDO de Primer Orden
Aplicaciones  EDO de Primer OrdenAplicaciones  EDO de Primer Orden
Aplicaciones EDO de Primer OrdenDiego Salazar
 
Tabla de integrales (integrales trigonometricas)
Tabla de integrales (integrales trigonometricas)Tabla de integrales (integrales trigonometricas)
Tabla de integrales (integrales trigonometricas)waltergomez627
 
Transformada Directa de Laplace
Transformada Directa de LaplaceTransformada Directa de Laplace
Transformada Directa de LaplaceEdwin_Jack
 
Ecuaciones diferenciales homogeneas
Ecuaciones diferenciales homogeneasEcuaciones diferenciales homogeneas
Ecuaciones diferenciales homogeneasAlexCoeto
 
Cinemática de una Partícula 2017
Cinemática de una Partícula 2017Cinemática de una Partícula 2017
Cinemática de una Partícula 2017Norbil Tejada
 
Aplicacion de las ecuaciones diferenciales de orden superior
Aplicacion de las ecuaciones diferenciales de orden superiorAplicacion de las ecuaciones diferenciales de orden superior
Aplicacion de las ecuaciones diferenciales de orden superiorIsai Esparza Agustin
 
Que es el wronskiano
Que es el wronskianoQue es el wronskiano
Que es el wronskianoEIYSC
 
Examenes resueltos ecuaciones diferenciales ordinarias
Examenes resueltos ecuaciones diferenciales ordinariasExamenes resueltos ecuaciones diferenciales ordinarias
Examenes resueltos ecuaciones diferenciales ordinariasRosand Roque Ch.
 
Dinamica unidad 1
Dinamica unidad 1Dinamica unidad 1
Dinamica unidad 1StevJohnS
 
Solución de Sistemas de Ecuaciones por Eliminación
Solución de Sistemas de Ecuaciones por EliminaciónSolución de Sistemas de Ecuaciones por Eliminación
Solución de Sistemas de Ecuaciones por Eliminaciónoswaldoalvarado
 
Ecuaciones diferenciales-orden-superior
Ecuaciones diferenciales-orden-superiorEcuaciones diferenciales-orden-superior
Ecuaciones diferenciales-orden-superiorSabena29
 
Solucionario ecuaciones diferenciales dennis zill[7a edicion]
Solucionario ecuaciones diferenciales dennis zill[7a edicion]Solucionario ecuaciones diferenciales dennis zill[7a edicion]
Solucionario ecuaciones diferenciales dennis zill[7a edicion]Laura Cortes
 
Reduccion de orden
Reduccion de ordenReduccion de orden
Reduccion de ordenjackytas7
 

La actualidad más candente (20)

Modelos matemáticos
Modelos matemáticosModelos matemáticos
Modelos matemáticos
 
Solucionario ecuaciones1
Solucionario ecuaciones1Solucionario ecuaciones1
Solucionario ecuaciones1
 
Solucionario de dennis g zill ecuaciones diferenciales
Solucionario de dennis g zill   ecuaciones diferencialesSolucionario de dennis g zill   ecuaciones diferenciales
Solucionario de dennis g zill ecuaciones diferenciales
 
Aplicaciones EDO de Primer Orden
Aplicaciones  EDO de Primer OrdenAplicaciones  EDO de Primer Orden
Aplicaciones EDO de Primer Orden
 
Tabla de integrales (integrales trigonometricas)
Tabla de integrales (integrales trigonometricas)Tabla de integrales (integrales trigonometricas)
Tabla de integrales (integrales trigonometricas)
 
Metodo de diferencias finitas
Metodo de diferencias finitasMetodo de diferencias finitas
Metodo de diferencias finitas
 
Transformada Directa de Laplace
Transformada Directa de LaplaceTransformada Directa de Laplace
Transformada Directa de Laplace
 
Ecuaciones diferenciales homogeneas
Ecuaciones diferenciales homogeneasEcuaciones diferenciales homogeneas
Ecuaciones diferenciales homogeneas
 
unidad 4 ecuaciones diferenciales
 unidad 4 ecuaciones diferenciales unidad 4 ecuaciones diferenciales
unidad 4 ecuaciones diferenciales
 
Cinemática de una Partícula 2017
Cinemática de una Partícula 2017Cinemática de una Partícula 2017
Cinemática de una Partícula 2017
 
Aplicacion de las ecuaciones diferenciales de orden superior
Aplicacion de las ecuaciones diferenciales de orden superiorAplicacion de las ecuaciones diferenciales de orden superior
Aplicacion de las ecuaciones diferenciales de orden superior
 
Que es el wronskiano
Que es el wronskianoQue es el wronskiano
Que es el wronskiano
 
Solucionario estática beer 9 ed
Solucionario estática beer   9 edSolucionario estática beer   9 ed
Solucionario estática beer 9 ed
 
Examenes resueltos ecuaciones diferenciales ordinarias
Examenes resueltos ecuaciones diferenciales ordinariasExamenes resueltos ecuaciones diferenciales ordinarias
Examenes resueltos ecuaciones diferenciales ordinarias
 
Dinamica unidad 1
Dinamica unidad 1Dinamica unidad 1
Dinamica unidad 1
 
Solución de Sistemas de Ecuaciones por Eliminación
Solución de Sistemas de Ecuaciones por EliminaciónSolución de Sistemas de Ecuaciones por Eliminación
Solución de Sistemas de Ecuaciones por Eliminación
 
Ecuaciones diferenciales-orden-superior
Ecuaciones diferenciales-orden-superiorEcuaciones diferenciales-orden-superior
Ecuaciones diferenciales-orden-superior
 
Solucionario ecuaciones diferenciales dennis zill[7a edicion]
Solucionario ecuaciones diferenciales dennis zill[7a edicion]Solucionario ecuaciones diferenciales dennis zill[7a edicion]
Solucionario ecuaciones diferenciales dennis zill[7a edicion]
 
Variables separables
Variables separablesVariables separables
Variables separables
 
Reduccion de orden
Reduccion de ordenReduccion de orden
Reduccion de orden
 

Similar a Aplicaciones a las ED primer orden

UNIDAD 2. ECUACIONES DIFERENCIALES DE 1er ORDEN
UNIDAD 2. ECUACIONES DIFERENCIALES DE 1er ORDENUNIDAD 2. ECUACIONES DIFERENCIALES DE 1er ORDEN
UNIDAD 2. ECUACIONES DIFERENCIALES DE 1er ORDENedvinogo
 
Introducción a las Ecuaciones Diferenciales ccesa007
Introducción a las Ecuaciones Diferenciales  ccesa007Introducción a las Ecuaciones Diferenciales  ccesa007
Introducción a las Ecuaciones Diferenciales ccesa007Demetrio Ccesa Rayme
 
Aplicación de las Ecuaciónes Diferenciales Ordinarias aplicadas en el vaciado...
Aplicación de las Ecuaciónes Diferenciales Ordinarias aplicadas en el vaciado...Aplicación de las Ecuaciónes Diferenciales Ordinarias aplicadas en el vaciado...
Aplicación de las Ecuaciónes Diferenciales Ordinarias aplicadas en el vaciado...Martín Vinces Alava
 
Ecuaciones Diferenciales Ordinarias EDO1 ccesa007
Ecuaciones Diferenciales Ordinarias  EDO1  ccesa007Ecuaciones Diferenciales Ordinarias  EDO1  ccesa007
Ecuaciones Diferenciales Ordinarias EDO1 ccesa007Demetrio Ccesa Rayme
 
Modelos matemáticos
Modelos matemáticosModelos matemáticos
Modelos matemáticosJuan Plaza
 
Modelado de sistemas dinámicos
Modelado de sistemas dinámicosModelado de sistemas dinámicos
Modelado de sistemas dinámicosJolman Mera
 
modelos ecuaciones diferenciales.pdf
modelos ecuaciones diferenciales.pdfmodelos ecuaciones diferenciales.pdf
modelos ecuaciones diferenciales.pdfPeterValladaresCaote
 
Lista de ejercicios Matemática II
Lista de ejercicios Matemática II Lista de ejercicios Matemática II
Lista de ejercicios Matemática II Joe Arroyo Suárez
 
2.3 ecuaciones,funciones e inecuaciones lineales (mayo 07)
2.3 ecuaciones,funciones e inecuaciones lineales (mayo 07)2.3 ecuaciones,funciones e inecuaciones lineales (mayo 07)
2.3 ecuaciones,funciones e inecuaciones lineales (mayo 07)Raul Noguera Morillo
 
Ecuacion diferencial lineal
Ecuacion diferencial linealEcuacion diferencial lineal
Ecuacion diferencial linealLuis Diaz
 
Modelos ecuaciones diferenciales
Modelos ecuaciones diferencialesModelos ecuaciones diferenciales
Modelos ecuaciones diferencialesAlejandro Ocaña
 
Ecuaciones Diferenciales Ordinarias de Primer Orden: Problemas Resueltos
Ecuaciones Diferenciales Ordinarias de Primer Orden: Problemas ResueltosEcuaciones Diferenciales Ordinarias de Primer Orden: Problemas Resueltos
Ecuaciones Diferenciales Ordinarias de Primer Orden: Problemas ResueltosJoe Arroyo Suárez
 

Similar a Aplicaciones a las ED primer orden (20)

UNIDAD 2. ECUACIONES DIFERENCIALES DE 1er ORDEN
UNIDAD 2. ECUACIONES DIFERENCIALES DE 1er ORDENUNIDAD 2. ECUACIONES DIFERENCIALES DE 1er ORDEN
UNIDAD 2. ECUACIONES DIFERENCIALES DE 1er ORDEN
 
Ecuaciones diferenciales ordinarias
Ecuaciones diferenciales ordinariasEcuaciones diferenciales ordinarias
Ecuaciones diferenciales ordinarias
 
Ecuaciones diferenciales ordinarias
Ecuaciones diferenciales ordinariasEcuaciones diferenciales ordinarias
Ecuaciones diferenciales ordinarias
 
Aplicaciones de las edo 2015
Aplicaciones de las edo 2015Aplicaciones de las edo 2015
Aplicaciones de las edo 2015
 
Introducción a las Ecuaciones Diferenciales ccesa007
Introducción a las Ecuaciones Diferenciales  ccesa007Introducción a las Ecuaciones Diferenciales  ccesa007
Introducción a las Ecuaciones Diferenciales ccesa007
 
Equipo.no.1
Equipo.no.1Equipo.no.1
Equipo.no.1
 
Aplicación de las Ecuaciónes Diferenciales Ordinarias aplicadas en el vaciado...
Aplicación de las Ecuaciónes Diferenciales Ordinarias aplicadas en el vaciado...Aplicación de las Ecuaciónes Diferenciales Ordinarias aplicadas en el vaciado...
Aplicación de las Ecuaciónes Diferenciales Ordinarias aplicadas en el vaciado...
 
Ecuaciones Diferenciales Ordinarias EDO1 ccesa007
Ecuaciones Diferenciales Ordinarias  EDO1  ccesa007Ecuaciones Diferenciales Ordinarias  EDO1  ccesa007
Ecuaciones Diferenciales Ordinarias EDO1 ccesa007
 
Modelos matemáticos
Modelos matemáticosModelos matemáticos
Modelos matemáticos
 
Modelado de sistemas dinámicos
Modelado de sistemas dinámicosModelado de sistemas dinámicos
Modelado de sistemas dinámicos
 
modelos ecuaciones diferenciales.pdf
modelos ecuaciones diferenciales.pdfmodelos ecuaciones diferenciales.pdf
modelos ecuaciones diferenciales.pdf
 
Lista de ejercicios Matemática II
Lista de ejercicios Matemática II Lista de ejercicios Matemática II
Lista de ejercicios Matemática II
 
Apuntes cap5
Apuntes cap5Apuntes cap5
Apuntes cap5
 
Guía1: Ecuaciones Diferenciales
Guía1: Ecuaciones DiferencialesGuía1: Ecuaciones Diferenciales
Guía1: Ecuaciones Diferenciales
 
2.3 ecuaciones,funciones e inecuaciones lineales (mayo 07)
2.3 ecuaciones,funciones e inecuaciones lineales (mayo 07)2.3 ecuaciones,funciones e inecuaciones lineales (mayo 07)
2.3 ecuaciones,funciones e inecuaciones lineales (mayo 07)
 
Ecuacion diferencial lineal
Ecuacion diferencial linealEcuacion diferencial lineal
Ecuacion diferencial lineal
 
Modelos ecuaciones diferenciales
Modelos ecuaciones diferencialesModelos ecuaciones diferenciales
Modelos ecuaciones diferenciales
 
Practica_edooo.pdf
Practica_edooo.pdfPractica_edooo.pdf
Practica_edooo.pdf
 
Ecuaciones Diferenciales Ordinarias de Primer Orden: Problemas Resueltos
Ecuaciones Diferenciales Ordinarias de Primer Orden: Problemas ResueltosEcuaciones Diferenciales Ordinarias de Primer Orden: Problemas Resueltos
Ecuaciones Diferenciales Ordinarias de Primer Orden: Problemas Resueltos
 
Ejercicios de EDO.pdf
Ejercicios de EDO.pdfEjercicios de EDO.pdf
Ejercicios de EDO.pdf
 

Último

DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialpatriciaines1993
 
plan-de-trabajo-colegiado en una institucion educativa
plan-de-trabajo-colegiado en una institucion educativaplan-de-trabajo-colegiado en una institucion educativa
plan-de-trabajo-colegiado en una institucion educativafiorelachuctaya2
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxOscarEduardoSanchezC
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxMapyMerma1
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtweBROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwealekzHuri
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteJuan Hernandez
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Baker Publishing Company
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfsamyarrocha1
 

Último (20)

DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundial
 
plan-de-trabajo-colegiado en una institucion educativa
plan-de-trabajo-colegiado en una institucion educativaplan-de-trabajo-colegiado en una institucion educativa
plan-de-trabajo-colegiado en una institucion educativa
 
Unidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDIUnidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDI
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptx
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtweBROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parte
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
La Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdfLa Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdf
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdf
 

Aplicaciones a las ED primer orden

  • 1. aCentro de enseñanza técnica industrialAplicaciones a las Ecuaciones Diferenciales de primer ordenVariables separables, Homogéneas, Exactas por factor integrante, Lineales y de BernoulliLuis A. León González07/03/2011Contiene aplicaciones de cada una de las ecuaciones diferenciales de primer orden como son: Variables separables, Homogéneas, Exactas, Exactas por factor integrante, Lineales y de Bernoulli.<br />Ecuación Diferencial por variables separables<br />Crecimiento y descomposición<br />Existen en el mundo físico, en biología, medicina, demografía, economía,<br />etc. cantidades cuya rapidez de crecimiento o descomposición varía en forma proporcional a la cantidad presente, es decir, dxdt=kx con xt0=x0 , o sea que<br />dxdt-kx=0<br />Que es una ED de variables separables o lineal en x de primer orden y cuya solución es x=Cekt<br />Como xt0=x0=Cekt0->C=x0e-kto<br />Por lo tanto la solución particular es x=x0e-ktoekt=x0ekt-to<br />En particular cuando t=0, entonces x=x0ekt<br />Ecuación Diferencial Lineal<br />Caída con resistencia del aire<br />Por la segunda ley de Newton (ver textos de Física), se llega a qué:<br />md2xdt2=mg-kv<br />Dividiendo entre m<br />d2xdt2=g-kmv<br />dvdt=g-kmv<br />Obtenemos la Ecuación Diferencial Lineal en v<br />dvdt+kmv=g<br />Hallemos el factor integrante<br />μ=ekmdt=ektm<br />Resolviéndola<br />vektm=ektmgdt+C<br />vektm=mkgektmdt+C<br />v=mkg+Ce-kmt<br />Supongamos que las condiciones iniciales son t=0, v=0 (es decir, parte del reposo), entonces<br />0=mgk+C ⇒ C=-mgk<br />v=mgk-mgk(e-kmt= mgk1-e-kmt;<br />Obsérvese que cuandot->∞,v -> mgk<br />Resolviendo para x y teniendo como condiciones iniciales t=0 y x=0 se llega a que<br />x=mgkt-m2gk21-e-kmt<br />Ecuación Diferencial Exactas<br />Trayectorias octogonales<br />En ingeniería se presentan a menudo el problema geométrico de encontrar una familia de curvas (trayectorias octogonales) que interceptan octogonalmente en cada punto de una familia dada de curvas.<br />Por ejemplo, es posible que se den las líneas de fuerza y se pida obtener la ecuación de las líneas equipotenciales. Consideremos la familia de curvas descrita por la ecuación F(x,y) = K donde K es un parámetro real.<br />I)Usando diferenciación implícita, demostrar que, para cada curva de la familia, la pendiente está dada por<br />dydx=-∂F∂x∂F∂y<br />II)Usando que la pendiente de una curva octogonal (perpendicular) a una curva es la inversa de la pendiente de la curva dada, demuestra que las curvas octogonales a la familia F(x,y) = K satisfacen la ecuación diferencial<br />∂F∂yx,ydx-∂F∂xx,ydy=0<br />III)Utilizando la ecuación diferencial procedente, demuestra que las trayectorias octogonales de la familia de circunferencias x2+y2=K son rectas que pasan por el origen<br />Ecuación Diferencial Lineal<br />Modelado de Concentración/Desleimiento de Soluciones<br />Otro de los problemas típicos donde se aplican exitosamente las ecuaciones diferenciales son los problemas de manejo de concentración de sustancias en soluciones líquidas. El principal objetivo, consiste en plantear el problema en término del problema de valores iniciales que gobierna el fenómeno (ecuación diferencial + condiciones iniciales). Para ello, en este tipo de problemas, siempre utilizaremos la regla intuitiva de<br />Tasa de Cambio de la Concentración = Tasa de Ingreso - Tasa de Egreso<br />Así, tendremos que para un problema típico en el cual inicialmente se encuentran diluidos en un recipiente (un tanque) y0 gr de una sustancia en V0 litros de un líquido. A este tanque le cae otro líquido con una concentración distinta de la misma sustancia a ventrada lit/min, mientras que vsalida lit/min salen del tanque. Si suponemos que dentro del tanque sucede algún proceso de homogenización de la solución, la pregunta típica es que queremos saber la cantidad de sustancia que se encuentra en el tanque en un tiempo t: A la concentración de la sustancia en el líquido de entrada (gr/lit), en un tiempo t; la denotaremos como C (t) gr/lit. La figura (3) ilustra este proceso.<br />Para empezar notemos que, en esta situación el volumen no es constante. Por lo tanto, con el mismo espíritu de la ey de balanceoquot; que hemos propuesto, si las velocidades de ingreso y egreso son constantes, nos queda que la variación del volumen inicial viene dada por la diferencia de estas velocidades, esto es<br />V't=Ventrada-Vsalida<br />Vt=V0(Ventrada-Vsalida)t<br />Con lo cual también hemos integrado una ecuación diferencial para encontrar como variará el volumen con el tiempo.<br />Para la construcción de la ecuación diferencial, procedemos de manera similar y si describimos la cantidad de sustancia en el tanque como y (t) ; nos queda que la tasa de cambio de la cantidad de sustancia en el tanque será<br />y't=VentradaLitminCtgrLit-VsalidaLitminy(t)V0+(Ventrada-Vsalida)tgrLit<br /> Tasa de ingreso Tasa de egreso<br />Por lo tanto la ecuación diferencial tomará la forma típica de una ecuación diferencial lineal de primer orden no homogénea<br />y't+ytVsalidaV0+Ventrada-Vsalidat=VentradaCt<br />Figura 3: Soluciones y tanques<br />que tendrá por solución<br />yt=y0-V0-VsalidaVentrada-VsalidaVentrada+Vsalidat-V0VsalidaVentrada-Vsalida—((-Ventrada+Vsalida)t-V0)-Ventrada+Vsalida0tVentradaCuuVentrada-Vsalida+V0VsalidaVentrada-Vsalidadu<br />Respuesta a las condiciones iniciales<br />Respuesta a la excitación externa<br />Nótese lo genérico de esta solución. Por un lado, la concentración de la sustancia, C (t); en la solución que entra al sistema es distinta a la concentración de la sustancia presente en el tanque, más aún, puede ser variable con el tiempo. Por otro lado esta solución presenta una singularidad (un infinito) cuando la velocidad de ingreso es igual a la velocidad de egreso. Para este caso en el cual el volumen del tanque permanece constante tendremos que resolver la ecuación diferencial<br />y't+ytVsalidaV0=VentradaCt<br />yt=(0tC(u)VentradaeVsalidauVdu+y0)e-VsalidatV<br />Tal y como hemos mencionado varias veces (y seguiremos mencionando) la solución general para una ecuación diferencial no homogénea se compone de dos soluciones, la solución de la ecuación diferencial homogénea más la solución de la no homogénea.<br />ygeneralx=yhomogéneax+yno homogéneax<br />Este ejemplo nos permite constatar el sentido cada una de estas soluciones, vale decir<br />yt=y0e-vsalidatv+e-vsalidatv0tC(u)VentradaeVsalidauVdu<br />Respuesta a las condiciones inicialesRespuesta a la Excitación externa<br />En esta es una visión que debemos conservar, en general para todas las ecuaciones lineales no homogéneas independientes del orden de la ecuación diferencial, así recordando, dada una ecuación diferencial y su solución tal que se cumple la condición inicial y (0) = y0 entonces siempre es posible<br />ddxyx+pxyx=gx<br />yx=y0e0x-pudu+e0x-pudu0xg(u)epududu<br /> <br /> Solución homogénea Solución no homogénea<br />donde ahora vemos claramente que la solución de la homogénea da cuenta a las condiciones iniciales del proceso y la solución de la no homogénea provee la respuesta a la excitación externa al sistema.<br />Este comportamiento de las soluciones es útil si nos planteamos que al tratar de impiarquot; una piscina, a la cual le hemos añadido el doble de la cantidad de sulfatos permitida, y queremos saber cuánto tiempo tenemos que mantener abierta una entrada de 120 lits/min de agua sin sulfatos y la salida de la piscina que responde a 60 lits/min. La piscina en cuestión tiene 20 m de longitud, 10 m de ancho y 2 m de profundidad. Siguiendo los pasos anteriormente planteados, tendremos que<br />y't+ytVsalidaV0+Ventrada-Vsalidat=0<br />y't+yt60Litmin4x105Lit+60Litmint=0<br />yt=2000(y03t+2000)<br />Donde el volumen es V = 400m3 = 400 (100cm)3 = 4 x 108cm3 = 4 x 108 (10-3lit) = 4 x 105lit. Con lo cual el tiempo para que la cantidad final decaiga a la mitad de la inicial surge de<br />y0=20002y03t+2000<br />t≈6,666.66 minutos ‼!<br />Ecuación Diferencial de Bernoulli<br />Dinámica de fluidos<br />La dinámica de los líquidos, está regida por el mismo principio de la conservación de la energía, el cual fue aplicado a ellos por el físico suizo Daniel Bernoulli (1700−1782), obteniendo como resultado una ecuación muy útil en este estudio, que se conoce con su nombre.<br />Para ello se puede considerar los puntos 1 y 2, de un fluido en movimiento, determinando la energía mecánica de una porción de éste, a lo largo del filete de fluido en movimiento que los une.<br />Si m es la porción de masa considerada, su rapidez, la altura sobre el nivel tomado como base, la presión y la densidad en cada uno de los puntos, se puede escribir utilizando el teorema trabajo−energía cinética:<br />Si ahora se divide a todos los términos de los dos miembros, entre la masa considerada, se obtendrá la ecuación de Bernoulli, que corresponde a la ley de la conservación de la energía por unidad de masa. Si el fluido es incompresible, como supondremos en lo sucesivo, donde <br /> , la ecuación de Bernoulli adopta la forma: <br /> <br />Así como la estática de una partícula es un caso particular de la dinámica de la partícula, igualmente la estática de los fluidos es un caso especial de la dinámica de fluidos. Por lo tanto, la ecuación (6.10) debe contener a la ecuación (6.5) para la ley de la variación de presión con la altura para un fluido en reposo. En efecto, considerando un fluido en reposo, y reemplazando <br /> <br />En la ecuación de Bernoulli, se obtiene:<br /> <br /> Que es precisamente la ecuación fundamental de la estática de fluidos. <br />Ejemplo:<br />La presión del agua que entra a un edificio es 3 atmósfera, siendo el diámetro de la tubería 2[cm] y su rapidez de <br />Si el baño de un departamento del 4º piso está a 6[m] de la entrada y la tubería tiene un diámetro de 4[cm], calcule:<br />La presión y rapidez del agua en el baño,<br />La presión en el baño si se corta el agua a la entrada.<br />Solución.<br />a. Usando la ecuación de Bernoulli a la entrada (región 1) y en el baño del 4º piso (región):<br />y la ecuación de continuidad,<br />Donde:<br /> <br />Encontramos:<br />b. Si el agua se corta en la entrada, donde<br /> <br />