SlideShare una empresa de Scribd logo
1 de 143
Descargar para leer sin conexión
2015
Raúl Herrero
www.eselagua.com
Segundo año apostando
por la ingeniería del agua
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 1
Segundo año apostando por
la ingeniería del agua
Por Raúl Herrero
www.eselagua.com
1ª Edición, noviembre de 2015 – Revisión 1
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 2
Tras el lanzamiento y la buena acogida del primer e-book “Un año con la ingeniería del
agua” algunas personas se han interesado y me han preguntado por la continuidad en la
publicación anual de los post del blog www.eselagua.com a modo de compendio.
Así que he decidido proceder a la difusión de un segundo documento electrónico que
recoge los artículos que se han publicado en el citado blog.
Durante un evento que tuvo lugar este año un funcionario del Estado me preguntó
“Raúl, en los tiempos que corren, ¿cómo sobrevives como autónomo en España?” Y yo
le respondí que con dificultad, pero que es posible, que no hay que rendirse, sino que se
ha de perseverar y confiar que en este país la ingeniería del agua tiene muchas cosas
por hacer.
Al tratarse de un camino largo, a modo de carrera de fondo, un buen acompañante está
siendo el blog, una referencia, una herramienta, llámese de marketing si se quiere, a
través de la cual se llega a personas que pueden estar lejos, pero con las que se puede
llegar a establecer alguna colaboración en el futuro.
Escribir un post es como lanzar una botella en el mar de internet donde nunca sabes a
quien puede llegar, a quien puede interesar el contenido,… pero ese mensaje que es
importante para ti, también puede ser de interés para otra persona, y de ahí puede
surgir una idea, un contacto, un proyecto, un trabajo, una colaboración,…
Me gustaría dedicar esta publicación a mi familia, por su apoyo incondicional, en
especial a mi mujer y a mi hijo.
También me gustaría agradecer a las empresas y organismos que me han dado trabajo
durante este año.
Y por último agradecer a los colaboradores, a los subscriptores y a los lectores del blog
www.eselagua.com por su interés, por sus aportaciones, sugerencias y comentarios. Su
participación es fundamental para el enriquecimiento y la mejora del recurso.
Mi firme intención es continuar aprendiendo y compartiendo conocimiento en los
próximos años, sobre el apasionante mundo de la ingeniería del agua.
Un abrazo
Raúl.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 3
ÍNDICE DE CONTENIDOS
La revisión del PATRICOVA. Peligrosidad, vulnerabilidad y riesgo de
inundación………………………………………………………………………………………………4
El Nuevo Ciclo de Planificación Hidrológica 2015-2021 en la Cuenca del
Segura……………………………………………………………………………………………………13
La cuenca del Segura: fuente de agua y sedimentos……………………………………..22
El precio del agua superficial para riego y su impacto en el consumo……………29
Planning and management of droughts in the Segura river basin…………………39
Transitorios hidráulicos en tuberías…………………………………………………………..50
Hacer un uso sostenible del agua ¿utopía o realidad?.........................................61
¿Esta presa es segura? Valores umbrales de las deformaciones y
filtraciones………………………………………………………………………………………………68
La eliminación de obstáculos en los ríos, ¿un tema de futuro?...........................79
Impulsiones. Diámetro económico. Punto de funcionamiento. Golpe de ariete.
Protecciones…………………………………………………………………………………………….89
La Jornada sobre las inundaciones en España y los interrogantes que se
derivan…………………………………………………………………………………………………105
Sequías, Directiva, Planificación y Gestión…………………………………………………116
¿Es necesario proteger este encauzamiento?.....................................................125
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 4
LA REVISIÓN DEL PATRICOVA. PELIGROSIDAD,
VULNERABILIDAD Y RIESGO DE INUNDACIÓN
Rambla del Poyo aguas arriba del cruce con la autovía A-3 en Valencia
1. INTRODUCCIÓN
Han transcurrido más de 11 años desde la puesta en marcha del Plan de Acción
Territorial de carácter sectorial sobre prevención del Riesgo de Inundación en la
Comunidad Valenciana (PATRICOVA) en enero de 2003, y desde entonces han
sucedido cambios significativos en materia de inundaciones.
En cuanto a nueva normativa destaca la Directiva 2007/60/CE, del Parlamento
Europeo y del Consejo, de 23 de octubre de 2007, relativa a la evaluación y
gestión de los riesgos de inundación, cuya transposición al ordenamiento
jurídico español se materializó en el Real Decreto 903/2010, de 9 de julio, de
evaluación y gestión de riesgos de inundación. Y la Resolución de 2 de agosto de
2011, por la que se publica el Acuerdo del Consejo de Ministros de 29 de julio de
2011, por el que se aprueba el Plan Estatal de Protección Civil ante el riesgo de
inundaciones.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 5
También han ocurrido cambios en el territorio en cuanto a usos del suelo, ha
aumentado la población, se han producido avances tecnológicos en la
cartografía y han aparecido nuevas zonas de riesgo resultantes de la aprobación
de los estudios de inundabilidad realizados. Además la normativa del Plan
inicial especificaba que a los 10 años debía revisarse. Todo ello motivó su
revisión en el año 2013, para adaptarlo a las directivas europeas, incorporando
nuevos criterios de delimitación del riesgo de inundación e incorporando
cartografía actualizada y más detallada.
El Plan revisado contiene información sobre riesgo de inundación a escala
regional en el ámbito de la Comunidad Valenciana, y se puede acceder al mismo
desde el enlace siguiente:
http://www.citma.gva.es/web/planificacion-territorial-e-infraestructura-
verde/patricova-plan-de-accion-territorial-de-caracter-sectorial-sobre-
prevencion-del-riesgo-de-inundacion-en-la-comunitat-valenciana-
2. DATOS DE INTERÉS DEL PLAN REVISADO
Un dato de interés viene dado por el hecho de que la Comunidad Valenciana
representa aproximadamente el 5% del territorio nacional, pero soporta, al
menos, el 20% de los episodios de inundaciones acaecidas en los últimos 500
años.
La elaboración de una cartografía de peligrosidad detallada ha permitido acotar
las zonas de mayor riesgo de inundación a un 6% del territorio de la Comunidad
Valenciana.
El Plan revisado identifica 25 municipios con riesgo alto y muy alto de
inundación, que tienen prioridad en la realización de obras de defensa frente a
inundaciones, que aún están pendientes de ejecución, y en los que se debe
extremar la precaución en los nuevos crecimientos urbanísticos.
Según este documento redactado por la Conselleria de Infraestructuras,
Territorio y Medio Ambiente (CITMA) el riesgo de inundación afecta a 442
municipios, de un total de 542 que existen en la Comunidad Valenciana y a una
población de 600.000 habitantes.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 6
Las poblaciones de Algemesí, Alzira, Carcaixent, Castelló, Almoradí y Orihuela
se incluyen en el denominado máximo nivel de riesgo global integrado (Nivel
IV) porque pueden sufrir daños de consideración elevada con los criterios
analizados, desde el punto de vista económico, social y medioambiental.
Entre los municipios que han presentado alegaciones al Plan revisado destaca el
Ayuntamiento de Requena. Y algunos municipios como el de Oliva han
solicitado que el término municipal sea declarado como zona de especial riesgo
de inundación al igual que Alzira, Orihuela, etc. fueron declarados en 2003.
Además de identificar a los municipios afectados por el riesgo de inundación, el
Plan proporciona el detalle del tipo de suelo (residencial, industrial, rural), de
los equipamientos y dotaciones (centros de salud, parques de bomberos,
ayuntamientos, subestaciones eléctricas, etc.), de las infraestructuras y de las
instalaciones que, en el caso de verse afectadas por una inundación, podrían
causar una catástrofe medioambiental, tales como gasolineras, industrias, etc.
3. IMPORTANCIA DE LA COORDINACIÓN ENTRE
ADMINISTRACIONES
Conviene recordar que por exigencia de la Directiva Europea sobre
Inundaciones y su transposición al ordenamiento jurídico español, antes del 22
de diciembre de 2015 deben aprobarse los planes de gestión del riesgo de
inundación para las zonas de mayor riesgo, que deben ser redactados por las
confederaciones hidrográficas en coordinación con los gobiernos autonómicos y
los ayuntamientos.
Por lo tanto es necesaria la coordinación entre las distintas administraciones
para llevar a cabo una gestión adecuada de los riesgos de inundación. El Plan
revisado establece las zonas con riesgo de inundación y se debe complementar
con la nueva cartografía de zonas inundables elaborada por las Confederaciones
Hidrográficas (Júcar, Segura y Ebro).
Uno de los objetivos del PATRICOVA es lograr una actuación coordinada de
todas las Administraciones Públicas y los agentes sociales para reducir las
consecuencias negativas de las inundaciones sobre la salud de las personas y los
bienes, el medio ambiente, el patrimonio cultural, el paisaje, la actividad
económica y los equipamientos e infraestructuras.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 7
La supervisión de la ejecución de las actuaciones previstas en el Plan revisado
corresponde a la Conselleria competente en ordenación del territorio, en
coordinación con los Organismos de Cuenca. Mientras que la supervisión de
actuaciones incluidas en estudios de inundabilidad que acompañan a
instrumentos de planeamiento, corresponderá a los ayuntamientos. Y los
ayuntamientos deben notificar a la Conselleria la finalización de las actuaciones
previstas a efectos de comprobar que se ajustan a las determinaciones de los
estudios de inundabilidad aprobados.
Con la finalidad de disminuir el riesgo de inundación en la actualidad y
reducir daños en el futuro el Plan revisado establece seis líneas de actuación
principales, tal y como muestra la tabla siguiente:
Tabla 1. Líneas de actuación principales de la revisión del PATRICOVA. Año 2013
(*) Según el Real Decreto 903/2010 estas zonas necesitan un plan de gestión que deberá estar aprobado
antes del 22 de diciembre de 2015. Estos Planes permitirán concretar con detalle un conjunto de
actuaciones que den solución a los problemas de inundación que sufra un ámbito territorial a una escala de
cuenca o subcuenca.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 8
4. INCORPORACIONES CON LA REVISIÓN DEL PLAN
La revisión del Plan incorpora los siguientes aspectos de interés:
1) El PATRICOVA original se desarrolló tomando como base la cartografía
regional elaborada por la COPUT en 1997, sin embargo, para la revisión del Plan
se ha tomado de base la actualización existente de planeamiento urbanístico a
fecha enero de 2013, y que se encuentra disponible en el Portal del Territorio
Terrasit, en la dirección web siguiente:
http://terrasit.gva.es/
El uso de herramientas GIS y de una cartografía más actualizada y detallada ha
facilitado que la revisión se desarrolle a escala 1:25.000.
2) La parte normativa del Plan se ha actualizado con la finalidad de adaptarse al
marco legal europeo que ha ido evolucionando en este campo tal y como se ha
comentado en la introducción.
3) Se han revisado los niveles de peligrosidad y se ha introducido el criterio
geomorfológico mediante la elaboración de un mapa geomorfológico a escala
1:10.000 en el que se han distinguido diversas unidades morfológicas asociadas
a diferentes procesos de inundación (llanuras, abanicos aluviales, glacis, lóbulos
de derrame, etc.) En consecuencia aparece un nuevo nivel de peligrosidad que
se denomina nivel de peligrosidad geomorfológica.
4) Se han considerado las inundaciones urbanas y las inundaciones costeras,
introduciendo la inundación marina como posible riesgo.
5) Se comienza a tener en consideración el aporte de sedimentos y la
contaminación.
6) Y además de los costes económicos y los costes sociales asociados a las
inundaciones, también se incluyen los costes medioambientales.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 9
5. NIVELES DE PELIGROSIDAD DE INUNDACIÓN
La revisión del Plan conserva los 6 niveles de peligrosidad que se establecían en
el PATRICOVA original, teniendo en cuenta la frecuencia o probabilidad de
ocurrencia y la variable hidráulica calado, y se incorpora un nuevo nivel de
peligrosidad adicional denominado geomorfológico.
Tabla 2. Niveles de peligrosidad de inundación. Año 2013
Figura 1. Mapa con niveles de peligrosidad de inundación y clasificación del suelo
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 10
6. EL RIESGO DE INUNDACIÓN
El PATRICOVA establece recomendaciones y restricciones del uso del suelo
basadas en el riesgo de inundación. El riesgo de inundación se define como la
combinación de peligrosidad y vulnerabilidad.
La peligrosidad evalúa la frecuencia y la magnitud (a través del calado) con que
se produce el fenómeno de inundación y la vulnerabilidad cuantifica la
magnitud de los daños que se pueden producir y que están asociados al suceso
de inundación.
Figura 2. Esquema de obtención del riesgo de inundación en la revisión del Plan
La revisión del PATRICOVA propone 5 niveles de riesgo de inundación,
teniendo en cuenta los daños ocasionados por unidad de superficie.
Tabla 3. Niveles de riesgo de inundación. Año 2013
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 11
Figura 3. Mapa con niveles de riesgo de inundación y clasificación del suelo
Una vez definido el nivel de riesgo relativo que afecta a cada municipio, para los
diferentes criterios considerados, se procede a la integración de los mismos,
para determinar el Riesgo Global Integrado (RGI). Este concepto tiene la
finalidad de establecer una jerarquía de municipios basada en los niveles de
riesgo asociados a cada uno de los criterios analizados, es decir, criterios
económicos, sociales y medioambientales.
7. CONCLUSIONES Y NUEVOS INTERROGANTES
La aplicación del PATRICOVA revisado proporcionará un conocimiento y una
evaluación de los riesgos de inundación adecuados en el territorio de la
Comunidad Valenciana.
La cartografía asociada es muy útil para los ayuntamientos a la hora de realizar
los Planes Generales de Ordenación Urbana (PGOU), las ordenanzas
municipales y los planes de emergencia. Con esta cartografía se pretende dar
soporte a los ayuntamientos y analizar su situación frente al riesgo.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 12
Se ha aprovechado la revisión para incorporar a la Normativa Valenciana la
Directiva Europea de prevención del riesgo de inundación. De esta forma se
potencia la Ordenación del Territorio y la Infraestructura Verde, y se tiene en
consideración la influencia de los cambios de usos del suelo.
En las zonas afectadas por el nuevo nivel de peligrosidad geomorfológica se
puede formular una consulta a la Conselleria competente en materia de
ordenación del territorio sobre la necesidad de realizar un estudio de
inundabilidad.
En la metodología desarrollada en la revisión del PATRICOVA se han
introducido los aspectos ambientales que establecen los nuevos marcos
legislativos europeos orientados a la evaluación de los costes de las
inundaciones.
Finalmente y a modo de reflexión, considerar que en la actualidad existen
sectores que no se veían afectados por riesgo de inundación alguno con el
PATRICOVA de 2003 y sin embargo, con la revisión del Plan de 2013 pasan a
tener un cierto nivel de peligrosidad de inundación y un cierto nivel de riesgo de
inundación ¿Será necesario comprobar estos nuevos niveles de peligrosidad y de
riesgo de inundación mediante los correspondientes estudios de inundabilidad
de detalle?
Y entonces, en aquellas zonas en las que ha aumentado el perímetro de afección
por riesgo de inundación en la revisión con respecto al Plan inicial ¿Se va a
recalificar el suelo? ¿Se va a indemnizar a los propietarios que llevan pagando
años por suelo urbanizable y que ahora puede dejar de serlo?
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 13
EL NUEVO CICLO DE PLANIFICACIÓN
HIDROLÓGICA 2015-2021 EN LA CUENCA DEL
SEGURA
Manantial de aguas en Benizar (Moratalla)
1. INTRODUCCIÓN
En la Demarcación Hidrográfica del Segura los recursos hídricos son
fundamentales para el abastecimiento humano, el desarrollo y mantenimiento
de la biodiversidad, la actividad agroalimentaria y la actividad industrial. En
esta cuenca es especialmente difícil satisfacer las demandas de agua asociadas a
los distintos usos, tanto en cantidad como en calidad.
Según la Directiva Marco del Agua (DMA), la nueva planificación debe actuar
sobre la gestión de la demanda, promoviendo la eficiencia y el ahorro de agua.
De esta manera se favorecerá el buen estado de las masas de agua en la
Demarcación.
La coordinación entre las distintas partes de la sociedad involucradas para
armonizar los intereses generales de la Demarcación Hidrográfica es cada vez
más necesaria.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 14
En cada uno de los apartados siguientes se tratan aspectos destacables del Plan
Hidrológico de la Demarcación.
2. CAUDALES ECOLÓGICOS
Según el marco normativo vigente el régimen de caudales ambientales adecuado
es aquel que contribuye a alcanzar el buen estado o buen potencial ecológico en
los ríos y aguas de transición y mantiene como mínimo la vida piscícola que de
manera natural habitaría o pudiera habitar en el río, así como su vegetación de
ribera.
Los valores finalmente propuestos en el Plan de la Demarcación configuran un
régimen de caudales mínimos escasos. El Plan propone regímenes de caudales
ecológicos calculados con una base científica que está pendiente de revisión y
mejora en los próximos años. Los regímenes de caudales propuestos reproducen
débilmente la variabilidad natural de los caudales históricos dentro del año
hidrológico, respondiendo más al régimen alterado que impone la elevada
regulación existente en el río.
3. SOBREEXPLOTACIÓN DE ACUÍFEROS
Se trata de masas de agua subterráneas que no alcanzan el buen estado tal y
como consta en el Esquema de Temas Importantes.
En el Plan Hidrológico se ha realizado el inventario de presiones para las masas
de agua superficiales, pero no para las aguas de transición y aguas costeras ni
tampoco para las masas de agua subterráneas. Este tema hay que abordarlo
para no incumplir la DMA, y para no invalidar las previsiones del Programa de
Medidas.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 15
Por lo tanto queda mucho por hacer en materia de diagnóstico sobre los
recursos subterráneos disponibles, tanto en cantidad como en calidad, en esta
Demarcación Hidrográfica. Por ejemplo, se necesita realizar un diagnóstico
sobre los caudales de los acuíferos a través de manantiales, presiones a que
están sometidos y medidas para su protección y recuperación. Hay que tener en
cuenta que una parte importante de los manantiales y humedales asociados a las
aguas subterráneas de la cuenca del Segura han sufrido procesos de desecación,
reducción de caudales y degradación general de sus condiciones ambientales.
En definitiva, es necesario potenciar el mantenimiento de fuentes y manantiales
ya que tienen una importante función ambiental y social.
También es necesario que el ciudadano de a pie pueda acceder sin dificultad a
información (tanto en el Plan, como a través de internet) que permita verificar
la situación jurídica de los pozos y puntos de extracción, con la finalidad de
detectar y denunciar situaciones irregulares.
4. SEQUÍAS
En materia de sequías, es posible trabajar para acoplar el Plan de la
Demarcación con el Plan Especial frente a la Sequía (PES). De esta manera, si se
incorporan las restricciones al suministro que contempla el PES la
cuantificación del déficit medio interanual se reduciría significativamente en
periodos de sequía. Es necesario revisar y aplicar el PES para lo cual es
necesario disponer de recursos presupuestarios.
La planificación debe ser flexible y debe adaptarse a la realidad del año
hidrológico. De esta manera las demandas ya no se consideran fijas, sino que
existe un margen de maniobra. En años secos tiene que aplicarse el PES, lo que
supone una reducción de las demandas.
Este es un tema que debería dejar muy claro la “futura” Directiva Europea sobre
Sequías.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 16
Ante situaciones de emergencia por sequía, el PES de la Cuenca del Segura
establece como acuíferos prioritarios para la apertura y entrada en
funcionamiento de los "pozos de sequía" a los acuíferos que están en equilibrio y
que todavía mantienen manantiales y ecosistemas asociados en buen estado.
Pero ¿por qué las extracciones de agua subterránea necesarias en situación de
emergencia no se realizan sobre alguno de los acuíferos ya sobreexplotados, en
los que la funcionalidad ambiental de sus reservas es menor?
En el Plan de la Demarcación se presenta por una parte los recursos estimados
según la serie hidrológica larga y por otra parte los recursos disponibles
estimados en la actualidad. Para la incorporación de las previsiones del cambio
climático, el Plan adopta los valores mínimos aplicables de reducción esperable
de recursos según la Instrucción de Planificación Hidrológica. No se aplican las
previsiones procedentes de estudios científicos específicos y actualizados para el
ámbito de la Demarcación del Segura. Por tanto, no se tiene en cuenta que el
cambio climático continuará reduciendo la cantidad de recursos hídricos
disponibles en el largo plazo. Sería interesante incorporar e integrar esta
reducción en los diagnósticos y en las disposiciones del Plan.
5. INUNDACIONES
Es necesario coordinar e integrar adecuadamente en este nuevo ciclo el Plan
Hidrológico de la Demarcación con el Plan de Gestión del Riesgo de
Inundaciones. El presente ciclo de planificación se desarrolla en paralelo con la
elaboración del Plan de Gestión del Riesgo de Inundaciones, en cumplimiento
de la Directiva Europea de Inundaciones, lo que exige una coordinación
adecuada de ambos planes. Esto implica coordinación entre las unidades de
Planificación Hidrológica, Dirección Técnica y Comisaría de Aguas de la
Confederación Hidrográfica del Segura, y de este Organismo de cuenca con
Protección Civil.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 17
La evolución previsible de los daños por inundaciones es incierta, debido a los
efectos del cambio climático. Todavía existen incógnitas que no permiten
establecer conclusiones firmes sobre fenómenos extremos como las
inundaciones, al contrario de lo que ocurre con las tendencias medias. En
general se estima, tal y como viene sucediendo a nivel global y en especial en
Europa, que los daños por inundaciones se incrementarán en el futuro, según la
Agencia Europea de Medio Ambiente. La adecuada elaboración del Plan de
Gestión del Riesgo de Inundación y su correcta aplicación permitirá reducir los
daños causados por las inundaciones.
6. USO INTENSIVO DE LOS RECURSOS HÍDRICOS DE LA
DEMARCACIÓN PARA REGADÍO
Para cuantificar adecuadamente el consumo de agua en los usos agrícolas es
necesario disponer de datos e información relativa a los perímetros de riego
(ubicación, superficie, situación jurídica y consumo real). Los perímetros
reconocidos oficialmente suelen ser superiores a la superficie regada total
permitida dentro de los mismos, por lo que es necesario realizar un control
parcelario que evite el crecimiento irregular del regadío.
El Plan Hidrológico sigue utilizando el concepto de Unidad de Demanda Agraria
(UDA), que no tiene correspondencia en la DMA. Las UDAs mezclan tipos de
regadío y recursos hídricos de diferente naturaleza. Se trata de clasificar y medir
los consumos reales de agua superficial, de agua subterránea, etc.
El Plan debe realizar un diagnóstico de los Planes de Modernización de
Regadíos ejecutados. Se deben evaluar los resultados de dichos planes
detallando:
- Superficie total cubierta,
- Coste final,
- Porcentaje de subvención pública total recibida,
- Consumo hídrico real tras la ejecución del Plan,
- Ahorro de agua real,
- Destino del volumen de agua ahorrado.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 18
¿El volumen de agua ahorrado se está utilizando en mejorar el medio ambiente
a través de caudales ecológicos adecuados o se está destinando a ampliar
superficies de regadío?
En septiembre de 2007 la Administración Estatal reconoció que no se había
revisado ninguna concesión de agua en la cuenca del Segura, a pesar de los
proyectos de modernización ejecutados. Es preciso realizar una importante
labor de regularización concesional de los usuarios afectados.
¿Se tiene previsto llevar a cabo una revisión exhaustiva de las citadas
concesiones?
Y un tema muy importante que también está pendiente es la contaminación
difusa de origen agrario. Este asunto es de vital importancia para asegurar el
buen estado de las masas de agua. El Plan demuestra la existencia de un
problema de contaminación por fenoles y plaguicidas, con cifras muy superiores
a los límites establecidos en la Directiva de Aguas Subterráneas, en las masas de
agua subterránea de Taibilla, Anticlinal de Socovos y Campo de Cartagena.
7. RECUPERACIÓN DE COSTES Y RÉGIMEN TARIFARIO
La gestión integrada de recursos hídricos ha de contar con unas tarifas y
cánones que permitan una recuperación de costes adecuada, tanto de los costes
de los servicios, como de los costes ambientales. Además los precios del agua
deben ser compatibles con las actividades socioeconómicas relacionadas, en un
marco legal y económico-financiero adecuado.
En el nuevo ciclo de planificación se debe trabajar para establecer el nivel de
garantía de suministro de cada uso atendiendo a consideraciones técnicas y de
sostenibilidad, considerando los costes de los servicios y los costes ambientales
asociados, para garantizar la recuperación de costes.
En cuanto a la fuente alternativa que constituye la desalación, una propuesta
interesante consistiría en modificar el régimen concesional del agua desalada
dotándole de mayor flexibilidad para su utilización en el regadío y en establecer
un régimen tarifario en instalaciones de desalación compatibles con el uso
agrícola.
Y en cuanto a las infraestructuras hidráulicas, las presas españolas necesitan
unas labores de mantenimiento y conservación considerables. Algunos autores
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 19
estiman que el coste anual de estas labores rondaría el 1% del valor de la
inversión.
¿Por cuánto sería necesario multiplicar el canon de regulación y la tarifa de
utilización del agua en la actualidad para cubrir los costes anuales de
mantenimiento y conservación de las presas?
8. MEJORAR LA CALIDAD DE LOS DATOS
En la Demarcación del Segura existe una carencia de datos importante sobre
aguas subterráneas. Es necesario mejorar los datos de calidad y niveles
piezométricos con el objetivo de conocer más sobre el comportamiento de los
acuíferos, tanto a nivel espacial como a nivel temporal. Una vez que se disponga
de esos datos, será el momento de plantearse la modelación de los acuíferos
mediante modelos 3D.
En cuanto a las aguas superficiales y la escasez de control foronómico del
Sistema Segura como Tema Importante, incidir en que sería necesario potenciar
el mantenimiento de las estaciones de aforos existentes, lo cual redundaría en
una mejora de la calidad de las series de caudales.
Cuando mejore el tema presupuestario será preciso destinar recursos a nuevas
tecnologías para efectuar mediciones fiables, formar a personal técnico
cualificado que realice el análisis y el seguimiento de la información, mantener
las infraestructuras hidráulicas en condiciones óptimas para realizar las
medidas y aprovechar mejor las potencialidades de los Sistemas Automáticos de
Información Hidrológica (SAIH).
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 20
Temas de interés que deben ser abordados en el nuevo ciclo de planificación
hidrológica
9. CONCLUSIONES
Entre los temas que deben ser abordados en el nuevo ciclo de planificación
hidrológica y que suponen un riesgo para alcanzar los objetivos
medioambientales en la Demarcación Hidrográfica del Segura destacan:
A) El cumplimiento de un régimen de caudales ecológicos adecuado.
B) La sobreexplotación de acuíferos.
C) El acoplamiento del Plan de la Demarcación con el Plan Especial frente a la
Sequía.
D) Las inundaciones y el cambio climático.
E) El uso intensivo de los recursos hídricos de la demarcación para regadío.
F) La recuperación de costes y el régimen tarifario.
G) La mejora de la calidad de los datos.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 21
10. REFERENCIAS BIBLIOGRÁFICAS
Comité de Expertos en Sequía. 2007. La sequía en España. Directrices para
minimizar su impacto. Ministerio de Medio Ambiente.
Comunicación de la Comisión 414/2007, de 18 de julio. Afrontar el desafío de la
escasez de agua y la sequía en la UE.
Herrero, R. 2014. La nueva planificación hidrológica y los regímenes de
caudales ambientales en los ríos. Tecnoaqua. Volumen 5. 94-100.
Maestu, J. et al. 2007. Precios y costes de los servicios de agua en España.
Informe integrado de recuperación de costes de los servicios de agua en España.
Artículo 5 y Anejo III de la Directiva Marco de Agua. Ministerio de Medio
Ambiente.
Observatorio de las Políticas del Agua, 2014. Evaluación del primer ciclo de
planificación hidrológica en España en aplicación de la Directiva Marco del
Agua. Fundación Nueva Cultura del Agua.
Observatorio de las Políticas del Agua, 2014. Evaluación del primer ciclo de
planificación. Demarcación Hidrográfica del Segura. Fundación Nueva Cultura
del Agua.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 22
LA CUENCA DEL SEGURA: FUENTE DE AGUA Y
SEDIMENTOS
“Nuestro saber acerca de los ríos es eminentemente empírico y aún falta
mucho para conocer las leyes fundamentales del comportamiento completo de
los cauces naturales y acerca de la interacción entre las obras que construimos
en ellos y que los afectan, y la respuesta veraz sobre los efectos que los ríos
ocasionan en esas obras con el paso del tiempo.”
Prof. José Antonio Maza-Álvarez
Figura 1. Estación de aforos de Rojales en el encauzamiento del río Segura.
1. INTRODUCCIÓN
A comienzos del siglo XX las aguas del río Segura eran fluyentes y el río estaba
muy poco regulado. Se disponía de azudes de derivación como el de
Contraparada y en la cuenca los embalses se contaban con los dedos de una
mano (Valdeinfierno y tercera presa de Puentes).
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 23
En cien años, en España se han construido casi 1200 presas y la capacidad de
embalse ha pasado de ser prácticamente inapreciable, a ser de unos 56000 hm3.
Actualmente, la cuenca del Segura tiene una capacidad de almacenamiento de
unos 1140 hm3.
Hoy día, el río Segura presenta una elevada regulación para uso agrícola y en la
cuenca tiene lugar una movilización masiva de recursos subterráneos. En
consecuencia se ha originado una alteración intensa en el régimen fluvial del
río, existiendo gran dificultad para el establecimiento y cumplimiento de un
régimen de caudales ecológicos adecuado, que no sólo consta de agua sino que
también de sedimentos.
2. EVOLUCIÓN DEL RÉGIMEN HIDROLÓGICO DEL RÍO SEGURA
EN LAS PROXIMIDADES DE LA DESEMBOCADURA
El régimen hidrológico del río Segura aguas arriba de la desembocadura
presenta consideraciones de interés a lo largo del tiempo, que se muestran a
través de las medidas de caudales diarios registrados en la estación de aforos de
Rojales, perteneciente a la Red Oficial de Estaciones de Aforo (ROEA).
A continuación se distinguen cuatro periodos en correspondencia con el Gráfico
1:
1) 1925-1931: la etapa anterior a 1932 se caracterizó porque el río Segura apenas
estaba regulado, ya que todavía no había entrado en funcionamiento el embalse
de Fuensanta, y el río acostumbraba a presentar sus crecidas y sus estiajes.
2) 1943*-1959: desde que entra en funcionamiento el embalse de la Fuensanta
(1933) y antes de la puesta en marcha de los embalses de Cenajo y Camarillas
(1960), el régimen del río presenta más regularidad, pero no varía
significativamente respecto al periodo anterior.
3) 1960-1977: a partir de la entrada en explotación del Cenajo y del Camarillas la
regulación en el río Segura comienza a ser importante.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 24
4) 1978-1990: con la entrada en funcionamiento del Azud de Ojós y de los
canales del Post Trasvase (1979) el régimen de caudales del río Segura cambia
drásticamente, pasando a ser un régimen intensamente regulado, tal y como se
observa en la curva correspondiente del gráfico siguiente:
Gráfico 1. Envolventes máximas de caudales diarios clasificados en la estación de
aforos de Rojales.
(*) Durante el periodo 1932-1942 no se dispone de datos. Todos los datos de
caudales se han obtenido del Sistema de Información del Anuario de Aforos del
MAGRAMA:
http://www.magrama.gob.es/es/agua/temas/evaluacion-de-los-recursos-
hidricos/sistema-informacion-anuario-aforos/
3. EL PROBLEMA DE LA EROSIÓN EN LA CUENCA
Durante la riada de Santa Teresa en octubre de 1879 se estimó un caudal
máximo del Segura en Murcia de 1890 m3/s. En algunas zonas de Nonduermas
el calado del agua alcanzó 2,50 m. Y después de la retirada de las aguas se halló
un enorme depósito aluvial. La arena dejó dibujado sobre el terreno el cono de
deyección del río Guadalentín, formando en algunos parajes bancos de 1,50 m
de espesor. Y los tarquines alcanzaron 0,50 m en algunos puntos.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 25
En 1977 se redactó el “Proyecto de restauración hidrológico forestal de la
Cuenca de la Rambla de Nogalte” con el objetivo de reparar los graves daños
ocasionados por la avenida de 1973, reducir la erosión de la cuenca y controlar
futuras avenidas.
Los ingenieros autores de este proyecto mostraron gran interés por el cálculo de
las elevadas pendientes y su influencia en la velocidad del agua y en la capacidad
erosiva.
En el Proyecto se hace un análisis del periodo 1955-1974 y se realizan los
cálculos durante los episodios de tormentas, ya que los ingenieros sostienen que
existe una fuerte correlación entre las toneladas de suelo erosionado y la
cantidad de precipitación y su distribución espacio temporal. De esta forma
obtienen para el año 1969, que fue el año más lluvioso de la serie, una tasa de
erosión de 71 T/Ha/año y para 1973, año de la catastrófica avenida, 45
T/Ha/año.
En otras fuentes se cita que las tasas de erosión en la Región de Murcia, en áreas
en las que se produce piping, y episodios de lluvias torrenciales pueden elevarse
a más de 100 T/Ha/año.
Incluso hay autores que hablan de tasas de erosión en zonas de cárcavas muy
superiores a los descritos anteriormente (Vanderkerkhove et al. 2003).
El Centro de Estudios Hidrográficos, en un informe confeccionado a raíz de la
avenida de 1973 en la Rambla de Nogalte aportó unos valores de caudal sólido
de 813 m3/s frente a los 1974 m3/s del caudal total estimado, lo que suponía un
41 % del total.
4. EL APORTE DE SEDIMENTOS AL MAR
Las presas construidas en la cuenca del río Segura y la disminución del caudal
fluvial a lo largo del tiempo han originado una reducción de los aportes de
sedimentos.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 26
Tanto en el caso del río Nilo con la presa de Assuan, como en el caso del río Ebro
con la presa de Mequinenza, ambas cerca de la desembocadura de estos dos
ríos, la reducción de los aportes sedimentarios al mar ha sido superior al 95%.
En los ríos mediterráneos más de un 90% de los aportes sedimentarios
descargados al mar son transportados en suspensión (Emmett, 1984).
Estudios realizados en ríos mediterráneos, con sus campañas de recogida de
datos asociadas, demuestran que a principios del siglo XX las concentraciones
medias de sedimentos en suspensión rondaban los 1000 mg/l, y durante las
épocas de avenidas las concentraciones podían ascender a un orden de
magnitud superior, es decir 10000 mg/l.
Asumiendo una concentración media de sedimento de 1 g/l y con los caudales
medios de los periodos analizados en la estación de aforos de Rojales, se puede
estimar la cantidad de sedimentos en suspensión que el río Segura aportaba al
mar Mediterráneo en media, tal y como muestra la tabla siguiente:
Tabla 1. Caudales medios y estimación de cantidad y volumen de sedimentos
anuales aportados por el río Segura al mar Mediterráneo.
El volumen de sedimentos se ha obtenido admitiendo un peso específico medio
de las partículas de γs = 2,65 T/m3.
La curva de la evolución de los aportes sedimentarios del río Segura al mar
Mediterráneo se puede ver en el siguiente gráfico:
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 27
Gráfico 2. Evolución de la cantidad de sedimentos aportados por el río Segura al
mar Mediterráneo.
A la vista de la curva anterior, es evidente que los 2 millones de toneladas de
sedimentos, o lo que es equivalente 0,8 hm3 de sedimentos que se deberían
aportar al mar cada año, se quedan retenidos en los embalses de la cuenca.
Hay estudios que hacen uso de las batimetrías de los embalses y que realizan
estimaciones indirectas de la erosión en la cuenca del Segura, obteniendo
valores de 2 hm3/año de sedimentos acumulados en dichos embalses (López
Bermúdez y Gutiérrez Escudero, 1982).
5. CONCLUSIONES
En cuencas semiáridas como la del Segura la tasa global de erosión depende
especialmente de la intensidad de la precipitación, de la escorrentía y del uso del
suelo.
Desde principios de los ochenta los embalses de la cuenca del Segura han
acumulado, al menos, 70 hm3 de sedimentos, lo que supone una pérdida de
capacidad de almacenamiento superior al 6%.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 28
Actualizar las batimetrías en los embalses y realizar medidas de los caudales
sólidos movilizados en algunos puntos estratégicos de la cuenca ayudaría a
conocer más su funcionamiento y el origen de los sedimentos. Esto permitiría
proponer medidas útiles para la reducción de la erosión y para el
mantenimiento de la capacidad de almacenamiento de los embalses.
6. REFERENCIAS BIBLIOGRÁFICAS
Masachs Alavedra V., 1948. El régimen de los ríos peninsulares. Consejo
Superior de Investigaciones Científicas.
Couchoud R., 1965. Hidrología histórica del Segura. Centro de Estudios
Hidrográficos.
López Bermúdez F., Gutiérrez Escudero J. D., 1982. Estimación de la erosión y
aterramientos de embalses en la cuenca hidrográfica del río Segura. Cuadernos
de investigación geográfica. Tomo VIII, 3-18.
Martín Vide J. P., 2002. Ingeniería de ríos. Edicions UPC.
Gil Olcina A., 2004. Alteración de los regímenes fluviales peninsulares.
Fundación Cajamurcia.
Romero Díaz A., Ruiz Sinoga J. D., Belmonte Serrato F., 2011. Tasas de erosión
hídrica en la Región de Murcia. Boletín de la Asociación de Geógrafos Españoles
56, 129-153.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 29
EL PRECIO DEL AGUA SUPERFICIAL PARA RIEGO
Y SU IMPACTO EN EL CONSUMO
Figura 1. Noria Grande en Abarán al servicio del riego tradicional.
1. INTRODUCCIÓN
El precio del agua afecta significativamente a su consumo. Una de las cosas que
más nos duele a las personas es que nos toquen el bolsillo.
Ante la pregunta ¿Es posible reducir las presiones sobre el medio hídrico y
mantener el crecimiento económico? La Unión Europea propone encontrar una
respuesta en el precio real del agua.
El Libro Blanco del Agua (1998) reconocía que la administración hidráulica
española no ha tenido en cuenta el precio del agua de forma adecuada.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 30
El principal consumidor de recursos hídricos en España es el sector agrícola. Es
una realidad que este gran consumidor de recursos hídricos no está sometido al
mismo nivel de control que los usuarios de abastecimiento urbano. Se trata de
una asignatura pendiente en todas las cuencas hidrográficas españolas. Es
importante tener en cuenta que en los últimos cien años, la superficie de regadío
se ha triplicado en España.
Gráfico 1. Evolución de la superficie de regadío en España.
Los precios bajos del agua superficial para riego en España no reflejan la escasez
del recurso y no incentivan el ahorro del agua, ni la eficiencia agrícola. España
es un país donde son frecuentes las situaciones de sequía, donde existen unos
altos niveles de demanda de agua que se traducen en presión sobre los recursos
hídricos y el medio natural y en donde se dan situaciones de mala gobernanza
en materia de gestión del agua. Y todo ello agravado por un escenario de cambio
climático.
En el año 2002 Francia pagaba el agua de riego a 0,25 €/m3, en España el
precio medio del agua superficial para riego era de 0,02 €/m3 ¿este precio
favorece el desarrollo de una agricultura eficiente que ahorra agua? Desde mi
punto de vista no.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 31
Entonces a mí me gustaría lanzar un reto a los economistas ambientales para
que respondan a esta pregunta, ¿cuál debería ser el precio real del agua
superficial para regar en España en €/m3? Y otra pregunta al resto de
economistas ¿cuánto deberían bajar los intermediarios sus márgenes de
beneficio para que los agricultores pudieran vender su producción a unos
precios dignos y asumir el coste real del agua?
La variabilidad de los precios del agua es verdaderamente asombrosa, por
ejemplo, en la cuenca del Segura el coste puede variar desde valores cercanos a
0,01 €/m3 (agua superficial) hasta valores de 0,40 €/m3 (agua subterránea). Y
el caso límite serían aquellas parcelas, que se sabe de su existencia, con pozos
para regar en las que el precio del agua se reduce al coste energético del
bombeo.
2. LA DIRECTIVA MARCO Y EL PRECIO DEL AGUA
Hasta hace pocos años, el análisis de costes y de la recuperación de costes de los
servicios del ciclo integral del agua era un aspecto novedoso en la planificación
hidrológica de una cuenca.
El artículo 9 de la Directiva Marco del Agua (DMA) considera la necesidad de
tener en cuenta el principio de recuperación de costes y que los precios sirvan
como incentivo para mejorar la eficiencia en el uso del agua y así ayudar a
conseguir los objetivos ambientales.
Los precios deben permitir recuperar los costes que supone poner el recurso a
disposición de los usuarios, reflejando la escasez y los costes de reponer y
garantizar la calidad ambiental del medio hídrico.
A la hora de establecer las tarifas del agua, la administración hidráulica
española debe tener en cuenta el artículo 9 de la DMA Recuperación de los
costes de los servicios relacionados con el agua:
“…Los Estados miembros garantizarán, a más tardar en 2010:
- que la política de precios del agua proporcione incentivos adecuados para
que los usuarios utilicen de forma eficiente los recursos hídricos y, por tanto,
contribuyan a los objetivos medioambientales de la presente Directiva,
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 32
- una contribución adecuada de los diversos usos del agua, desglosados, al
menos, en industria, hogares y agricultura, a la recuperación de los costes de
los servicios relacionados con el agua, basada en el análisis económico
efectuado con arreglo al anexo III y teniendo en cuenta el principio de que
quien contamina paga.”
Para poder aplicar el principio de recuperación de costes de la DMA es necesario
mejorar la transparencia en la información sobre:
- Los costes reales de la prestación de los servicios de agua,
- Los pagos realizados por parte de los usuarios,
- Los consumos reales de agua,
- Ayudas y subvenciones recibidas,
- Estructuras tarifarias.
Con esta información se debe realizar un diagnóstico sobre los problemas que se
detecten y así poder tomar medidas para mejorar la situación. La tendencia
debería ser un pacto nacional para asumir los costes reales del agua. El precio
del agua debe ser un instrumento de gestión y no se debe usar políticamente. Se
necesitan unas normas a escala nacional, es decir, un marco legal realista y que
se aplique con independencia de criterio.
3. LOS COSTES AMBIENTALES
Según la Guía Wateco (2002) los costes ambientales hacen referencia a “los
costes del daño que los usos del agua imponen sobre el medio ambiente y los
ecosistemas y sobre aquellos que usan el medio ambiente”.
Los costes ambientales en el contexto de la DMA se pueden considerar como:
- Costes de las medidas adoptadas para evitar, prevenir o reparar daños a
los ecosistemas derivados del uso del agua. Se trata de pagar por las medidas de
protección y mejora de los ecosistemas, y por recuperar la calidad ambiental de
los ríos, acuíferos, aguas de transición y costeras, además de pagar por los
servicios de agua. En definitiva, considerar el coste de las medidas que permiten
mantener o alcanzar el buen estado de las masas de agua requerido por la DMA.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 33
- Costes de escasez asociados a los costes de oportunidad a la que se renuncia
cuando un recurso escaso es asignado a un uso en lugar de a otros posibles. Es
decir, hay competencia por el agua y hay usos del agua alternativos que generan
un valor económico o ambiental mayor que el uso presente o previsto para el
futuro. Puede haber distintas razones por las que esto se produce como los
derechos históricos en el uso del agua (Brouwer, 2004). La eficiencia en la
gestión del recurso exige que se conozcan e incorporen los costes de
oportunidad del recurso en las decisiones.
Dos son los componentes que hay que analizar:
1. Físico o de disponibilidad de agua en el espacio y en el tiempo.
2. Económico, de demandas económicas para su uso y demandas
ambientales.
Se trata de determinar el valor económico de las “oportunidades” perdidas por
los usos económicos y la mejora en la eficiencia económica en la asignación del
recurso como un instrumento con el que reducir las presiones sobre el medio
hídrico y mantener el crecimiento económico.
Todo esto significa incluir no solo los daños generados, que pueden estar
valorados por el mercado, como la repercusión de la sobreexplotación de
acuíferos sobre los márgenes de los regantes o el aumento del coste de
potabilización por la contaminación por nitratos; sino también otros no
valorados por el mercado como los ecosistemas, los usos recreativos, etc.
La valoración ambiental en España lleva asociadas numerosas dificultades
derivadas del hecho de que existen pocos estudios de valoración, que son
además parciales y dependientes del contexto en el que se apliquen.
4. LOS COSTES DE LOS SERVICIOS DE AGUA
Se ha estimado que el valor de los servicios prestados por los diferentes agentes
en el sector del agua en España en 2002 ha sido de 6330 millones de euros, de
los cuales, 1266 millones de euros se destinaron a servicios de distribución de
agua de riego, tal y como muestra la tabla siguiente:
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 34
Tabla 1. Coste de los servicios del agua en España 2002
Un aspecto destacable es el valor bajo de los servicios en “alta” (Captación,
extracción, embalse y transporte) ya que estos sólo representan un 7% del total,
en aguas superficiales, y un 8% del total, en aguas subterráneas. Este hecho ha
empezado a variar en los últimos años, ya que se utilizan fuentes de agua más
caras como la desalación y la reutilización.
5. PROPUESTA DE FORMULACIÓN PARA ESTABLECER EL PRECIO
DEL AGUA SUPERFICIAL PARA RIEGO
Siguiendo los argumentos de la DMA, se propone una formulación sencilla para
estimar el precio del agua superficial para riego. La fórmula que se propone
consta de dos sumandos, el primero recoge los costes del servicio asociados a la
distribución del agua, el mantenimiento, la conservación y la amortización de
las obras hidráulicas; estos costes serían proporcionales a la superficie puesta en
regadío y al volumen de agua real consumido y medido en campo. El segundo
sumando representa a los costes ambientales que deben incluir el coste de las
medidas que permiten mantener o alcanzar el buen estado de las masas de agua
requerido por la DMA y los costes de escasez asociados a los costes de
oportunidad.
P = C*K*V + I
Siendo:
P = Precio del agua superficial para riego (€/m3),
C = Coeficiente de los costes del servicio, que depende del coste de distribución
de agua de riego, del coste de mantenimiento y conservación de las
infraestructuras y de la amortización de las obras,
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 35
K = Función variable con la superficie a regar (*),
(*) K = 0,8 + 0,325*Ln(A + 1)
A = Superficie de riego (ha),
V = Volumen de agua real consumido y medido en el terreno en (m3/ha/año),
I = Costes ambientales que incluyen costes de las medidas y costes de escasez
(€/m3)
En esta formulación el tipo de cultivo se tiene en cuenta de forma indirecta a
través del volumen de agua real consumido.
La formulación es mejorable obviamente, y tiene tres objetivos fundamentales:
1) Tomar conciencia de la necesidad de medir bien el consumo real de agua
superficial para riego.
2) Incentivar el ahorro de agua, ya que pagará menos el que sea más eficiente.
3) Respetar el medio ambiente y concienciar de que hay que pagar por
contaminar.
Pasamos a ilustrar con un par de ejemplos la formulación propuesta.
Supongamos que en una cuenca hidrográfica española hay cinco agricultores
que pertenecen a una misma comunidad de regantes, y que se deciden por
plantar el mismo cultivo de frutales para los próximos años.
Tras realizar los estudios económicos correspondientes se llegó a la conclusión
que el coeficiente a aplicar a los costes del servicio de agua para riego en esa
comunidad era de 0,000002.
Por otra parte, los economistas ambientales han valorado los costes ambientales
que incluyen los costes de las medidas para mantener el buen estado del
acuífero subyacente (que recibe nitratos) y los costes de oportunidad, estimando
un precio de 0,02 €/m3.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 36
Los agricultores tienen en producción las siguientes superficies de regadío:
Tabla 2. Superficies de regadío.
En este primer ejemplo todos los agricultores están consumiendo el mismo
volumen de agua, que se ha medido y que es de 6000 m3/ha/año.
Los valores del coeficiente K, para cada superficie de riego son:
Tabla 3. Valores del coeficiente K para cada superficie.
Aplicando la fórmula propuesta, el precio del agua que tendría que pagar cada
agricultor sería el siguiente:
Tabla 4. Precio del agua en el primer año.
Y por lo tanto, el coste del agua de todo el año sería:
Tabla 5. Gasto anual en agua en el primer año.
Tras la experiencia de este primer año, los agricultores 3, 4 y 5 deciden invertir
en eficiencia y ahorrar más agua y consiguen rebajar el consumo a 4500
m3/ha/año.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 37
En consecuencia, este segundo año el coste del agua ha sido:
Tabla 6. Precio del agua y gasto anual en el segundo año.
Comparando gráficamente los resultados obtenidos se aprecia cómo influye el
ahorro del agua en el coste anual:
Gráfico 2. Gasto anual en agua superficial de riego en función de la superficie y del
consumo.
6. CONCLUSIONES
El principal consumidor de recursos hídricos en España es el sector agrícola. En
los últimos cien años, la superficie de regadío se ha triplicado.
Es posible incentivar el ahorro del agua y la eficiencia agrícola estableciendo
unos precios reales del agua en un marco legal regulatorio y económico-
financiero estable e independiente, al margen de las presiones políticas.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 38
Se ha planteado una formulación sencilla para estimar el precio del agua,
teniendo en cuenta no sólo los costes del servicio que supone poner el recurso a
disposición de los usuarios, sino que también los costes de escasez y los costes
de reponer y garantizar la calidad ambiental del medio hídrico. Para estimar los
costes ambientales se necesitan realizar estudios con rigor por economistas y
ambientalistas en España.
La formulación propuesta tiene tres objetivos fundamentales:
1) Tomar conciencia de la necesidad de medir bien el consumo real de agua
superficial para riego.
2) Incentivar el ahorro de agua, ya que pagará menos el que sea más eficiente.
3) Respetar el medio ambiente y concienciar de que hay que pagar por
contaminar.
7. REFERENCIAS BIBLIOGRÁFICAS
1) Maestu, J. et al. 2007. Precios y costes de los servicios de agua en España.
Informe integrado de recuperación de costes de los servicios de agua en España.
Artículo 5 y Anejo III de la Directiva Marco de Agua. Ministerio de Medio
Ambiente.
2) Observatorio de las Políticas del Agua, 2014. Evaluación del primer ciclo de
planificación hidrológica en España en aplicación de la Directiva Marco del
Agua. Fundación Nueva Cultura del Agua.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 39
PLANNING AND MANAGEMENT OF DROUGHTS
IN THE SEGURA RIVER BASIN
Cenajo reservoir downstream
ABSTRACT: The severe drought in period 1990-1995 triggered the inclusion of
droughts on water resources planning. The Segura River Basin Management
Plan (2014) proposes environmental flow regimes calculated with a scientific
basis which is under review and improvement in the coming years. The flow
regimes do not reproduce the natural variability of historic flows. And this is a
consequence of the altered regimen imposed due to the high regulation in the
Segura River. The Segura Drought Management Plan (2007) aims towards
surface water supply re-strictions, but the Plan does not consider any indicator
of the groundwater. This paper proposes: 1) A methodology based on the
analysis of droughts in Segura River in order to find new minimum flow regimes
that will represent the natural variability of the river at a monthly scale, during
periods of drought. 2) The consideration of an indicator to tackle groundwater
abstraction during periods of drought.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 40
1. INTRODUCTION
This paper describes a methodology based on the analysis of droughts in Segura
River to find new minimum flow regimes that will represent the natural
variability of the river at a monthly scale, during periods of drought. Besides,
the contribution introduces an indicator to tackle groundwater abstraction
during periods of drought.
At present there is an increasing social demand for respect and preserve the
environment. This fact is conditioning water planning at European level, so that
the rivers must drive, at least, environmental flows during droughts. Such
reality appears strongly in regions where rivers are highly regulated. And this is
the case of Segura River.
The implementation of environmental flow regimes in Segura River is a
challenge for the coming years, because it is necessary to understand that some
of the water of the river shouldn't be available for consumption. So it is essential
the participation of the stakeholders.
The performances in drought situations must respond to a planned
management and not just emergency actions involving high costs for the society.
During periods of drought the supply of irrigation for a large part of Segura
River Basin depend on groundwater. A significant proportion of wetlands and
rivers are also dependent on groundwater.
Good status of groundwater is critical to achieving environmental and socio-
economics objectives of the EU. On the other hand, over-abstraction leads to
groundwater depletion, with consequences like deterioration of water quality
(e.g. saline water intrusion), loss of habitats (e.g. wetlands) and modification of
river/aquifer interactions.
Reduced groundwater levels can be a result of groundwater abstractions,
reduced precipitation... So the groundwater level indicator has great relevance
along drought periods.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 41
2. DROUGHTS IN THE SEGURA RIVER BASIN
During the drought period 1990-1995, in the Segura River Basin, reductions of
rainfall higher than 45% was happened, in the hydrological years 1993/94 and
1994/95, compared to the average of the period 1940/41 to 1994/95. These
rainfall reductions triggered declines higher than 70% of the average annual
inflow. The shortage in rainfall in the Segura River Basin led to greater
shortages in rivers flows.
The rainfall-runoff relationship is not linear, and reductions of precipitation
usually produce more pronounced reductions in runoff. And this physical
phenomenon is considerate in the Equation (1).
(1)
Where I = inflow; R = rainfall; and PET = potential evapotranspiration.
In the equation, all units are in millimeters (mm).
In the Figure 1 is represented Budyko law (Témez 2004). It can be checked the
fit of the curve (PET 900 mm) with rainfall and inflows values from different
periods of drought: 1941-1945, 1979-1983, 1990-1995 and 2004-2008. These
values are shown in the Table 1.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 42
Figure 1. Rainfall-inflow relationship in the Segura River Basin with PET 900 mm.
Values from periods of drought 1941-1945, 1979-1983, 1990-1995 and 2004-2008.
Table 1. Rainfall-inflow values during periods of drought.
3. MINIMUM FLOW REGIMES BETWEEN OJÓS DAM AND ARCHENA
In the last years, the methods for calculating the environmental flow regimes
have undergone significant development, in order to achieve an objective
environmental status for each river reach. This paper describes a methodology
based on the analysis of droughts in Segura River to find new minimum flow
regimes that will represent the natural variability of the river at a monthly scale,
during periods of drought.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 43
The methodology is applied on the reach of the river between Ojós and Archena,
using preceding data at the entry into operation of major reservoirs in
headwater basin.
3.1. Input data
It will be used the average daily flows that were recorded at station of Archena,
in the period between 1920/21 and 1930/31. These data were obtained from the
Gauging Yearbook of the Ministry of Agriculture, Food and Environment
(MAGRAMA 2012).
With the average daily flows it was calculated average monthly flows for each
year, as shown in the Table 2:
Table 2. Average monthly flows at station of Archena in the period between
1920/21 and 1930/31.
3.2. Classification of hydrological years
With the results of annual circulating volume (Tab. 3) it is proposed to classify
the hydrological years in normal, wet or dry, with the following criteria:
- If volume is fewer than 300 Hm3 then it considers dry year.
- If volume is greater than 300 Hm3 and fewer than 700 Hm3 then it considers
normal year.
- If volume is greater than 700 Hm3 then it considers wet year.
According to this classification, in the period under review, there's one dry year
(1930/31), five normal years and five wet years.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 44
Table 3. Annual volume at station of Archena in the period between 1920/21 and
1930/31.
3.3. Flow distribution depending on the type of year
It is proposed the following average monthly flow distributions: for dry years
the distribution of the year 1930/31. For normal and wet years the distribution
corresponding to average values. The results obtained are shown in the Table 4.
Table 4. Average monthly flow distributions depending on the type of year.
The average monthly flows in natural regimen show variability along the
hydrological year. The regimen of the river at that time was linked to
meteorological variability of the basin. The low rainfall in summer originated
severe droughts.
Therefore, accused droughts are observed in dry years. On July 8 th 1931 a daily
average flow of 0.32 m3/s was recorded in station of Archena.
3.4. New monthly minimum flow regimes
The Segura River Basin Management Plan (2014) establishes the environmental
flow regimen, during droughts, which can be seen in the Table 5:
Table 5. Environmental flow regimen in the Segura River between Ojós and
Archena, during droughts.
But this flow regimen does not reproduce the natural variability of historic flows
along hydrological year. These flows respond to the altered flow regimen that
imposes the high regulation existing in the Segura River Basin.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 45
Then the new monthly flow regimen in situations of drought is calculated as
follows:
Between October and March the regimen would be 15% of average monthly
flows for the normal year.
From April to September the regimen would be 50% of the monthly flows for
the dry year.
Table 6. Monthly flow regimen in situations of drought.
Montana method recommended flow rates calculated as a percentage of average
annual flow restored to natural regimen in the wet season and dry season
(Tennant 1976). According this methodology, if more than 90% of the average
annual flow is abstracted, it could trigger the beginning of the damage in the
river and its biodiversity. Therefore, 10% of the average annual flow should be a
reference threshold.
Table 7. Average flow distribution in the period between 1920/21 and 1930/31.
The Figure 2 shows that the proposed flow regimen is close to the 10% of the
average monthly flow in the period 1920/21 to 1930/31.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 46
Figure 2. Minimum flow regimes on drought situation. Segura River. Ojós-
Archena.
4. THE GROUNDWATER INDICATOR
Low groundwater levels may be caused by periods of low rainfall during the
period of recharge (generally in autumn and winter), but the effects can be
prolonged or made worse by abstraction at critical periods.
In the Segura River Basin during droughts, groundwater is placed under even
greater pressure due to different users (agriculture, industry...) pump out too
much water.
As the different water bodies (rivers, lakes, aquifers, wetlands) are hydraulically
connected, groundwater level reduction will result in reduction of water
resources, imbalance in the hydrologic water cycle and can lead to serious water
stress and scarcity conditions.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 47
Figure 3. Evolution of the relative depth in the year 2008/09. Piezometer "Pozos
de Torres".
Figure 3 shows the evolution of the relative depth in Oro-Ricote hydrogeological
unit during the year 2008/09 with an example of lower threshold.
For each piezometer, thresholds would be established in order to know the state
of the aquifer in the influence area.
The groundwater level indicator can be presented on a map of the Segura River
Basin. The map would show the situation of groundwater level every month, for
each aquifer.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 48
5. CONCLUSIONS
In the Segura River Basin the reduction of rainfall leads to more pronounced
reductions in rivers flows. Besides, the Segura River is strongly regulated.
Therefore, it’s not easy reproducing the natural variability of historic flows and
it’s difficult respecting the environmental conditions in the river, especially
during droughts.
This paper describes a methodology based on the analysis of low flows in a
reach of the Segura River, which uses historical data of natural flows. It has
been proposed a new minimum flow regimen between Ojós and Archena. The
new regimen obtained is representative of the natural variability of the river
during droughts.
The implementation and monitoring of the minimum flows in the Automatic
Hydrological Information Systems at Water Authorities would be a useful
control tool.
The consideration of a groundwater level indicator has great relevance during
periods of drought.
The groundwater indicator can be used to assess hydrological drought and if it is
combined with other indicators, it can be used for water policy (restriction of
water use, management at local level, awareness raising purposes...)
Finally, this little paper aims the thinking on the need for European Drought
Directive that homogenizes criteria about environmental flows and groundwater
abstraction.
6. REFERENCES
Comité de Expertos en Sequía. 2007. La sequía en España. Directrices para
minimizar su impacto. Ministerio de Medio Ambiente.
European Environment Agency, 2012. Towards efficient use of water resources
in Europe. EEA Report No 1/2012.
Ferreras, C. 2004. Inundaciones y sequías en la cuenca del Río Segura.
Comunidad Autónoma de la Región de Murcia. Consejería de Agricultura, Agua
y Medio Ambiente.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 49
Herrero, R. 2014. The last water resources planning and the environmental
flows regimens in rivers. Tecnoaqua. Volume 5. 94-100.
Schmidt, G. et al. 2012. Environmental flows in the EU. Discussion paper. Draft
1.0, for discussion at the EG WS&D.
Tallaksen L. et al. 2004. Hydrological Drought. Processes and estimation
methods for streamflow and groundwater. Elsevier.
Témez, J. R. 2004. El periodo seco 1980-95. Su rareza y efectos en el sureste
español. Revista de Obras Públicas nº 3448. 33-39.
Tennant, D. L. 1976. Instream Flow Regimens for Fish, Wildlife, Recreation and
Related Environmental Resources. Procs. on Instream flow needs Symp. 326-
327.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 50
TRANSITORIOS HIDRÁULICOS EN TUBERÍAS
1. INTRODUCCIÓN
Con este post se inaugura una nueva categoría denominada “flujo en presión” en
el blog de www.eselagua.com y trata sobre los transitorios hidráulicos que
tienen lugar en las tuberías a presión.
En concreto, se va a efectuar un análisis del golpe de ariete que aparece en la
tubería forzada de un sistema hidroeléctrico tras el cierre, parcial o total, de la
válvula de alimentación a la turbina, y la oscilación en masa que, como
consecuencia del mencionado cierre, se establece entre la chimenea de
equilibrio y el embalse a través de la galería de conducción.
2. PLANTEAMIENTO DEL PROBLEMA
Consideremos un sistema hidroeléctrico constituido por una presa con un nivel
de embalse de explotación normal a la cota Z1 = 1530 m. Desde el embalse
arranca una galería de conducción de sección circular de 2 m de diámetro, cuyo
eje en la embocadura está a la cota Z2 = 1500 m. La galería de conducción tiene
una longitud de 1550 m.
Figura 1. Esquema del sistema hidroeléctrico analizado.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 51
Al final de la galería de conducción y sobre el punto de entronque con la tubería
forzada se ha dispuesto una chimenea de equilibrio de 10 m de diámetro
interior. La tubería forzada tiene 800 m de longitud, es de fundición dúctil de 2
m de diámetro y tiene un espesor de 0,0315 m. La tubería parte de la cota Z3 =
1498 m y desciende hasta la cota Z4 = 849 m donde se encuentra el conjunto
válvula en línea y válvula de seguridad que regula la entrada de caudal a la
turbina de la central hidroeléctrica existente.
El golpe de ariete aparece en la tubería forzada del sistema hidroeléctrico tras el
cierre, parcial o total, de la válvula. Mientras que entre la chimenea de equilibrio
y el embalse se produce una oscilación en masa, a lo largo de la galería de
conducción.
En el caso planteado existen tres contornos: el inicio de la galería de conducción
en el lado del embalse, el final de la tubería forzada a la llegada a la válvula de
cierre (que controla el caudal de alimentación a la turbina) y el punto de unión
de la galería y de la tubería, donde se encuentra la chimenea de equilibrio.
Los datos de la instalación se reflejan en la tabla siguiente:
Tabla 1. Datos de la galería de conducción y de la tubería forzada.
La chimenea de equilibrio tiene un diámetro interior de 10 m y por lo tanto el
área es de 78,54 m2.
La válvula es de mariposa de 2 m de diámetro con un coeficiente de caudal Kvo
de 76000 m3/h.
Para la ley de cierre de la válvula se plantea un cierre lineal con apertura inicial
al 100% y apertura final de cero (cierre total) en 120 segundos.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 52
Se estudiará un primer escenario donde no se considera el efecto de la chimenea
de equilibrio y posteriormente un segundo escenario considerando el efecto de
la chimenea de equilibrio.
3. MODELACIÓN DEL PROBLEMA
Cuando los cambios de presión y velocidad se producen con gran rapidez, hay
que contar con la compresibilidad del agua y con la elasticidad de la tubería, y
resolver el sistema de ecuaciones diferenciales no lineal en derivadas parciales
de tipo hiperbólico que gobierna el fenómeno hidráulico que tiene lugar.
Generalmente se recurre al método de las características, que proporciona una
solución numérica de las funciones caudal Q = Q(x,t) y altura piezométrica H =
H(x,t), que describen el comportamiento del sistema, como respuesta a unas
determinadas condiciones de contorno, en este caso el cierre de una válvula que
controla la alimentación de caudal a la turbina.
Para realizar la modelación del sistema se ha empleado el software Dyagats 2.0,
Diseño y Análisis del Golpe de Ariete en Tubería Simple, desarrollado por la
Unidad Docente de Mecánica de Fluidos de la Universidad Politécnica de
Valencia (1993) que es aplicable a una tubería simple y que proporciona las
envolventes de alturas piezométricas máximas y mínimas, tras resolver las
ecuaciones que gobiernan el fenómeno del golpe de ariete. La versión gratuita
del programa se puede descargar en la siguiente dirección web:
http://fluing.upv.es/dyagats.php
El programa no simula cavitaciones. No debe aparecer cavitación en el sistema
ya que la rotura de la columna líquida no se contempla en la resolución
analítica. El hecho de que la línea de piezométricas sobrepase (por debajo) la
línea de cavitación significa que la instalación no funcionaría correctamente y
hay que proceder a modificar el diseño.
Al realizar el cálculo del régimen permanente se obtienen los siguientes
resultados:
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 53
Tabla 2. Resultados del cálculo en régimen permanente.
Figura 2. Línea piezométrica de la instalación en régimen permanente.
En la figura siguiente se muestran los valores iniciales (instante t = 0) de la
altura y del caudal en la chimenea de equilibrio, así como la apertura y el caudal
de la válvula de regulación:
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 54
Figura 3. Valores iniciales (t = 0) para el cálculo del régimen transitorio.
Los parámetros de cálculo utilizados son un intervalo de discretización temporal
de 0,18229 s y un número de puntos de cálculo total de 13 en la galería y en la
tubería.
Obsérvese que aunque el cierre de la válvula es lineal a lo largo de los 120 s que
dura la maniobra, el desagüe de caudal no es lineal. Por ejemplo, cuando se ha
cerrado un 50% de la válvula, transcurrido el primer minuto, el caudal de salida
se ha reducido en tres cuartas partes, tal y como se aprecia en el gráfico
siguiente.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 55
Gráfico 1. Apertura de válvula y caudal de salida hacia turbina.
4. ESCENARIO 1 SIN CHIMENEA DE EQUILIBRIO
En la galería de conducción las máximas sobrepresiones se producen en las
inmediaciones del entronque con la tubería forzada (nodo 9, tramo 1) y tienen
lugar durante el primer minuto. Recordemos que en los primeros 60 segundos
la válvula se cerraba al 50% y el caudal de salida se reducía a un cuarto respecto
al valor de régimen permanente.
La presión máxima en la galería de conducción sería de 47,267 m.c.a y la
presión mínima sería de 17,152 m.c.a. El incremento de presión respecto al
régimen permanente sería de 30,115 m.c.a.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 56
Gráfico 2. Presiones a lo largo de la galería de conducción.
En la tubería forzada las máximas sobrepresiones se producen en las
inmediaciones de la válvula (nodo 5, tramo 2) y tienen lugar durante el primer
minuto.
La presión máxima en la tubería forzada sería de 703,774 m.c.a y la presión
mínima sería de 658,489 m.c.a. El incremento de presión respecto al régimen
permanente sería de 45,285 m.c.a.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 57
Gráfico 3. Presiones a lo largo de la tubería forzada.
5. ESCENARIO 2 CON LA CHIMENEA DE EQUILIBRIO
Inicialmente la chimenea tiene una altura de agua que coincide con la altura
piezométrica del régimen permanente, es decir, 17,152 m. La altura máxima se
alcanza a los 196 segundos con un valor de 40,049 m. Conforme se amortigua el
fenómeno, con el paso del tiempo, la altura de agua en la chimenea tiende a 32
m, coincidiendo con el nivel de explotación del embalse (1530 m), y el caudal de
entrada y salida a la chimenea tiende a cero, ya que la válvula se ha cerrado por
completo.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 58
Gráfico 4. Altura y caudal de entrada y salida a chimenea de equilibrio durante la
oscilación en masa en la galería de conducción.
Las leyes de presiones se han suavizado por el efecto de la chimenea de
equilibrio. La presión máxima en la galería de conducción sería de 40,049 m.c.a
y la presión mínima sería de 17,152 m.c.a. El incremento de presión respecto al
régimen permanente sería de 22,897 m.c.a.
Gráfico 5. Presiones a lo largo de la galería de conducción con la chimenea.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 59
La presión máxima en la tubería forzada sería de 690,243 m.c.a y la presión
mínima sería de 658,489 m.c.a. El incremento de presión respecto al régimen
permanente sería de 31,754 m.c.a.
Gráfico 6. Presiones a lo largo de la tubería forzada con la chimenea.
6. CONCLUSIONES
Se ha realizado el análisis del golpe de ariete que aparece en la tubería forzada
de un sistema hidroeléctrico tras el cierre, parcial o total, de la válvula de
alimentación a la turbina, y la oscilación en masa que, como consecuencia del
mencionado cierre, se establece entre la chimenea de equilibrio y el embalse a
través de la galería de conducción.
Se ha comprobado la eficacia de la chimenea de equilibrio para amortiguar las
sobrepresiones en la galería de conducción. Es interesante observar la evolución
de los valores de la presión durante el transitorio en la galería.
También se ha comprobado que las máximas sobrepresiones se alcanzan en los
primeros segundos del transitorio.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 60
7. REFERENCIAS BIBLIOGRÁFICAS
Fullana Serra, V., Cabrera Marcet, E. 1977. Análisis simultáneo de las chimeneas
de equilibrio y del golpe de ariete por el método de las características. Revista de
Obras Públicas Nº 3142.
Mendiluce Rosich, E. 1987. Discrepancias en el cálculo del golpe de ariete.
Revista de Obras Públicas. Pág. 575 a 581.
Abreu, J.M., et al. 1995. El golpe de ariete en tuberías de impulsión.
Comentarios a las expresiones de Mendiluce.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 61
HACER UN USO SOSTENIBLE DEL AGUA ¿UTOPÍA
O REALIDAD?
“No podremos acabar con ciertas enfermedades del mundo hasta que no
hayamos ganado la batalla del agua potable y del saneamiento.”
Kofi Annan
Nacimiento del río Segura en Pontones (Jaén)
1. INTRODUCCIÓN
El Programa de Naciones Unidas para el Desarrollo (PNUD) establece que el
agua desempeña un papel fundamental en el desarrollo sostenible, incluida la
reducción de la pobreza. Y por esta razón la gestión de los recursos hídricos
adquiere una enorme relevancia.
Una gestión sostenible del agua implica atender las demandas de agua y
también proteger las aguas superficiales y subterráneas para que alcancen un
buen estado.
Un modelo de gestión sostenible fomenta el ahorro de agua, asegura que el agua
se devuelve al medio ambiente con la calidad adecuada y garantiza el suministro
de la demanda mediante fuentes alternativas de agua.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 62
2. DATOS Y PREVISIONES NO SOSTENIBLES
La FAO (Organización de las Naciones Unidas para la Alimentación y la
Agricultura) prevé que habrá que incrementar la productividad agraria en más
de un 70% antes del año 2.050 para alimentar a 9.000 millones de personas. En
los últimos 50 años la población mundial ha aumentado en cuatro mil millones
de personas. Para el horizonte de 2.050 la demanda del agua podría llegar a
superar en más de un 40% los recursos hídricos disponibles.
Gráfico de evolución de la población mundial
Actualmente, y a pesar de los avances científicos y tecnológicos, en el mundo
más de 1.000 millones de personas no tienen acceso al agua potable y pasan
hambre de forma crónica. En contrapartida 1.400 millones de personas
sufrimos sobrepeso. Y más de 2.500 millones de personas no disponen de
saneamiento adecuado (letrinas apropiadas, alcantarillado,…).
El 85% de las enfermedades del tercer mundo se deben a la mala calidad del
agua. La crisis mundial del agua provoca más de 2 millones de muertes
infantiles al año por diarreas.
Cada año mueren millones de animales y se pierde el 25% de la superficie
agrícola sembrada por efecto de las sequías y las inundaciones.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 63
En el Sahel mujeres y niñas recorren una media de seis kilómetros a pie todos
los días para llevar a casa algunos litros de agua.
Estas cifras no van acordes al derecho humano al agua establecido por las
Naciones Unidas que otorga el derecho al agua en cantidad y calidad para todas
las personas.
A día de hoy existe incertidumbre del impacto del cambio climático en la
disponibilidad del agua.
3. USO SOSTENIBLE DEL AGUA ¿CÓMO?
Los gobiernos se están haciendo cada vez más conscientes de su vulnerabilidad
ante la escasez de agua debido al crecimiento demográfico, al crecimiento
económico, a los nuevos patrones de consumo (mayor consumo de carne), al
cambio climático, etc.
Algunas formas de asegurar un futuro sostenible en materia hídrica pasan por:
1) Concienciar a los ciudadanos sobre la importancia del uso responsable
del agua mediante la implantación de planes integrales orientados al
establecimiento de objetivos de ahorro de agua. Incluyendo un consumo
responsable que apuesta por los alimentos que consumen menos agua,
aprovechando mejor los alimentos y no tirándolos (los europeos tiramos una
media del 30% de los alimentos que compramos), ahorrando agua doméstica,
etc.
2) Fomentar la agricultura eficiente: en agricultura es posible ser más
eficientes y ahorrar más agua haciendo uso de la llamada “tecnología 3.0”,
mediante la elaboración de planes de cultivos para los agricultores y la
utilización de sensores para medir la humedad del suelo, el estado de la planta,
las variables climáticas, etc. Y todo ello para ajustar el agua que hay que aportar
a los cultivos, enviando información al agricultor con las recomendaciones de
riego.
También se pueden mejorar los rendimientos empleando sistemas que generen
sombra para reducir la temperatura y la evaporación y conservar la humedad
del suelo.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 64
Y sensibilizar a los agricultores sobre el valor del agua por falta de una
estructura de precios y un marco normativo adecuados.
3) Captar y almacenar el agua de lluvia y del ambiente representan una
opción real para abastecer con agua de calidad y de manera constante, viable y
económica a las personas, especialmente en aquellas regiones donde las fuentes
de aguas superficiales y subterráneas se encuentran sobreexplotadas o
contaminadas.
Para ello hay que captar el agua, almacenarla y aplicarle los tratamientos
necesarios de potabilización y purificación.
¿Qué hace falta para apostar por proyectos de captación de agua de lluvia?
Voluntad política, participación de la comunidad, asistencia técnica y
financiación.
4) Reutilizar las aguas. Si las inversiones en infraestructuras de reutilización
se hacen cada vez más rentables y los precios de obtención del metro cúbico de
agua regenerada disminuyen, puede ser una solución muy interesante para el
futuro.
Actualmente existe legislación sobre la reutilización del agua que define la
calidad que debe tener el agua regenerada y los usos a que se puede destinar. En
concreto, en España existe un Real Decreto que establece el régimen jurídico de
la reutilización de las aguas depuradas de 2007 y una Guía del Ministerio de
2010.
El beneficio más importante derivado de la reutilización de las aguas es la
posibilidad de reservar el agua de mejor calidad para los usos más exigentes
tales como la producción de agua potable.
¿Por qué la reutilización del agua no acaba de implantarse en la vida cotidiana?
Tal vez porque existe desconocimiento de la población hacia la reutilización lo
que no favorece la aceptación social, tal vez por falta de infraestructuras que
faciliten la reutilización urbana, domiciliaria, etc.
5) Desalar el agua de mar permite incrementar los recursos hídricos
disponibles y mejorar la calidad de las aguas. En España es un complemento
para combatir la escasez de agua en la vertiente mediterránea. En el caso de las
islas Canarias y Baleares es fundamental. También en Ceuta y Melilla.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 65
La optimización de los costes energéticos es prioritaria para hacer la desalación
cada vez más rentable. Se están produciendo avances importantes ya que se ha
conseguido pasar de consumir 5 a 3 Kwh para desalar 1 m3 de agua en las
nuevas desaladoras.
6) Medir bien el agua que se consume y poner un precio justo al agua:
una adecuada medición es importante para alcanzar una gestión eficiente del
recurso. Un precio real del agua estimula la eficiencia y permite la recuperación
de costes. En el caso de España sería necesario implantar una metodología
nacional de obligado cumplimiento para el cálculo de las tarifas del agua urbana
y del agua para el regadío.
7) Planificar: una correcta planificación hídrica, energética, agraria y
urbanística permite que el crecimiento y el desarrollo no vayan por delante de la
disponibilidad de recursos hídricos o energéticos o de la capacidad de
depuración y de reutilización de los recursos hídricos, una vez que han sido
utilizados.
8) Gestionar eficazmente. Es necesario un marco normativo eficiente y que
se lleve a la práctica para regular los usos del agua en las cuencas hidrográficas.
El concepto de ciudad inteligente trata de una evolución en los modelos de
gestión de las ciudades para tener presente en el día a día el desarrollo
sostenible y la gestión eficiente de los recursos. Haciendo uso de la tecnología
más avanzada se optimizan los procesos de la gestión integral del agua
logrando:
- La disminución del consumo de agua mediante la mejora de las redes de
distribución, la detección de averías, fugas, etc.
- La mejora de la calidad de las aguas vertidas mediante sistemas de control de
contaminantes en redes de saneamiento, depósitos de tormentas, etc.
9) Favorecer el acceso al agua potable y al saneamiento: el acceso al
agua potable y al saneamiento son fundamentales para que la población pueda
salir de la pobreza. Tener acceso al agua potable en cantidad y calidad es un
derecho fundamental del ser humano.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 66
La escasez de agua puede superarse, pero tiene un coste para la construcción de
nuevas infraestructuras, para mejorar la eficiencia de los sistemas existentes de
abastecimiento y saneamiento, etc.
Infografía con propuestas para hacer un uso sostenible del agua
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 67
4. REFLEXIÓN FINAL
Es muy importante recuperar el equilibrio entre el consumo de agua dulce y su
renovación natural, y realizar un esfuerzo en concienciar respecto al uso
responsable del agua en beneficio de las generaciones presentes y futuras.
Una agricultura de precisión puede producir más y con menos agua respecto a
los métodos tradicionales. En las industrias y en las ciudades también se puede
ahorrar agua.
Es posible reducir la extracción de agua aumentando la reutilización, utilizando
fuentes alternativas como la captación del agua de lluvia y mejorando eficiencias
en procesos de producción (agricultura, industria, etc.)
Tenemos un gran reto por delante para satisfacer las necesidades hídricas
actuales y para no comprometer a las generaciones futuras. Si hacer un uso
sostenible del agua no es una utopía ¿qué puedo aportar yo, en mi vida diaria,
para hacer un uso sostenible del agua?
En momentos de escasez de agua y de tensiones sociales ¿ayudaría el hecho de
que la Unión Europea aprobara una Directiva Europea de Sequías y velara por
su cumplimiento?
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 68
¿ESTA PRESA ES SEGURA? VALORES UMBRALES
DE LAS DEFORMACIONES Y FILTRACIONES
La mayor parte de las patologías de origen geotécnico (a excepción, quizá, de
algunos casos concretos de erosión interna “súbita” en presas de materiales
sueltos) tienen un reflejo evidente (durante un período de tiempo significativo
y suficiente) en las filtraciones y/o las deformaciones de la presa. Otra cosa
diferente es que el ingeniero sea capaz de detectarlo e interpretarlo
correctamente…
Francisco Javier Sánchez Caro
Presa de Béznar en Granada
1. INTRODUCCIÓN
Los elementos básicos que permiten realizar el análisis de la seguridad de una
presa son: la auscultación (instrumentación y mediciones), las inspecciones
(observaciones), la representación y la interpretación de las mediciones y de las
observaciones, y finalmente la toma de decisiones para realizar las actuaciones
de corrección necesarias, orientadas a garantizar el nivel de seguridad
adecuado.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 69
Fases del análisis de la seguridad de una presa
La auscultación por instrumentación puede detectar ciertas anomalías, mientras
que otras pueden ser detectadas únicamente por inspección visual.
A cada presa, ya sea de una u otra tipología, le ocurre como a las personas, es
decir, que no hay dos iguales, y por lo tanto, cada una tiene sus particularidades
que deben ser tenidas en consideración de manera adecuada. Además, las
presas también cumplen años y por lo tanto son concebidas, nacen, maduran y
envejecen. De esta manera se pueden definir cuatro periodos en la vida de la
presa: construcción, primer llenado, explotación y envejecimiento.
En la Cuenca del Segura se construyeron presas de laminación a raíz del Plan de
Defensa de 1987 frente a avenidas en las que todavía no se ha producido el
primer llenado, ya que después de 25 años, no han ocurrido avenidas en esas
subcuencas con unos volúmenes de hidrograma suficientes para llenar el vaso
de los embalses.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 70
Y los problemas pueden aparecer durante la construcción, durante el primer
llenado, en los primeros años de vida de la obra o hacia el ocaso de la misma.
Por lo tanto, la medición y la observación siempre deben estar presentes en
estas obras.
2. MODOS DE FALLO
Para cualquier presa es fundamental diagnosticar adecuadamente cuál es el
modo de fallo más desfavorable y evaluar correctamente cuáles son las acciones
y resistencias asociadas.
Los modos de fallo consensuados por ICOLD (International Commission On
Large Dams) se corresponden con los que se señalan a continuación:
1) Sobrevertido (Insuficiencia ante la solicitación hidrológica),
2) Inestabilidad de laderas en embalse (Insuficiencia de resistencia al corte),
3) Inestabilidad dinámica (Insuficiencia ante la solicitación sísmica),
4) Inestabilidad elástica (Insuficiencia estructural) o erosión interna del cuerpo
de presa (Insuficiencia de estabilidad interna en cuerpo de presa),
5) Inestabilidad estática al deslizamiento o inestabilidad de taludes de presa
(Insuficiencia de resistencia al corte), pudiendo afectar o no al cimiento,
6) Erosión interna del cimiento (Insuficiencia de estabilidad interna en general,
incluyendo problemas asociados a solubilidad, sifonamiento, filtraciones, etc.)
Al analizar los modos de fallo se trata de dar respuesta a preguntas como las
siguientes ¿Cómo puede fallar esta presa? ¿Qué causas provocarían su rotura?
El modo de fallo depende de la tipología de presa. Por ejemplo, en una presa
bóveda el origen del modo de fallo puede venir del:
1) Cimiento: asientos y creación de fisuras, deslizamientos (por fallo del apoyo
en la roca,…), socavación o erosión de la cimentación (por vertidos sobre
coronación,…)
2) Cuerpo de presa: reacción del árido (silíceo) con los álcali del cemento
(disminución de la resistencia a tracción del hormigón, mayor fisuración, etc.)
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 71
3) Embalse: deslizamientos de laderas (generación de olas y vertidos sobre
coronación,…)
Un mal diseño o una mala construcción pueden desencadenar, por ejemplo, el
pandeo por ejecutar la bóveda demasiado delgada, o fisuraciones intensas por
no enfriar correctamente el hormigón o por aplicar presiones muy elevadas de
inyección en las juntas de construcción.
3. ¿QUÉ SE ENTIENDE POR UNA PRESA SEGURA?
¿Qué condición se debe cumplir para que una presa sea segura? Pues que la
probabilidad de fallo sea admisible. Y entonces, ¿qué sería lo ideal? Lo ideal
sería que la presa contara con:
1) Un diseño correcto,
2) Una ejecución y construcción de calidad,
3) Un mantenimiento adecuado de todos sus elementos (hidromecánicos,
accesos, instrumentación, galerías, aliviadero, etc.)
4) Auscultación completa y realización de inspecciones periódicas de la
cimentación, del cuerpo de la presa y del embalse (laderas,…) con el
correspondiente registro de datos, análisis e interpretación de las mediciones y
de las observaciones.
5) Toma de decisiones (responsabilidad) y actuaciones de corrección necesarias
en un plazo de tiempo acorde a la situación.
4. RECOMENDACIONES PARA EL SISTEMA DE AUSCULTACIÓN
Hay que tener en cuenta que el número de instrumentos a instalar en una presa
es un problema técnico, pero también es un problema económico, ya que la
adquisición de los instrumentos, la instalación, el mantenimiento y el trabajo de
análisis de datos tienen un coste. Y el mantenimiento y la explotación es un
coste mantenido en el tiempo, durante la vida útil de la presa, por lo que debe
ser asumible y realista.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 72
La experiencia recomienda:
1) Apostar por un sistema de auscultación sencillo, robusto y de fácil lectura y
que abarque el cuerpo de presa, la cimentación y el embalse. Se trata de limitar
el número de instrumentos a un valor razonable y de ubicarlos de manera que
detecten anomalías posibles en el comportamiento de la presa.
Instrumentar una presa no consiste en colocar el mayor número de
instrumentos posible, sino en diseñar un sistema lógico y útil de
instrumentación.
Es mejor tener pocos instrumentos que sean de confianza y seguros que muchos
inestables y con fallos frecuentes. Es preferible disponer de menos datos pero
que sean de calidad y con interpretación, que disponer de muchos datos que no
se interpretan y que son de calidad baja.
Además de representar gráficamente los datos, se debe realizar una
interpretación de las mediciones en un tiempo prudencial.
2) Partir de unos criterios de selección de la instrumentación: instrumentos
robustos poco sensibles a la temperatura, a la humedad, a las vibraciones, etc.,
instrumentos reemplazables y accesibles (no embebidos en el hormigón) para
garantizar la operatividad, la lectura, la calibración y la continuidad de la serie
histórica de los datos, instrumentos fáciles de interpretar y con las constantes
visibles para convertir las magnitudes eléctricas a unidades físicas de ingeniería
(mm de deformación, grados centígrados de temperatura, m.c.a. para la presión,
litros por segundo para los caudales, etc.) e instrumentos estables.
Tener estos criterios claros desde el principio es clave, ya que al escuchar a los
proveedores, cada uno defiende vender el mejor tipo de instrumento.
3) Combinar la auscultación instrumental con inspecciones cuidadosas. Las
inspecciones visuales de la presa pueden detectar anomalías no detectables por
la instrumentación (nuevas fisuras, nuevas filtraciones, etc.)
4) Hay que estudiar cada caso particular y tener en cuenta la necesidad de cierta
redundancia en los puntos más importantes.
Segundo año apostando por la ingeniería del agua
w w w . e s e l a g u a . c o m Página 73
5) Se deben evitar las lecturas encadenadas. Por ejemplo, cuando el
desplazamiento de la coronación se obtiene sumando lecturas de varios
péndulos cortos, escalonados en la vertical, ya que los errores se van sumando y
si falta una lectura, el resto de la cadena pierde el valor.
Las presas arco presentan una ventaja respecto a otros tipos de presa, ya que
todos los puntos de la presa están conectados rígidamente entre sí, de manera
que cualquier evento extraordinario se puede notar a distancia de su origen, lo
que facilita su detección.
Sin embargo, esto no ocurre en una presa de materiales sueltos larga, donde por
ejemplo, un problema de sifonamiento puede producirse en un sector de la obra
sin que se note nada en otra zona de la presa. Entonces en presas de tierra
largas no se deben concentrar los piezómetros en el núcleo en pocas secciones
transversales, es decir, no se deben dejar tramos largos no instrumentados.
Sería más eficiente subdividir la presa en tramos cortos y medir los caudales de
filtración en cada tramo y así tener una auscultación real de toda la obra.
5. REPRESENTACIÓN GRÁFICA E INTERPRETACIÓN DE LOS
VALORES MEDIDOS
La representación gráfica de los datos es el primer paso en la interpretación de
los resultados de la auscultación. Y es necesaria, pero no es suficiente, ya que
hay que continuar el seguimiento de los datos, el establecimiento de umbrales o
tolerancias de cada variable y de cada presa en particular, la detección de
anomalías (superación de umbrales, cambios de tendencia en las series de
datos, etc.) el análisis, la interpretación, y finalmente, la toma de decisiones.
Un primer esquema de interpretación consiste en utilizar un método estadístico
que compara los datos actuales con los datos históricos. Sin embargo, si existe
un problema en la presa desde su construcción, no se va a detectar ya que el
mismo comportamiento se reproduce cada vez que las condiciones externas son
similares.
Un segundo esquema de interpretación lo ofrece el método determinístico cuya
base consiste en establecer una comparativa entre el comportamiento real de la
presa y el comportamiento previsto en proyecto.
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua
e-book segundo año apostando por la ingeniería del agua

Más contenido relacionado

La actualidad más candente

Megaradioexpress - Sintesis informativa jueves 03 de septiembre de 2020
Megaradioexpress - Sintesis informativa jueves 03 de septiembre de 2020Megaradioexpress - Sintesis informativa jueves 03 de septiembre de 2020
Megaradioexpress - Sintesis informativa jueves 03 de septiembre de 2020megaradioexpress
 
Metas de las Políticas Públicas, Equidad vs Eficiencia: Análisis de caso: Pro...
Metas de las Políticas Públicas, Equidad vs Eficiencia: Análisis de caso: Pro...Metas de las Políticas Públicas, Equidad vs Eficiencia: Análisis de caso: Pro...
Metas de las Políticas Públicas, Equidad vs Eficiencia: Análisis de caso: Pro...FRANCISCO RUIZ
 
ILAC Costa Rica 2005: Iniciativa Latinoamericana y Caribeña para el Desarroll...
ILAC Costa Rica 2005: Iniciativa Latinoamericana y Caribeña para el Desarroll...ILAC Costa Rica 2005: Iniciativa Latinoamericana y Caribeña para el Desarroll...
ILAC Costa Rica 2005: Iniciativa Latinoamericana y Caribeña para el Desarroll...Ingeniería y Gestión Ambiental
 
Evaluacion_Proyecto_Nicaragua_F1
Evaluacion_Proyecto_Nicaragua_F1Evaluacion_Proyecto_Nicaragua_F1
Evaluacion_Proyecto_Nicaragua_F1Sergio Alonso
 
Ultima version defensa_modificada_171112 ii[1] (1)
Ultima version defensa_modificada_171112 ii[1] (1)Ultima version defensa_modificada_171112 ii[1] (1)
Ultima version defensa_modificada_171112 ii[1] (1)Harold G
 
Cambios y efectos del cambio climatico generados por el sistema
Cambios y efectos del cambio climatico generados por el sistemaCambios y efectos del cambio climatico generados por el sistema
Cambios y efectos del cambio climatico generados por el sistemajoharo987
 
ANÁLISIS GENERAL DE LAS EXTERNALIDADES AMBIENTALES DERIVADAS DE LA UTILIZACIÓ...
ANÁLISIS GENERAL DE LAS EXTERNALIDADES AMBIENTALES DERIVADAS DE LA UTILIZACIÓ...ANÁLISIS GENERAL DE LAS EXTERNALIDADES AMBIENTALES DERIVADAS DE LA UTILIZACIÓ...
ANÁLISIS GENERAL DE LAS EXTERNALIDADES AMBIENTALES DERIVADAS DE LA UTILIZACIÓ...enchorreranobunkerc
 
La Noticia de Hoy en Puerto Escondido 12 d marzo 2011
La Noticia de Hoy en Puerto Escondido 12 d marzo 2011La Noticia de Hoy en Puerto Escondido 12 d marzo 2011
La Noticia de Hoy en Puerto Escondido 12 d marzo 2011megaradioexpress
 
Guia construccion sustentable
Guia construccion sustentableGuia construccion sustentable
Guia construccion sustentableAldo Naranjo
 
COMERCIO Y TRANSPORTE EN ANDALUCIA - TEMA 1 LA ECONOMÍA ANDALUZA - FP A DISTA...
COMERCIO Y TRANSPORTE EN ANDALUCIA - TEMA 1 LA ECONOMÍA ANDALUZA - FP A DISTA...COMERCIO Y TRANSPORTE EN ANDALUCIA - TEMA 1 LA ECONOMÍA ANDALUZA - FP A DISTA...
COMERCIO Y TRANSPORTE EN ANDALUCIA - TEMA 1 LA ECONOMÍA ANDALUZA - FP A DISTA...Alex Lolol
 
Análisis de riesgos ambientales | Erre Ese
Análisis de riesgos ambientales | Erre EseAnálisis de riesgos ambientales | Erre Ese
Análisis de riesgos ambientales | Erre EseErika Cembranos Aparicio
 
Términos de referencia para la elaboración del plan de contingencia
Términos de referencia para la elaboración del plan de contingenciaTérminos de referencia para la elaboración del plan de contingencia
Términos de referencia para la elaboración del plan de contingenciaFenalco Antioquia
 

La actualidad más candente (19)

Megaradioexpress - Sintesis informativa jueves 03 de septiembre de 2020
Megaradioexpress - Sintesis informativa jueves 03 de septiembre de 2020Megaradioexpress - Sintesis informativa jueves 03 de septiembre de 2020
Megaradioexpress - Sintesis informativa jueves 03 de septiembre de 2020
 
Aporte individual gestión del riesgo2
Aporte individual gestión del riesgo2Aporte individual gestión del riesgo2
Aporte individual gestión del riesgo2
 
Metas de las Políticas Públicas, Equidad vs Eficiencia: Análisis de caso: Pro...
Metas de las Políticas Públicas, Equidad vs Eficiencia: Análisis de caso: Pro...Metas de las Políticas Públicas, Equidad vs Eficiencia: Análisis de caso: Pro...
Metas de las Políticas Públicas, Equidad vs Eficiencia: Análisis de caso: Pro...
 
ILAC Costa Rica 2005: Iniciativa Latinoamericana y Caribeña para el Desarroll...
ILAC Costa Rica 2005: Iniciativa Latinoamericana y Caribeña para el Desarroll...ILAC Costa Rica 2005: Iniciativa Latinoamericana y Caribeña para el Desarroll...
ILAC Costa Rica 2005: Iniciativa Latinoamericana y Caribeña para el Desarroll...
 
Evaluacion_Proyecto_Nicaragua_F1
Evaluacion_Proyecto_Nicaragua_F1Evaluacion_Proyecto_Nicaragua_F1
Evaluacion_Proyecto_Nicaragua_F1
 
Aporte individual gestión del riesgo1
Aporte individual gestión del riesgo1Aporte individual gestión del riesgo1
Aporte individual gestión del riesgo1
 
Aporte individual gestión del riesgo
Aporte individual gestión del riesgoAporte individual gestión del riesgo
Aporte individual gestión del riesgo
 
Ultima version defensa_modificada_171112 ii[1] (1)
Ultima version defensa_modificada_171112 ii[1] (1)Ultima version defensa_modificada_171112 ii[1] (1)
Ultima version defensa_modificada_171112 ii[1] (1)
 
Desarrollo sostenible
Desarrollo sostenibleDesarrollo sostenible
Desarrollo sostenible
 
Cambios y efectos del cambio climatico generados por el sistema
Cambios y efectos del cambio climatico generados por el sistemaCambios y efectos del cambio climatico generados por el sistema
Cambios y efectos del cambio climatico generados por el sistema
 
ANÁLISIS GENERAL DE LAS EXTERNALIDADES AMBIENTALES DERIVADAS DE LA UTILIZACIÓ...
ANÁLISIS GENERAL DE LAS EXTERNALIDADES AMBIENTALES DERIVADAS DE LA UTILIZACIÓ...ANÁLISIS GENERAL DE LAS EXTERNALIDADES AMBIENTALES DERIVADAS DE LA UTILIZACIÓ...
ANÁLISIS GENERAL DE LAS EXTERNALIDADES AMBIENTALES DERIVADAS DE LA UTILIZACIÓ...
 
La Noticia de Hoy en Puerto Escondido 12 d marzo 2011
La Noticia de Hoy en Puerto Escondido 12 d marzo 2011La Noticia de Hoy en Puerto Escondido 12 d marzo 2011
La Noticia de Hoy en Puerto Escondido 12 d marzo 2011
 
Guia construccion sustentable
Guia construccion sustentableGuia construccion sustentable
Guia construccion sustentable
 
Boletin
BoletinBoletin
Boletin
 
COMERCIO Y TRANSPORTE EN ANDALUCIA - TEMA 1 LA ECONOMÍA ANDALUZA - FP A DISTA...
COMERCIO Y TRANSPORTE EN ANDALUCIA - TEMA 1 LA ECONOMÍA ANDALUZA - FP A DISTA...COMERCIO Y TRANSPORTE EN ANDALUCIA - TEMA 1 LA ECONOMÍA ANDALUZA - FP A DISTA...
COMERCIO Y TRANSPORTE EN ANDALUCIA - TEMA 1 LA ECONOMÍA ANDALUZA - FP A DISTA...
 
Presentación taller eólica off shore
Presentación taller eólica off shorePresentación taller eólica off shore
Presentación taller eólica off shore
 
Análisis de riesgos ambientales | Erre Ese
Análisis de riesgos ambientales | Erre EseAnálisis de riesgos ambientales | Erre Ese
Análisis de riesgos ambientales | Erre Ese
 
Represa
RepresaRepresa
Represa
 
Términos de referencia para la elaboración del plan de contingencia
Términos de referencia para la elaboración del plan de contingenciaTérminos de referencia para la elaboración del plan de contingencia
Términos de referencia para la elaboración del plan de contingencia
 

Destacado

Suwipa Srisung CV UPDATE 7OCT16
Suwipa Srisung CV UPDATE 7OCT16Suwipa Srisung CV UPDATE 7OCT16
Suwipa Srisung CV UPDATE 7OCT16Suwipa Srisung
 
Abdulaziz Al Mulhem, CIO & Minister at Ministry of Culture and Information - ...
Abdulaziz Al Mulhem, CIO & Minister at Ministry of Culture and Information - ...Abdulaziz Al Mulhem, CIO & Minister at Ministry of Culture and Information - ...
Abdulaziz Al Mulhem, CIO & Minister at Ministry of Culture and Information - ...Global Business Events
 
Risk management
Risk managementRisk management
Risk managementaseel m
 
Arogyaka Rajmarg Dr. Shriniwas Kashalikar
Arogyaka Rajmarg Dr. Shriniwas KashalikarArogyaka Rajmarg Dr. Shriniwas Kashalikar
Arogyaka Rajmarg Dr. Shriniwas Kashalikarghanyog
 
7 клас. Морзе. Урок 1. Поняття служба Інтернету. Електронна скринька та елект...
7 клас. Морзе. Урок 1. Поняття служба Інтернету. Електронна скринька та елект...7 клас. Морзе. Урок 1. Поняття служба Інтернету. Електронна скринька та елект...
7 клас. Морзе. Урок 1. Поняття служба Інтернету. Електронна скринька та елект...Дмитро Загура
 
La enseñanza, el docente
La enseñanza, el docenteLa enseñanza, el docente
La enseñanza, el docenteLUCIA PARRA
 
Sistema de gestion de seguridad y salud en el trabajo Ley N° 29783 y su Regla...
Sistema de gestion de seguridad y salud en el trabajo Ley N° 29783 y su Regla...Sistema de gestion de seguridad y salud en el trabajo Ley N° 29783 y su Regla...
Sistema de gestion de seguridad y salud en el trabajo Ley N° 29783 y su Regla...Yanet Caldas
 

Destacado (10)

Caanserbero
CaanserberoCaanserbero
Caanserbero
 
Suwipa Srisung CV UPDATE 7OCT16
Suwipa Srisung CV UPDATE 7OCT16Suwipa Srisung CV UPDATE 7OCT16
Suwipa Srisung CV UPDATE 7OCT16
 
Abdulaziz Al Mulhem, CIO & Minister at Ministry of Culture and Information - ...
Abdulaziz Al Mulhem, CIO & Minister at Ministry of Culture and Information - ...Abdulaziz Al Mulhem, CIO & Minister at Ministry of Culture and Information - ...
Abdulaziz Al Mulhem, CIO & Minister at Ministry of Culture and Information - ...
 
Comentarios
ComentariosComentarios
Comentarios
 
Risk management
Risk managementRisk management
Risk management
 
Arogyaka Rajmarg Dr. Shriniwas Kashalikar
Arogyaka Rajmarg Dr. Shriniwas KashalikarArogyaka Rajmarg Dr. Shriniwas Kashalikar
Arogyaka Rajmarg Dr. Shriniwas Kashalikar
 
7 клас. Морзе. Урок 1. Поняття служба Інтернету. Електронна скринька та елект...
7 клас. Морзе. Урок 1. Поняття служба Інтернету. Електронна скринька та елект...7 клас. Морзе. Урок 1. Поняття служба Інтернету. Електронна скринька та елект...
7 клас. Морзе. Урок 1. Поняття служба Інтернету. Електронна скринька та елект...
 
La enseñanza, el docente
La enseñanza, el docenteLa enseñanza, el docente
La enseñanza, el docente
 
Solución de Problemas
Solución de ProblemasSolución de Problemas
Solución de Problemas
 
Sistema de gestion de seguridad y salud en el trabajo Ley N° 29783 y su Regla...
Sistema de gestion de seguridad y salud en el trabajo Ley N° 29783 y su Regla...Sistema de gestion de seguridad y salud en el trabajo Ley N° 29783 y su Regla...
Sistema de gestion de seguridad y salud en el trabajo Ley N° 29783 y su Regla...
 

Similar a e-book segundo año apostando por la ingeniería del agua

Banderas negras 2019
Banderas negras 2019Banderas negras 2019
Banderas negras 201920minutos
 
Informe final Pensamiento Sistémico Grupo 3 16-2
Informe final Pensamiento Sistémico Grupo 3 16-2Informe final Pensamiento Sistémico Grupo 3 16-2
Informe final Pensamiento Sistémico Grupo 3 16-2Nicolas Gomez
 
Ecuador | Jan-17 | Comunidades en gestion de riesgos
Ecuador | Jan-17 | Comunidades en gestion de riesgosEcuador | Jan-17 | Comunidades en gestion de riesgos
Ecuador | Jan-17 | Comunidades en gestion de riesgosSmart Villages
 
eBook un año con la Ingeniería del Agua
eBook un año con la Ingeniería del AguaeBook un año con la Ingeniería del Agua
eBook un año con la Ingeniería del AguaRaúl Herrero Miñano
 
"PERSPECTIVA SOCIAL DE LA INGENIERÍA HIDRAÚLICA EN EL DESARROLLO URBANO JALIS...
"PERSPECTIVA SOCIAL DE LA INGENIERÍA HIDRAÚLICA EN EL DESARROLLO URBANO JALIS..."PERSPECTIVA SOCIAL DE LA INGENIERÍA HIDRAÚLICA EN EL DESARROLLO URBANO JALIS...
"PERSPECTIVA SOCIAL DE LA INGENIERÍA HIDRAÚLICA EN EL DESARROLLO URBANO JALIS...Academia de Ingeniería de México
 
Informativo Proyecto Reciclaje
Informativo Proyecto ReciclajeInformativo Proyecto Reciclaje
Informativo Proyecto Reciclajevaldivianos
 
BIOPLÁSTICOS y Desarrollo Sustentable
BIOPLÁSTICOS y Desarrollo SustentableBIOPLÁSTICOS y Desarrollo Sustentable
BIOPLÁSTICOS y Desarrollo SustentableYury M. Caldera P.
 
ANÁLISIS DE RIESGOS POR INUNDACIONES PARA LA PARROQUIA PUYO DEL CANTÓN PASTAZ...
ANÁLISIS DE RIESGOS POR INUNDACIONES PARA LA PARROQUIA PUYO DEL CANTÓN PASTAZ...ANÁLISIS DE RIESGOS POR INUNDACIONES PARA LA PARROQUIA PUYO DEL CANTÓN PASTAZ...
ANÁLISIS DE RIESGOS POR INUNDACIONES PARA LA PARROQUIA PUYO DEL CANTÓN PASTAZ...Unidad de Emprendimiento ambulante
 
Keynote_ Pablo Badenier, Ministro del Medio Ambiente de Chile.pdf
Keynote_ Pablo Badenier, Ministro del Medio Ambiente de Chile.pdfKeynote_ Pablo Badenier, Ministro del Medio Ambiente de Chile.pdf
Keynote_ Pablo Badenier, Ministro del Medio Ambiente de Chile.pdfjuliadelapea2
 
La complejidad de desarrollar el proyecto rio magdalena 2018
La complejidad de desarrollar el proyecto rio magdalena 2018La complejidad de desarrollar el proyecto rio magdalena 2018
La complejidad de desarrollar el proyecto rio magdalena 2018Javier F
 
Plan de Desarrollo en la Región de Tacna
Plan de Desarrollo en  la Región de TacnaPlan de Desarrollo en  la Región de Tacna
Plan de Desarrollo en la Región de Tacnadiegosurco
 

Similar a e-book segundo año apostando por la ingeniería del agua (20)

Plan de contingencia de puente rio venadillo cofradia gallego
Plan de contingencia de puente rio venadillo   cofradia gallegoPlan de contingencia de puente rio venadillo   cofradia gallego
Plan de contingencia de puente rio venadillo cofradia gallego
 
Banderas negras 2019
Banderas negras 2019Banderas negras 2019
Banderas negras 2019
 
Plan de contingencia consorcio vias norte, pte venadillo cof
Plan de contingencia consorcio vias norte, pte venadillo cofPlan de contingencia consorcio vias norte, pte venadillo cof
Plan de contingencia consorcio vias norte, pte venadillo cof
 
Informe final Pensamiento Sistémico Grupo 3 16-2
Informe final Pensamiento Sistémico Grupo 3 16-2Informe final Pensamiento Sistémico Grupo 3 16-2
Informe final Pensamiento Sistémico Grupo 3 16-2
 
Exportacion ica
Exportacion icaExportacion ica
Exportacion ica
 
20190919 exportacion
20190919 exportacion20190919 exportacion
20190919 exportacion
 
Ecuador | Jan-17 | Comunidades en gestion de riesgos
Ecuador | Jan-17 | Comunidades en gestion de riesgosEcuador | Jan-17 | Comunidades en gestion de riesgos
Ecuador | Jan-17 | Comunidades en gestion de riesgos
 
eBook un año con la Ingeniería del Agua
eBook un año con la Ingeniería del AguaeBook un año con la Ingeniería del Agua
eBook un año con la Ingeniería del Agua
 
"PERSPECTIVA SOCIAL DE LA INGENIERÍA HIDRAÚLICA EN EL DESARROLLO URBANO JALIS...
"PERSPECTIVA SOCIAL DE LA INGENIERÍA HIDRAÚLICA EN EL DESARROLLO URBANO JALIS..."PERSPECTIVA SOCIAL DE LA INGENIERÍA HIDRAÚLICA EN EL DESARROLLO URBANO JALIS...
"PERSPECTIVA SOCIAL DE LA INGENIERÍA HIDRAÚLICA EN EL DESARROLLO URBANO JALIS...
 
Informativo Proyecto Reciclaje
Informativo Proyecto ReciclajeInformativo Proyecto Reciclaje
Informativo Proyecto Reciclaje
 
BIOPLÁSTICOS y Desarrollo Sustentable
BIOPLÁSTICOS y Desarrollo SustentableBIOPLÁSTICOS y Desarrollo Sustentable
BIOPLÁSTICOS y Desarrollo Sustentable
 
ANÁLISIS DE RIESGOS POR INUNDACIONES PARA LA PARROQUIA PUYO DEL CANTÓN PASTAZ...
ANÁLISIS DE RIESGOS POR INUNDACIONES PARA LA PARROQUIA PUYO DEL CANTÓN PASTAZ...ANÁLISIS DE RIESGOS POR INUNDACIONES PARA LA PARROQUIA PUYO DEL CANTÓN PASTAZ...
ANÁLISIS DE RIESGOS POR INUNDACIONES PARA LA PARROQUIA PUYO DEL CANTÓN PASTAZ...
 
Implantación de la Directiva 60_2007
Implantación de la Directiva 60_2007Implantación de la Directiva 60_2007
Implantación de la Directiva 60_2007
 
Keynote_ Pablo Badenier, Ministro del Medio Ambiente de Chile.pdf
Keynote_ Pablo Badenier, Ministro del Medio Ambiente de Chile.pdfKeynote_ Pablo Badenier, Ministro del Medio Ambiente de Chile.pdf
Keynote_ Pablo Badenier, Ministro del Medio Ambiente de Chile.pdf
 
Boletín 37 octubre 2021
Boletín 37 octubre 2021Boletín 37 octubre 2021
Boletín 37 octubre 2021
 
Proyecto final
Proyecto final Proyecto final
Proyecto final
 
La complejidad de desarrollar el proyecto rio magdalena 2018
La complejidad de desarrollar el proyecto rio magdalena 2018La complejidad de desarrollar el proyecto rio magdalena 2018
La complejidad de desarrollar el proyecto rio magdalena 2018
 
Plan de Desarrollo en la Región de Tacna
Plan de Desarrollo en  la Región de TacnaPlan de Desarrollo en  la Región de Tacna
Plan de Desarrollo en la Región de Tacna
 
Tema 22
Tema 22 Tema 22
Tema 22
 
Futuro riego peru
Futuro riego peruFuturo riego peru
Futuro riego peru
 

Más de Raúl Herrero Miñano

Resumen aportación de #eselagua a la International Conference on DROUGHT: Res...
Resumen aportación de #eselagua a la International Conference on DROUGHT: Res...Resumen aportación de #eselagua a la International Conference on DROUGHT: Res...
Resumen aportación de #eselagua a la International Conference on DROUGHT: Res...Raúl Herrero Miñano
 
Toma conciencia del agua y de su uso sostenible
Toma conciencia del agua y de su uso sostenibleToma conciencia del agua y de su uso sostenible
Toma conciencia del agua y de su uso sostenibleRaúl Herrero Miñano
 
Infografía: Retos de la planificación hidrológica. Innovación.
Infografía: Retos de la planificación hidrológica. Innovación.Infografía: Retos de la planificación hidrológica. Innovación.
Infografía: Retos de la planificación hidrológica. Innovación.Raúl Herrero Miñano
 

Más de Raúl Herrero Miñano (6)

Resumen aportación de #eselagua a la International Conference on DROUGHT: Res...
Resumen aportación de #eselagua a la International Conference on DROUGHT: Res...Resumen aportación de #eselagua a la International Conference on DROUGHT: Res...
Resumen aportación de #eselagua a la International Conference on DROUGHT: Res...
 
Toma conciencia del agua y de su uso sostenible
Toma conciencia del agua y de su uso sostenibleToma conciencia del agua y de su uso sostenible
Toma conciencia del agua y de su uso sostenible
 
Poster jia2013 rhm_ed5
Poster jia2013 rhm_ed5Poster jia2013 rhm_ed5
Poster jia2013 rhm_ed5
 
Europa cerrada
Europa cerradaEuropa cerrada
Europa cerrada
 
Infografía: Retos de la planificación hidrológica. Innovación.
Infografía: Retos de la planificación hidrológica. Innovación.Infografía: Retos de la planificación hidrológica. Innovación.
Infografía: Retos de la planificación hidrológica. Innovación.
 
Rambla nogalte2013 ed1
Rambla nogalte2013 ed1Rambla nogalte2013 ed1
Rambla nogalte2013 ed1
 

Último

¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptxguillermosantana15
 
estadisticasII Metodo-de-la-gran-M.pdf
estadisticasII   Metodo-de-la-gran-M.pdfestadisticasII   Metodo-de-la-gran-M.pdf
estadisticasII Metodo-de-la-gran-M.pdfFlorenciopeaortiz
 
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.ariannytrading
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdfAnthonyTiclia
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaXimenaFallaLecca1
 
sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7luisanthonycarrascos
 
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa  tipos y funcionamientoCaldera Recuperadora de químicos en celulosa  tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa tipos y funcionamientoRobertoAlejandroCast6
 
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfMirthaFernandez12
 
SSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SSTSSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SSTGestorManpower
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.ALEJANDROLEONGALICIA
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxEduardoSnchezHernnde5
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacajeremiasnifla
 
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...SuannNeyraChongShing
 
Calavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfCalavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfyoseka196
 
Linealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfLinealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfrolandolazartep
 
Tiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IITiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IILauraFernandaValdovi
 
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfAntonioGonzalezIzqui
 
TALLER PAEC preparatoria directamente de la secretaria de educación pública
TALLER PAEC preparatoria directamente de la secretaria de educación públicaTALLER PAEC preparatoria directamente de la secretaria de educación pública
TALLER PAEC preparatoria directamente de la secretaria de educación públicaSantiagoSanchez353883
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPJosLuisFrancoCaldern
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfKEVINYOICIAQUINOSORI
 

Último (20)

¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
 
estadisticasII Metodo-de-la-gran-M.pdf
estadisticasII   Metodo-de-la-gran-M.pdfestadisticasII   Metodo-de-la-gran-M.pdf
estadisticasII Metodo-de-la-gran-M.pdf
 
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
 
sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7
 
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa  tipos y funcionamientoCaldera Recuperadora de químicos en celulosa  tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
 
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
 
SSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SSTSSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SST
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptx
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpaca
 
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
 
Calavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfCalavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdf
 
Linealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdfLinealización de sistemas no lineales.pdf
Linealización de sistemas no lineales.pdf
 
Tiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo IITiempos Predeterminados MOST para Estudio del Trabajo II
Tiempos Predeterminados MOST para Estudio del Trabajo II
 
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
 
TALLER PAEC preparatoria directamente de la secretaria de educación pública
TALLER PAEC preparatoria directamente de la secretaria de educación públicaTALLER PAEC preparatoria directamente de la secretaria de educación pública
TALLER PAEC preparatoria directamente de la secretaria de educación pública
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdf
 

e-book segundo año apostando por la ingeniería del agua

  • 1. 2015 Raúl Herrero www.eselagua.com Segundo año apostando por la ingeniería del agua
  • 2. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 1 Segundo año apostando por la ingeniería del agua Por Raúl Herrero www.eselagua.com 1ª Edición, noviembre de 2015 – Revisión 1
  • 3. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 2 Tras el lanzamiento y la buena acogida del primer e-book “Un año con la ingeniería del agua” algunas personas se han interesado y me han preguntado por la continuidad en la publicación anual de los post del blog www.eselagua.com a modo de compendio. Así que he decidido proceder a la difusión de un segundo documento electrónico que recoge los artículos que se han publicado en el citado blog. Durante un evento que tuvo lugar este año un funcionario del Estado me preguntó “Raúl, en los tiempos que corren, ¿cómo sobrevives como autónomo en España?” Y yo le respondí que con dificultad, pero que es posible, que no hay que rendirse, sino que se ha de perseverar y confiar que en este país la ingeniería del agua tiene muchas cosas por hacer. Al tratarse de un camino largo, a modo de carrera de fondo, un buen acompañante está siendo el blog, una referencia, una herramienta, llámese de marketing si se quiere, a través de la cual se llega a personas que pueden estar lejos, pero con las que se puede llegar a establecer alguna colaboración en el futuro. Escribir un post es como lanzar una botella en el mar de internet donde nunca sabes a quien puede llegar, a quien puede interesar el contenido,… pero ese mensaje que es importante para ti, también puede ser de interés para otra persona, y de ahí puede surgir una idea, un contacto, un proyecto, un trabajo, una colaboración,… Me gustaría dedicar esta publicación a mi familia, por su apoyo incondicional, en especial a mi mujer y a mi hijo. También me gustaría agradecer a las empresas y organismos que me han dado trabajo durante este año. Y por último agradecer a los colaboradores, a los subscriptores y a los lectores del blog www.eselagua.com por su interés, por sus aportaciones, sugerencias y comentarios. Su participación es fundamental para el enriquecimiento y la mejora del recurso. Mi firme intención es continuar aprendiendo y compartiendo conocimiento en los próximos años, sobre el apasionante mundo de la ingeniería del agua. Un abrazo Raúl.
  • 4. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 3 ÍNDICE DE CONTENIDOS La revisión del PATRICOVA. Peligrosidad, vulnerabilidad y riesgo de inundación………………………………………………………………………………………………4 El Nuevo Ciclo de Planificación Hidrológica 2015-2021 en la Cuenca del Segura……………………………………………………………………………………………………13 La cuenca del Segura: fuente de agua y sedimentos……………………………………..22 El precio del agua superficial para riego y su impacto en el consumo……………29 Planning and management of droughts in the Segura river basin…………………39 Transitorios hidráulicos en tuberías…………………………………………………………..50 Hacer un uso sostenible del agua ¿utopía o realidad?.........................................61 ¿Esta presa es segura? Valores umbrales de las deformaciones y filtraciones………………………………………………………………………………………………68 La eliminación de obstáculos en los ríos, ¿un tema de futuro?...........................79 Impulsiones. Diámetro económico. Punto de funcionamiento. Golpe de ariete. Protecciones…………………………………………………………………………………………….89 La Jornada sobre las inundaciones en España y los interrogantes que se derivan…………………………………………………………………………………………………105 Sequías, Directiva, Planificación y Gestión…………………………………………………116 ¿Es necesario proteger este encauzamiento?.....................................................125
  • 5. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 4 LA REVISIÓN DEL PATRICOVA. PELIGROSIDAD, VULNERABILIDAD Y RIESGO DE INUNDACIÓN Rambla del Poyo aguas arriba del cruce con la autovía A-3 en Valencia 1. INTRODUCCIÓN Han transcurrido más de 11 años desde la puesta en marcha del Plan de Acción Territorial de carácter sectorial sobre prevención del Riesgo de Inundación en la Comunidad Valenciana (PATRICOVA) en enero de 2003, y desde entonces han sucedido cambios significativos en materia de inundaciones. En cuanto a nueva normativa destaca la Directiva 2007/60/CE, del Parlamento Europeo y del Consejo, de 23 de octubre de 2007, relativa a la evaluación y gestión de los riesgos de inundación, cuya transposición al ordenamiento jurídico español se materializó en el Real Decreto 903/2010, de 9 de julio, de evaluación y gestión de riesgos de inundación. Y la Resolución de 2 de agosto de 2011, por la que se publica el Acuerdo del Consejo de Ministros de 29 de julio de 2011, por el que se aprueba el Plan Estatal de Protección Civil ante el riesgo de inundaciones.
  • 6. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 5 También han ocurrido cambios en el territorio en cuanto a usos del suelo, ha aumentado la población, se han producido avances tecnológicos en la cartografía y han aparecido nuevas zonas de riesgo resultantes de la aprobación de los estudios de inundabilidad realizados. Además la normativa del Plan inicial especificaba que a los 10 años debía revisarse. Todo ello motivó su revisión en el año 2013, para adaptarlo a las directivas europeas, incorporando nuevos criterios de delimitación del riesgo de inundación e incorporando cartografía actualizada y más detallada. El Plan revisado contiene información sobre riesgo de inundación a escala regional en el ámbito de la Comunidad Valenciana, y se puede acceder al mismo desde el enlace siguiente: http://www.citma.gva.es/web/planificacion-territorial-e-infraestructura- verde/patricova-plan-de-accion-territorial-de-caracter-sectorial-sobre- prevencion-del-riesgo-de-inundacion-en-la-comunitat-valenciana- 2. DATOS DE INTERÉS DEL PLAN REVISADO Un dato de interés viene dado por el hecho de que la Comunidad Valenciana representa aproximadamente el 5% del territorio nacional, pero soporta, al menos, el 20% de los episodios de inundaciones acaecidas en los últimos 500 años. La elaboración de una cartografía de peligrosidad detallada ha permitido acotar las zonas de mayor riesgo de inundación a un 6% del territorio de la Comunidad Valenciana. El Plan revisado identifica 25 municipios con riesgo alto y muy alto de inundación, que tienen prioridad en la realización de obras de defensa frente a inundaciones, que aún están pendientes de ejecución, y en los que se debe extremar la precaución en los nuevos crecimientos urbanísticos. Según este documento redactado por la Conselleria de Infraestructuras, Territorio y Medio Ambiente (CITMA) el riesgo de inundación afecta a 442 municipios, de un total de 542 que existen en la Comunidad Valenciana y a una población de 600.000 habitantes.
  • 7. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 6 Las poblaciones de Algemesí, Alzira, Carcaixent, Castelló, Almoradí y Orihuela se incluyen en el denominado máximo nivel de riesgo global integrado (Nivel IV) porque pueden sufrir daños de consideración elevada con los criterios analizados, desde el punto de vista económico, social y medioambiental. Entre los municipios que han presentado alegaciones al Plan revisado destaca el Ayuntamiento de Requena. Y algunos municipios como el de Oliva han solicitado que el término municipal sea declarado como zona de especial riesgo de inundación al igual que Alzira, Orihuela, etc. fueron declarados en 2003. Además de identificar a los municipios afectados por el riesgo de inundación, el Plan proporciona el detalle del tipo de suelo (residencial, industrial, rural), de los equipamientos y dotaciones (centros de salud, parques de bomberos, ayuntamientos, subestaciones eléctricas, etc.), de las infraestructuras y de las instalaciones que, en el caso de verse afectadas por una inundación, podrían causar una catástrofe medioambiental, tales como gasolineras, industrias, etc. 3. IMPORTANCIA DE LA COORDINACIÓN ENTRE ADMINISTRACIONES Conviene recordar que por exigencia de la Directiva Europea sobre Inundaciones y su transposición al ordenamiento jurídico español, antes del 22 de diciembre de 2015 deben aprobarse los planes de gestión del riesgo de inundación para las zonas de mayor riesgo, que deben ser redactados por las confederaciones hidrográficas en coordinación con los gobiernos autonómicos y los ayuntamientos. Por lo tanto es necesaria la coordinación entre las distintas administraciones para llevar a cabo una gestión adecuada de los riesgos de inundación. El Plan revisado establece las zonas con riesgo de inundación y se debe complementar con la nueva cartografía de zonas inundables elaborada por las Confederaciones Hidrográficas (Júcar, Segura y Ebro). Uno de los objetivos del PATRICOVA es lograr una actuación coordinada de todas las Administraciones Públicas y los agentes sociales para reducir las consecuencias negativas de las inundaciones sobre la salud de las personas y los bienes, el medio ambiente, el patrimonio cultural, el paisaje, la actividad económica y los equipamientos e infraestructuras.
  • 8. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 7 La supervisión de la ejecución de las actuaciones previstas en el Plan revisado corresponde a la Conselleria competente en ordenación del territorio, en coordinación con los Organismos de Cuenca. Mientras que la supervisión de actuaciones incluidas en estudios de inundabilidad que acompañan a instrumentos de planeamiento, corresponderá a los ayuntamientos. Y los ayuntamientos deben notificar a la Conselleria la finalización de las actuaciones previstas a efectos de comprobar que se ajustan a las determinaciones de los estudios de inundabilidad aprobados. Con la finalidad de disminuir el riesgo de inundación en la actualidad y reducir daños en el futuro el Plan revisado establece seis líneas de actuación principales, tal y como muestra la tabla siguiente: Tabla 1. Líneas de actuación principales de la revisión del PATRICOVA. Año 2013 (*) Según el Real Decreto 903/2010 estas zonas necesitan un plan de gestión que deberá estar aprobado antes del 22 de diciembre de 2015. Estos Planes permitirán concretar con detalle un conjunto de actuaciones que den solución a los problemas de inundación que sufra un ámbito territorial a una escala de cuenca o subcuenca.
  • 9. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 8 4. INCORPORACIONES CON LA REVISIÓN DEL PLAN La revisión del Plan incorpora los siguientes aspectos de interés: 1) El PATRICOVA original se desarrolló tomando como base la cartografía regional elaborada por la COPUT en 1997, sin embargo, para la revisión del Plan se ha tomado de base la actualización existente de planeamiento urbanístico a fecha enero de 2013, y que se encuentra disponible en el Portal del Territorio Terrasit, en la dirección web siguiente: http://terrasit.gva.es/ El uso de herramientas GIS y de una cartografía más actualizada y detallada ha facilitado que la revisión se desarrolle a escala 1:25.000. 2) La parte normativa del Plan se ha actualizado con la finalidad de adaptarse al marco legal europeo que ha ido evolucionando en este campo tal y como se ha comentado en la introducción. 3) Se han revisado los niveles de peligrosidad y se ha introducido el criterio geomorfológico mediante la elaboración de un mapa geomorfológico a escala 1:10.000 en el que se han distinguido diversas unidades morfológicas asociadas a diferentes procesos de inundación (llanuras, abanicos aluviales, glacis, lóbulos de derrame, etc.) En consecuencia aparece un nuevo nivel de peligrosidad que se denomina nivel de peligrosidad geomorfológica. 4) Se han considerado las inundaciones urbanas y las inundaciones costeras, introduciendo la inundación marina como posible riesgo. 5) Se comienza a tener en consideración el aporte de sedimentos y la contaminación. 6) Y además de los costes económicos y los costes sociales asociados a las inundaciones, también se incluyen los costes medioambientales.
  • 10. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 9 5. NIVELES DE PELIGROSIDAD DE INUNDACIÓN La revisión del Plan conserva los 6 niveles de peligrosidad que se establecían en el PATRICOVA original, teniendo en cuenta la frecuencia o probabilidad de ocurrencia y la variable hidráulica calado, y se incorpora un nuevo nivel de peligrosidad adicional denominado geomorfológico. Tabla 2. Niveles de peligrosidad de inundación. Año 2013 Figura 1. Mapa con niveles de peligrosidad de inundación y clasificación del suelo
  • 11. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 10 6. EL RIESGO DE INUNDACIÓN El PATRICOVA establece recomendaciones y restricciones del uso del suelo basadas en el riesgo de inundación. El riesgo de inundación se define como la combinación de peligrosidad y vulnerabilidad. La peligrosidad evalúa la frecuencia y la magnitud (a través del calado) con que se produce el fenómeno de inundación y la vulnerabilidad cuantifica la magnitud de los daños que se pueden producir y que están asociados al suceso de inundación. Figura 2. Esquema de obtención del riesgo de inundación en la revisión del Plan La revisión del PATRICOVA propone 5 niveles de riesgo de inundación, teniendo en cuenta los daños ocasionados por unidad de superficie. Tabla 3. Niveles de riesgo de inundación. Año 2013
  • 12. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 11 Figura 3. Mapa con niveles de riesgo de inundación y clasificación del suelo Una vez definido el nivel de riesgo relativo que afecta a cada municipio, para los diferentes criterios considerados, se procede a la integración de los mismos, para determinar el Riesgo Global Integrado (RGI). Este concepto tiene la finalidad de establecer una jerarquía de municipios basada en los niveles de riesgo asociados a cada uno de los criterios analizados, es decir, criterios económicos, sociales y medioambientales. 7. CONCLUSIONES Y NUEVOS INTERROGANTES La aplicación del PATRICOVA revisado proporcionará un conocimiento y una evaluación de los riesgos de inundación adecuados en el territorio de la Comunidad Valenciana. La cartografía asociada es muy útil para los ayuntamientos a la hora de realizar los Planes Generales de Ordenación Urbana (PGOU), las ordenanzas municipales y los planes de emergencia. Con esta cartografía se pretende dar soporte a los ayuntamientos y analizar su situación frente al riesgo.
  • 13. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 12 Se ha aprovechado la revisión para incorporar a la Normativa Valenciana la Directiva Europea de prevención del riesgo de inundación. De esta forma se potencia la Ordenación del Territorio y la Infraestructura Verde, y se tiene en consideración la influencia de los cambios de usos del suelo. En las zonas afectadas por el nuevo nivel de peligrosidad geomorfológica se puede formular una consulta a la Conselleria competente en materia de ordenación del territorio sobre la necesidad de realizar un estudio de inundabilidad. En la metodología desarrollada en la revisión del PATRICOVA se han introducido los aspectos ambientales que establecen los nuevos marcos legislativos europeos orientados a la evaluación de los costes de las inundaciones. Finalmente y a modo de reflexión, considerar que en la actualidad existen sectores que no se veían afectados por riesgo de inundación alguno con el PATRICOVA de 2003 y sin embargo, con la revisión del Plan de 2013 pasan a tener un cierto nivel de peligrosidad de inundación y un cierto nivel de riesgo de inundación ¿Será necesario comprobar estos nuevos niveles de peligrosidad y de riesgo de inundación mediante los correspondientes estudios de inundabilidad de detalle? Y entonces, en aquellas zonas en las que ha aumentado el perímetro de afección por riesgo de inundación en la revisión con respecto al Plan inicial ¿Se va a recalificar el suelo? ¿Se va a indemnizar a los propietarios que llevan pagando años por suelo urbanizable y que ahora puede dejar de serlo?
  • 14. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 13 EL NUEVO CICLO DE PLANIFICACIÓN HIDROLÓGICA 2015-2021 EN LA CUENCA DEL SEGURA Manantial de aguas en Benizar (Moratalla) 1. INTRODUCCIÓN En la Demarcación Hidrográfica del Segura los recursos hídricos son fundamentales para el abastecimiento humano, el desarrollo y mantenimiento de la biodiversidad, la actividad agroalimentaria y la actividad industrial. En esta cuenca es especialmente difícil satisfacer las demandas de agua asociadas a los distintos usos, tanto en cantidad como en calidad. Según la Directiva Marco del Agua (DMA), la nueva planificación debe actuar sobre la gestión de la demanda, promoviendo la eficiencia y el ahorro de agua. De esta manera se favorecerá el buen estado de las masas de agua en la Demarcación. La coordinación entre las distintas partes de la sociedad involucradas para armonizar los intereses generales de la Demarcación Hidrográfica es cada vez más necesaria.
  • 15. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 14 En cada uno de los apartados siguientes se tratan aspectos destacables del Plan Hidrológico de la Demarcación. 2. CAUDALES ECOLÓGICOS Según el marco normativo vigente el régimen de caudales ambientales adecuado es aquel que contribuye a alcanzar el buen estado o buen potencial ecológico en los ríos y aguas de transición y mantiene como mínimo la vida piscícola que de manera natural habitaría o pudiera habitar en el río, así como su vegetación de ribera. Los valores finalmente propuestos en el Plan de la Demarcación configuran un régimen de caudales mínimos escasos. El Plan propone regímenes de caudales ecológicos calculados con una base científica que está pendiente de revisión y mejora en los próximos años. Los regímenes de caudales propuestos reproducen débilmente la variabilidad natural de los caudales históricos dentro del año hidrológico, respondiendo más al régimen alterado que impone la elevada regulación existente en el río. 3. SOBREEXPLOTACIÓN DE ACUÍFEROS Se trata de masas de agua subterráneas que no alcanzan el buen estado tal y como consta en el Esquema de Temas Importantes. En el Plan Hidrológico se ha realizado el inventario de presiones para las masas de agua superficiales, pero no para las aguas de transición y aguas costeras ni tampoco para las masas de agua subterráneas. Este tema hay que abordarlo para no incumplir la DMA, y para no invalidar las previsiones del Programa de Medidas.
  • 16. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 15 Por lo tanto queda mucho por hacer en materia de diagnóstico sobre los recursos subterráneos disponibles, tanto en cantidad como en calidad, en esta Demarcación Hidrográfica. Por ejemplo, se necesita realizar un diagnóstico sobre los caudales de los acuíferos a través de manantiales, presiones a que están sometidos y medidas para su protección y recuperación. Hay que tener en cuenta que una parte importante de los manantiales y humedales asociados a las aguas subterráneas de la cuenca del Segura han sufrido procesos de desecación, reducción de caudales y degradación general de sus condiciones ambientales. En definitiva, es necesario potenciar el mantenimiento de fuentes y manantiales ya que tienen una importante función ambiental y social. También es necesario que el ciudadano de a pie pueda acceder sin dificultad a información (tanto en el Plan, como a través de internet) que permita verificar la situación jurídica de los pozos y puntos de extracción, con la finalidad de detectar y denunciar situaciones irregulares. 4. SEQUÍAS En materia de sequías, es posible trabajar para acoplar el Plan de la Demarcación con el Plan Especial frente a la Sequía (PES). De esta manera, si se incorporan las restricciones al suministro que contempla el PES la cuantificación del déficit medio interanual se reduciría significativamente en periodos de sequía. Es necesario revisar y aplicar el PES para lo cual es necesario disponer de recursos presupuestarios. La planificación debe ser flexible y debe adaptarse a la realidad del año hidrológico. De esta manera las demandas ya no se consideran fijas, sino que existe un margen de maniobra. En años secos tiene que aplicarse el PES, lo que supone una reducción de las demandas. Este es un tema que debería dejar muy claro la “futura” Directiva Europea sobre Sequías.
  • 17. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 16 Ante situaciones de emergencia por sequía, el PES de la Cuenca del Segura establece como acuíferos prioritarios para la apertura y entrada en funcionamiento de los "pozos de sequía" a los acuíferos que están en equilibrio y que todavía mantienen manantiales y ecosistemas asociados en buen estado. Pero ¿por qué las extracciones de agua subterránea necesarias en situación de emergencia no se realizan sobre alguno de los acuíferos ya sobreexplotados, en los que la funcionalidad ambiental de sus reservas es menor? En el Plan de la Demarcación se presenta por una parte los recursos estimados según la serie hidrológica larga y por otra parte los recursos disponibles estimados en la actualidad. Para la incorporación de las previsiones del cambio climático, el Plan adopta los valores mínimos aplicables de reducción esperable de recursos según la Instrucción de Planificación Hidrológica. No se aplican las previsiones procedentes de estudios científicos específicos y actualizados para el ámbito de la Demarcación del Segura. Por tanto, no se tiene en cuenta que el cambio climático continuará reduciendo la cantidad de recursos hídricos disponibles en el largo plazo. Sería interesante incorporar e integrar esta reducción en los diagnósticos y en las disposiciones del Plan. 5. INUNDACIONES Es necesario coordinar e integrar adecuadamente en este nuevo ciclo el Plan Hidrológico de la Demarcación con el Plan de Gestión del Riesgo de Inundaciones. El presente ciclo de planificación se desarrolla en paralelo con la elaboración del Plan de Gestión del Riesgo de Inundaciones, en cumplimiento de la Directiva Europea de Inundaciones, lo que exige una coordinación adecuada de ambos planes. Esto implica coordinación entre las unidades de Planificación Hidrológica, Dirección Técnica y Comisaría de Aguas de la Confederación Hidrográfica del Segura, y de este Organismo de cuenca con Protección Civil.
  • 18. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 17 La evolución previsible de los daños por inundaciones es incierta, debido a los efectos del cambio climático. Todavía existen incógnitas que no permiten establecer conclusiones firmes sobre fenómenos extremos como las inundaciones, al contrario de lo que ocurre con las tendencias medias. En general se estima, tal y como viene sucediendo a nivel global y en especial en Europa, que los daños por inundaciones se incrementarán en el futuro, según la Agencia Europea de Medio Ambiente. La adecuada elaboración del Plan de Gestión del Riesgo de Inundación y su correcta aplicación permitirá reducir los daños causados por las inundaciones. 6. USO INTENSIVO DE LOS RECURSOS HÍDRICOS DE LA DEMARCACIÓN PARA REGADÍO Para cuantificar adecuadamente el consumo de agua en los usos agrícolas es necesario disponer de datos e información relativa a los perímetros de riego (ubicación, superficie, situación jurídica y consumo real). Los perímetros reconocidos oficialmente suelen ser superiores a la superficie regada total permitida dentro de los mismos, por lo que es necesario realizar un control parcelario que evite el crecimiento irregular del regadío. El Plan Hidrológico sigue utilizando el concepto de Unidad de Demanda Agraria (UDA), que no tiene correspondencia en la DMA. Las UDAs mezclan tipos de regadío y recursos hídricos de diferente naturaleza. Se trata de clasificar y medir los consumos reales de agua superficial, de agua subterránea, etc. El Plan debe realizar un diagnóstico de los Planes de Modernización de Regadíos ejecutados. Se deben evaluar los resultados de dichos planes detallando: - Superficie total cubierta, - Coste final, - Porcentaje de subvención pública total recibida, - Consumo hídrico real tras la ejecución del Plan, - Ahorro de agua real, - Destino del volumen de agua ahorrado.
  • 19. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 18 ¿El volumen de agua ahorrado se está utilizando en mejorar el medio ambiente a través de caudales ecológicos adecuados o se está destinando a ampliar superficies de regadío? En septiembre de 2007 la Administración Estatal reconoció que no se había revisado ninguna concesión de agua en la cuenca del Segura, a pesar de los proyectos de modernización ejecutados. Es preciso realizar una importante labor de regularización concesional de los usuarios afectados. ¿Se tiene previsto llevar a cabo una revisión exhaustiva de las citadas concesiones? Y un tema muy importante que también está pendiente es la contaminación difusa de origen agrario. Este asunto es de vital importancia para asegurar el buen estado de las masas de agua. El Plan demuestra la existencia de un problema de contaminación por fenoles y plaguicidas, con cifras muy superiores a los límites establecidos en la Directiva de Aguas Subterráneas, en las masas de agua subterránea de Taibilla, Anticlinal de Socovos y Campo de Cartagena. 7. RECUPERACIÓN DE COSTES Y RÉGIMEN TARIFARIO La gestión integrada de recursos hídricos ha de contar con unas tarifas y cánones que permitan una recuperación de costes adecuada, tanto de los costes de los servicios, como de los costes ambientales. Además los precios del agua deben ser compatibles con las actividades socioeconómicas relacionadas, en un marco legal y económico-financiero adecuado. En el nuevo ciclo de planificación se debe trabajar para establecer el nivel de garantía de suministro de cada uso atendiendo a consideraciones técnicas y de sostenibilidad, considerando los costes de los servicios y los costes ambientales asociados, para garantizar la recuperación de costes. En cuanto a la fuente alternativa que constituye la desalación, una propuesta interesante consistiría en modificar el régimen concesional del agua desalada dotándole de mayor flexibilidad para su utilización en el regadío y en establecer un régimen tarifario en instalaciones de desalación compatibles con el uso agrícola. Y en cuanto a las infraestructuras hidráulicas, las presas españolas necesitan unas labores de mantenimiento y conservación considerables. Algunos autores
  • 20. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 19 estiman que el coste anual de estas labores rondaría el 1% del valor de la inversión. ¿Por cuánto sería necesario multiplicar el canon de regulación y la tarifa de utilización del agua en la actualidad para cubrir los costes anuales de mantenimiento y conservación de las presas? 8. MEJORAR LA CALIDAD DE LOS DATOS En la Demarcación del Segura existe una carencia de datos importante sobre aguas subterráneas. Es necesario mejorar los datos de calidad y niveles piezométricos con el objetivo de conocer más sobre el comportamiento de los acuíferos, tanto a nivel espacial como a nivel temporal. Una vez que se disponga de esos datos, será el momento de plantearse la modelación de los acuíferos mediante modelos 3D. En cuanto a las aguas superficiales y la escasez de control foronómico del Sistema Segura como Tema Importante, incidir en que sería necesario potenciar el mantenimiento de las estaciones de aforos existentes, lo cual redundaría en una mejora de la calidad de las series de caudales. Cuando mejore el tema presupuestario será preciso destinar recursos a nuevas tecnologías para efectuar mediciones fiables, formar a personal técnico cualificado que realice el análisis y el seguimiento de la información, mantener las infraestructuras hidráulicas en condiciones óptimas para realizar las medidas y aprovechar mejor las potencialidades de los Sistemas Automáticos de Información Hidrológica (SAIH).
  • 21. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 20 Temas de interés que deben ser abordados en el nuevo ciclo de planificación hidrológica 9. CONCLUSIONES Entre los temas que deben ser abordados en el nuevo ciclo de planificación hidrológica y que suponen un riesgo para alcanzar los objetivos medioambientales en la Demarcación Hidrográfica del Segura destacan: A) El cumplimiento de un régimen de caudales ecológicos adecuado. B) La sobreexplotación de acuíferos. C) El acoplamiento del Plan de la Demarcación con el Plan Especial frente a la Sequía. D) Las inundaciones y el cambio climático. E) El uso intensivo de los recursos hídricos de la demarcación para regadío. F) La recuperación de costes y el régimen tarifario. G) La mejora de la calidad de los datos.
  • 22. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 21 10. REFERENCIAS BIBLIOGRÁFICAS Comité de Expertos en Sequía. 2007. La sequía en España. Directrices para minimizar su impacto. Ministerio de Medio Ambiente. Comunicación de la Comisión 414/2007, de 18 de julio. Afrontar el desafío de la escasez de agua y la sequía en la UE. Herrero, R. 2014. La nueva planificación hidrológica y los regímenes de caudales ambientales en los ríos. Tecnoaqua. Volumen 5. 94-100. Maestu, J. et al. 2007. Precios y costes de los servicios de agua en España. Informe integrado de recuperación de costes de los servicios de agua en España. Artículo 5 y Anejo III de la Directiva Marco de Agua. Ministerio de Medio Ambiente. Observatorio de las Políticas del Agua, 2014. Evaluación del primer ciclo de planificación hidrológica en España en aplicación de la Directiva Marco del Agua. Fundación Nueva Cultura del Agua. Observatorio de las Políticas del Agua, 2014. Evaluación del primer ciclo de planificación. Demarcación Hidrográfica del Segura. Fundación Nueva Cultura del Agua.
  • 23. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 22 LA CUENCA DEL SEGURA: FUENTE DE AGUA Y SEDIMENTOS “Nuestro saber acerca de los ríos es eminentemente empírico y aún falta mucho para conocer las leyes fundamentales del comportamiento completo de los cauces naturales y acerca de la interacción entre las obras que construimos en ellos y que los afectan, y la respuesta veraz sobre los efectos que los ríos ocasionan en esas obras con el paso del tiempo.” Prof. José Antonio Maza-Álvarez Figura 1. Estación de aforos de Rojales en el encauzamiento del río Segura. 1. INTRODUCCIÓN A comienzos del siglo XX las aguas del río Segura eran fluyentes y el río estaba muy poco regulado. Se disponía de azudes de derivación como el de Contraparada y en la cuenca los embalses se contaban con los dedos de una mano (Valdeinfierno y tercera presa de Puentes).
  • 24. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 23 En cien años, en España se han construido casi 1200 presas y la capacidad de embalse ha pasado de ser prácticamente inapreciable, a ser de unos 56000 hm3. Actualmente, la cuenca del Segura tiene una capacidad de almacenamiento de unos 1140 hm3. Hoy día, el río Segura presenta una elevada regulación para uso agrícola y en la cuenca tiene lugar una movilización masiva de recursos subterráneos. En consecuencia se ha originado una alteración intensa en el régimen fluvial del río, existiendo gran dificultad para el establecimiento y cumplimiento de un régimen de caudales ecológicos adecuado, que no sólo consta de agua sino que también de sedimentos. 2. EVOLUCIÓN DEL RÉGIMEN HIDROLÓGICO DEL RÍO SEGURA EN LAS PROXIMIDADES DE LA DESEMBOCADURA El régimen hidrológico del río Segura aguas arriba de la desembocadura presenta consideraciones de interés a lo largo del tiempo, que se muestran a través de las medidas de caudales diarios registrados en la estación de aforos de Rojales, perteneciente a la Red Oficial de Estaciones de Aforo (ROEA). A continuación se distinguen cuatro periodos en correspondencia con el Gráfico 1: 1) 1925-1931: la etapa anterior a 1932 se caracterizó porque el río Segura apenas estaba regulado, ya que todavía no había entrado en funcionamiento el embalse de Fuensanta, y el río acostumbraba a presentar sus crecidas y sus estiajes. 2) 1943*-1959: desde que entra en funcionamiento el embalse de la Fuensanta (1933) y antes de la puesta en marcha de los embalses de Cenajo y Camarillas (1960), el régimen del río presenta más regularidad, pero no varía significativamente respecto al periodo anterior. 3) 1960-1977: a partir de la entrada en explotación del Cenajo y del Camarillas la regulación en el río Segura comienza a ser importante.
  • 25. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 24 4) 1978-1990: con la entrada en funcionamiento del Azud de Ojós y de los canales del Post Trasvase (1979) el régimen de caudales del río Segura cambia drásticamente, pasando a ser un régimen intensamente regulado, tal y como se observa en la curva correspondiente del gráfico siguiente: Gráfico 1. Envolventes máximas de caudales diarios clasificados en la estación de aforos de Rojales. (*) Durante el periodo 1932-1942 no se dispone de datos. Todos los datos de caudales se han obtenido del Sistema de Información del Anuario de Aforos del MAGRAMA: http://www.magrama.gob.es/es/agua/temas/evaluacion-de-los-recursos- hidricos/sistema-informacion-anuario-aforos/ 3. EL PROBLEMA DE LA EROSIÓN EN LA CUENCA Durante la riada de Santa Teresa en octubre de 1879 se estimó un caudal máximo del Segura en Murcia de 1890 m3/s. En algunas zonas de Nonduermas el calado del agua alcanzó 2,50 m. Y después de la retirada de las aguas se halló un enorme depósito aluvial. La arena dejó dibujado sobre el terreno el cono de deyección del río Guadalentín, formando en algunos parajes bancos de 1,50 m de espesor. Y los tarquines alcanzaron 0,50 m en algunos puntos.
  • 26. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 25 En 1977 se redactó el “Proyecto de restauración hidrológico forestal de la Cuenca de la Rambla de Nogalte” con el objetivo de reparar los graves daños ocasionados por la avenida de 1973, reducir la erosión de la cuenca y controlar futuras avenidas. Los ingenieros autores de este proyecto mostraron gran interés por el cálculo de las elevadas pendientes y su influencia en la velocidad del agua y en la capacidad erosiva. En el Proyecto se hace un análisis del periodo 1955-1974 y se realizan los cálculos durante los episodios de tormentas, ya que los ingenieros sostienen que existe una fuerte correlación entre las toneladas de suelo erosionado y la cantidad de precipitación y su distribución espacio temporal. De esta forma obtienen para el año 1969, que fue el año más lluvioso de la serie, una tasa de erosión de 71 T/Ha/año y para 1973, año de la catastrófica avenida, 45 T/Ha/año. En otras fuentes se cita que las tasas de erosión en la Región de Murcia, en áreas en las que se produce piping, y episodios de lluvias torrenciales pueden elevarse a más de 100 T/Ha/año. Incluso hay autores que hablan de tasas de erosión en zonas de cárcavas muy superiores a los descritos anteriormente (Vanderkerkhove et al. 2003). El Centro de Estudios Hidrográficos, en un informe confeccionado a raíz de la avenida de 1973 en la Rambla de Nogalte aportó unos valores de caudal sólido de 813 m3/s frente a los 1974 m3/s del caudal total estimado, lo que suponía un 41 % del total. 4. EL APORTE DE SEDIMENTOS AL MAR Las presas construidas en la cuenca del río Segura y la disminución del caudal fluvial a lo largo del tiempo han originado una reducción de los aportes de sedimentos.
  • 27. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 26 Tanto en el caso del río Nilo con la presa de Assuan, como en el caso del río Ebro con la presa de Mequinenza, ambas cerca de la desembocadura de estos dos ríos, la reducción de los aportes sedimentarios al mar ha sido superior al 95%. En los ríos mediterráneos más de un 90% de los aportes sedimentarios descargados al mar son transportados en suspensión (Emmett, 1984). Estudios realizados en ríos mediterráneos, con sus campañas de recogida de datos asociadas, demuestran que a principios del siglo XX las concentraciones medias de sedimentos en suspensión rondaban los 1000 mg/l, y durante las épocas de avenidas las concentraciones podían ascender a un orden de magnitud superior, es decir 10000 mg/l. Asumiendo una concentración media de sedimento de 1 g/l y con los caudales medios de los periodos analizados en la estación de aforos de Rojales, se puede estimar la cantidad de sedimentos en suspensión que el río Segura aportaba al mar Mediterráneo en media, tal y como muestra la tabla siguiente: Tabla 1. Caudales medios y estimación de cantidad y volumen de sedimentos anuales aportados por el río Segura al mar Mediterráneo. El volumen de sedimentos se ha obtenido admitiendo un peso específico medio de las partículas de γs = 2,65 T/m3. La curva de la evolución de los aportes sedimentarios del río Segura al mar Mediterráneo se puede ver en el siguiente gráfico:
  • 28. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 27 Gráfico 2. Evolución de la cantidad de sedimentos aportados por el río Segura al mar Mediterráneo. A la vista de la curva anterior, es evidente que los 2 millones de toneladas de sedimentos, o lo que es equivalente 0,8 hm3 de sedimentos que se deberían aportar al mar cada año, se quedan retenidos en los embalses de la cuenca. Hay estudios que hacen uso de las batimetrías de los embalses y que realizan estimaciones indirectas de la erosión en la cuenca del Segura, obteniendo valores de 2 hm3/año de sedimentos acumulados en dichos embalses (López Bermúdez y Gutiérrez Escudero, 1982). 5. CONCLUSIONES En cuencas semiáridas como la del Segura la tasa global de erosión depende especialmente de la intensidad de la precipitación, de la escorrentía y del uso del suelo. Desde principios de los ochenta los embalses de la cuenca del Segura han acumulado, al menos, 70 hm3 de sedimentos, lo que supone una pérdida de capacidad de almacenamiento superior al 6%.
  • 29. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 28 Actualizar las batimetrías en los embalses y realizar medidas de los caudales sólidos movilizados en algunos puntos estratégicos de la cuenca ayudaría a conocer más su funcionamiento y el origen de los sedimentos. Esto permitiría proponer medidas útiles para la reducción de la erosión y para el mantenimiento de la capacidad de almacenamiento de los embalses. 6. REFERENCIAS BIBLIOGRÁFICAS Masachs Alavedra V., 1948. El régimen de los ríos peninsulares. Consejo Superior de Investigaciones Científicas. Couchoud R., 1965. Hidrología histórica del Segura. Centro de Estudios Hidrográficos. López Bermúdez F., Gutiérrez Escudero J. D., 1982. Estimación de la erosión y aterramientos de embalses en la cuenca hidrográfica del río Segura. Cuadernos de investigación geográfica. Tomo VIII, 3-18. Martín Vide J. P., 2002. Ingeniería de ríos. Edicions UPC. Gil Olcina A., 2004. Alteración de los regímenes fluviales peninsulares. Fundación Cajamurcia. Romero Díaz A., Ruiz Sinoga J. D., Belmonte Serrato F., 2011. Tasas de erosión hídrica en la Región de Murcia. Boletín de la Asociación de Geógrafos Españoles 56, 129-153.
  • 30. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 29 EL PRECIO DEL AGUA SUPERFICIAL PARA RIEGO Y SU IMPACTO EN EL CONSUMO Figura 1. Noria Grande en Abarán al servicio del riego tradicional. 1. INTRODUCCIÓN El precio del agua afecta significativamente a su consumo. Una de las cosas que más nos duele a las personas es que nos toquen el bolsillo. Ante la pregunta ¿Es posible reducir las presiones sobre el medio hídrico y mantener el crecimiento económico? La Unión Europea propone encontrar una respuesta en el precio real del agua. El Libro Blanco del Agua (1998) reconocía que la administración hidráulica española no ha tenido en cuenta el precio del agua de forma adecuada.
  • 31. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 30 El principal consumidor de recursos hídricos en España es el sector agrícola. Es una realidad que este gran consumidor de recursos hídricos no está sometido al mismo nivel de control que los usuarios de abastecimiento urbano. Se trata de una asignatura pendiente en todas las cuencas hidrográficas españolas. Es importante tener en cuenta que en los últimos cien años, la superficie de regadío se ha triplicado en España. Gráfico 1. Evolución de la superficie de regadío en España. Los precios bajos del agua superficial para riego en España no reflejan la escasez del recurso y no incentivan el ahorro del agua, ni la eficiencia agrícola. España es un país donde son frecuentes las situaciones de sequía, donde existen unos altos niveles de demanda de agua que se traducen en presión sobre los recursos hídricos y el medio natural y en donde se dan situaciones de mala gobernanza en materia de gestión del agua. Y todo ello agravado por un escenario de cambio climático. En el año 2002 Francia pagaba el agua de riego a 0,25 €/m3, en España el precio medio del agua superficial para riego era de 0,02 €/m3 ¿este precio favorece el desarrollo de una agricultura eficiente que ahorra agua? Desde mi punto de vista no.
  • 32. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 31 Entonces a mí me gustaría lanzar un reto a los economistas ambientales para que respondan a esta pregunta, ¿cuál debería ser el precio real del agua superficial para regar en España en €/m3? Y otra pregunta al resto de economistas ¿cuánto deberían bajar los intermediarios sus márgenes de beneficio para que los agricultores pudieran vender su producción a unos precios dignos y asumir el coste real del agua? La variabilidad de los precios del agua es verdaderamente asombrosa, por ejemplo, en la cuenca del Segura el coste puede variar desde valores cercanos a 0,01 €/m3 (agua superficial) hasta valores de 0,40 €/m3 (agua subterránea). Y el caso límite serían aquellas parcelas, que se sabe de su existencia, con pozos para regar en las que el precio del agua se reduce al coste energético del bombeo. 2. LA DIRECTIVA MARCO Y EL PRECIO DEL AGUA Hasta hace pocos años, el análisis de costes y de la recuperación de costes de los servicios del ciclo integral del agua era un aspecto novedoso en la planificación hidrológica de una cuenca. El artículo 9 de la Directiva Marco del Agua (DMA) considera la necesidad de tener en cuenta el principio de recuperación de costes y que los precios sirvan como incentivo para mejorar la eficiencia en el uso del agua y así ayudar a conseguir los objetivos ambientales. Los precios deben permitir recuperar los costes que supone poner el recurso a disposición de los usuarios, reflejando la escasez y los costes de reponer y garantizar la calidad ambiental del medio hídrico. A la hora de establecer las tarifas del agua, la administración hidráulica española debe tener en cuenta el artículo 9 de la DMA Recuperación de los costes de los servicios relacionados con el agua: “…Los Estados miembros garantizarán, a más tardar en 2010: - que la política de precios del agua proporcione incentivos adecuados para que los usuarios utilicen de forma eficiente los recursos hídricos y, por tanto, contribuyan a los objetivos medioambientales de la presente Directiva,
  • 33. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 32 - una contribución adecuada de los diversos usos del agua, desglosados, al menos, en industria, hogares y agricultura, a la recuperación de los costes de los servicios relacionados con el agua, basada en el análisis económico efectuado con arreglo al anexo III y teniendo en cuenta el principio de que quien contamina paga.” Para poder aplicar el principio de recuperación de costes de la DMA es necesario mejorar la transparencia en la información sobre: - Los costes reales de la prestación de los servicios de agua, - Los pagos realizados por parte de los usuarios, - Los consumos reales de agua, - Ayudas y subvenciones recibidas, - Estructuras tarifarias. Con esta información se debe realizar un diagnóstico sobre los problemas que se detecten y así poder tomar medidas para mejorar la situación. La tendencia debería ser un pacto nacional para asumir los costes reales del agua. El precio del agua debe ser un instrumento de gestión y no se debe usar políticamente. Se necesitan unas normas a escala nacional, es decir, un marco legal realista y que se aplique con independencia de criterio. 3. LOS COSTES AMBIENTALES Según la Guía Wateco (2002) los costes ambientales hacen referencia a “los costes del daño que los usos del agua imponen sobre el medio ambiente y los ecosistemas y sobre aquellos que usan el medio ambiente”. Los costes ambientales en el contexto de la DMA se pueden considerar como: - Costes de las medidas adoptadas para evitar, prevenir o reparar daños a los ecosistemas derivados del uso del agua. Se trata de pagar por las medidas de protección y mejora de los ecosistemas, y por recuperar la calidad ambiental de los ríos, acuíferos, aguas de transición y costeras, además de pagar por los servicios de agua. En definitiva, considerar el coste de las medidas que permiten mantener o alcanzar el buen estado de las masas de agua requerido por la DMA.
  • 34. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 33 - Costes de escasez asociados a los costes de oportunidad a la que se renuncia cuando un recurso escaso es asignado a un uso en lugar de a otros posibles. Es decir, hay competencia por el agua y hay usos del agua alternativos que generan un valor económico o ambiental mayor que el uso presente o previsto para el futuro. Puede haber distintas razones por las que esto se produce como los derechos históricos en el uso del agua (Brouwer, 2004). La eficiencia en la gestión del recurso exige que se conozcan e incorporen los costes de oportunidad del recurso en las decisiones. Dos son los componentes que hay que analizar: 1. Físico o de disponibilidad de agua en el espacio y en el tiempo. 2. Económico, de demandas económicas para su uso y demandas ambientales. Se trata de determinar el valor económico de las “oportunidades” perdidas por los usos económicos y la mejora en la eficiencia económica en la asignación del recurso como un instrumento con el que reducir las presiones sobre el medio hídrico y mantener el crecimiento económico. Todo esto significa incluir no solo los daños generados, que pueden estar valorados por el mercado, como la repercusión de la sobreexplotación de acuíferos sobre los márgenes de los regantes o el aumento del coste de potabilización por la contaminación por nitratos; sino también otros no valorados por el mercado como los ecosistemas, los usos recreativos, etc. La valoración ambiental en España lleva asociadas numerosas dificultades derivadas del hecho de que existen pocos estudios de valoración, que son además parciales y dependientes del contexto en el que se apliquen. 4. LOS COSTES DE LOS SERVICIOS DE AGUA Se ha estimado que el valor de los servicios prestados por los diferentes agentes en el sector del agua en España en 2002 ha sido de 6330 millones de euros, de los cuales, 1266 millones de euros se destinaron a servicios de distribución de agua de riego, tal y como muestra la tabla siguiente:
  • 35. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 34 Tabla 1. Coste de los servicios del agua en España 2002 Un aspecto destacable es el valor bajo de los servicios en “alta” (Captación, extracción, embalse y transporte) ya que estos sólo representan un 7% del total, en aguas superficiales, y un 8% del total, en aguas subterráneas. Este hecho ha empezado a variar en los últimos años, ya que se utilizan fuentes de agua más caras como la desalación y la reutilización. 5. PROPUESTA DE FORMULACIÓN PARA ESTABLECER EL PRECIO DEL AGUA SUPERFICIAL PARA RIEGO Siguiendo los argumentos de la DMA, se propone una formulación sencilla para estimar el precio del agua superficial para riego. La fórmula que se propone consta de dos sumandos, el primero recoge los costes del servicio asociados a la distribución del agua, el mantenimiento, la conservación y la amortización de las obras hidráulicas; estos costes serían proporcionales a la superficie puesta en regadío y al volumen de agua real consumido y medido en campo. El segundo sumando representa a los costes ambientales que deben incluir el coste de las medidas que permiten mantener o alcanzar el buen estado de las masas de agua requerido por la DMA y los costes de escasez asociados a los costes de oportunidad. P = C*K*V + I Siendo: P = Precio del agua superficial para riego (€/m3), C = Coeficiente de los costes del servicio, que depende del coste de distribución de agua de riego, del coste de mantenimiento y conservación de las infraestructuras y de la amortización de las obras,
  • 36. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 35 K = Función variable con la superficie a regar (*), (*) K = 0,8 + 0,325*Ln(A + 1) A = Superficie de riego (ha), V = Volumen de agua real consumido y medido en el terreno en (m3/ha/año), I = Costes ambientales que incluyen costes de las medidas y costes de escasez (€/m3) En esta formulación el tipo de cultivo se tiene en cuenta de forma indirecta a través del volumen de agua real consumido. La formulación es mejorable obviamente, y tiene tres objetivos fundamentales: 1) Tomar conciencia de la necesidad de medir bien el consumo real de agua superficial para riego. 2) Incentivar el ahorro de agua, ya que pagará menos el que sea más eficiente. 3) Respetar el medio ambiente y concienciar de que hay que pagar por contaminar. Pasamos a ilustrar con un par de ejemplos la formulación propuesta. Supongamos que en una cuenca hidrográfica española hay cinco agricultores que pertenecen a una misma comunidad de regantes, y que se deciden por plantar el mismo cultivo de frutales para los próximos años. Tras realizar los estudios económicos correspondientes se llegó a la conclusión que el coeficiente a aplicar a los costes del servicio de agua para riego en esa comunidad era de 0,000002. Por otra parte, los economistas ambientales han valorado los costes ambientales que incluyen los costes de las medidas para mantener el buen estado del acuífero subyacente (que recibe nitratos) y los costes de oportunidad, estimando un precio de 0,02 €/m3.
  • 37. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 36 Los agricultores tienen en producción las siguientes superficies de regadío: Tabla 2. Superficies de regadío. En este primer ejemplo todos los agricultores están consumiendo el mismo volumen de agua, que se ha medido y que es de 6000 m3/ha/año. Los valores del coeficiente K, para cada superficie de riego son: Tabla 3. Valores del coeficiente K para cada superficie. Aplicando la fórmula propuesta, el precio del agua que tendría que pagar cada agricultor sería el siguiente: Tabla 4. Precio del agua en el primer año. Y por lo tanto, el coste del agua de todo el año sería: Tabla 5. Gasto anual en agua en el primer año. Tras la experiencia de este primer año, los agricultores 3, 4 y 5 deciden invertir en eficiencia y ahorrar más agua y consiguen rebajar el consumo a 4500 m3/ha/año.
  • 38. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 37 En consecuencia, este segundo año el coste del agua ha sido: Tabla 6. Precio del agua y gasto anual en el segundo año. Comparando gráficamente los resultados obtenidos se aprecia cómo influye el ahorro del agua en el coste anual: Gráfico 2. Gasto anual en agua superficial de riego en función de la superficie y del consumo. 6. CONCLUSIONES El principal consumidor de recursos hídricos en España es el sector agrícola. En los últimos cien años, la superficie de regadío se ha triplicado. Es posible incentivar el ahorro del agua y la eficiencia agrícola estableciendo unos precios reales del agua en un marco legal regulatorio y económico- financiero estable e independiente, al margen de las presiones políticas.
  • 39. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 38 Se ha planteado una formulación sencilla para estimar el precio del agua, teniendo en cuenta no sólo los costes del servicio que supone poner el recurso a disposición de los usuarios, sino que también los costes de escasez y los costes de reponer y garantizar la calidad ambiental del medio hídrico. Para estimar los costes ambientales se necesitan realizar estudios con rigor por economistas y ambientalistas en España. La formulación propuesta tiene tres objetivos fundamentales: 1) Tomar conciencia de la necesidad de medir bien el consumo real de agua superficial para riego. 2) Incentivar el ahorro de agua, ya que pagará menos el que sea más eficiente. 3) Respetar el medio ambiente y concienciar de que hay que pagar por contaminar. 7. REFERENCIAS BIBLIOGRÁFICAS 1) Maestu, J. et al. 2007. Precios y costes de los servicios de agua en España. Informe integrado de recuperación de costes de los servicios de agua en España. Artículo 5 y Anejo III de la Directiva Marco de Agua. Ministerio de Medio Ambiente. 2) Observatorio de las Políticas del Agua, 2014. Evaluación del primer ciclo de planificación hidrológica en España en aplicación de la Directiva Marco del Agua. Fundación Nueva Cultura del Agua.
  • 40. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 39 PLANNING AND MANAGEMENT OF DROUGHTS IN THE SEGURA RIVER BASIN Cenajo reservoir downstream ABSTRACT: The severe drought in period 1990-1995 triggered the inclusion of droughts on water resources planning. The Segura River Basin Management Plan (2014) proposes environmental flow regimes calculated with a scientific basis which is under review and improvement in the coming years. The flow regimes do not reproduce the natural variability of historic flows. And this is a consequence of the altered regimen imposed due to the high regulation in the Segura River. The Segura Drought Management Plan (2007) aims towards surface water supply re-strictions, but the Plan does not consider any indicator of the groundwater. This paper proposes: 1) A methodology based on the analysis of droughts in Segura River in order to find new minimum flow regimes that will represent the natural variability of the river at a monthly scale, during periods of drought. 2) The consideration of an indicator to tackle groundwater abstraction during periods of drought.
  • 41. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 40 1. INTRODUCTION This paper describes a methodology based on the analysis of droughts in Segura River to find new minimum flow regimes that will represent the natural variability of the river at a monthly scale, during periods of drought. Besides, the contribution introduces an indicator to tackle groundwater abstraction during periods of drought. At present there is an increasing social demand for respect and preserve the environment. This fact is conditioning water planning at European level, so that the rivers must drive, at least, environmental flows during droughts. Such reality appears strongly in regions where rivers are highly regulated. And this is the case of Segura River. The implementation of environmental flow regimes in Segura River is a challenge for the coming years, because it is necessary to understand that some of the water of the river shouldn't be available for consumption. So it is essential the participation of the stakeholders. The performances in drought situations must respond to a planned management and not just emergency actions involving high costs for the society. During periods of drought the supply of irrigation for a large part of Segura River Basin depend on groundwater. A significant proportion of wetlands and rivers are also dependent on groundwater. Good status of groundwater is critical to achieving environmental and socio- economics objectives of the EU. On the other hand, over-abstraction leads to groundwater depletion, with consequences like deterioration of water quality (e.g. saline water intrusion), loss of habitats (e.g. wetlands) and modification of river/aquifer interactions. Reduced groundwater levels can be a result of groundwater abstractions, reduced precipitation... So the groundwater level indicator has great relevance along drought periods.
  • 42. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 41 2. DROUGHTS IN THE SEGURA RIVER BASIN During the drought period 1990-1995, in the Segura River Basin, reductions of rainfall higher than 45% was happened, in the hydrological years 1993/94 and 1994/95, compared to the average of the period 1940/41 to 1994/95. These rainfall reductions triggered declines higher than 70% of the average annual inflow. The shortage in rainfall in the Segura River Basin led to greater shortages in rivers flows. The rainfall-runoff relationship is not linear, and reductions of precipitation usually produce more pronounced reductions in runoff. And this physical phenomenon is considerate in the Equation (1). (1) Where I = inflow; R = rainfall; and PET = potential evapotranspiration. In the equation, all units are in millimeters (mm). In the Figure 1 is represented Budyko law (Témez 2004). It can be checked the fit of the curve (PET 900 mm) with rainfall and inflows values from different periods of drought: 1941-1945, 1979-1983, 1990-1995 and 2004-2008. These values are shown in the Table 1.
  • 43. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 42 Figure 1. Rainfall-inflow relationship in the Segura River Basin with PET 900 mm. Values from periods of drought 1941-1945, 1979-1983, 1990-1995 and 2004-2008. Table 1. Rainfall-inflow values during periods of drought. 3. MINIMUM FLOW REGIMES BETWEEN OJÓS DAM AND ARCHENA In the last years, the methods for calculating the environmental flow regimes have undergone significant development, in order to achieve an objective environmental status for each river reach. This paper describes a methodology based on the analysis of droughts in Segura River to find new minimum flow regimes that will represent the natural variability of the river at a monthly scale, during periods of drought.
  • 44. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 43 The methodology is applied on the reach of the river between Ojós and Archena, using preceding data at the entry into operation of major reservoirs in headwater basin. 3.1. Input data It will be used the average daily flows that were recorded at station of Archena, in the period between 1920/21 and 1930/31. These data were obtained from the Gauging Yearbook of the Ministry of Agriculture, Food and Environment (MAGRAMA 2012). With the average daily flows it was calculated average monthly flows for each year, as shown in the Table 2: Table 2. Average monthly flows at station of Archena in the period between 1920/21 and 1930/31. 3.2. Classification of hydrological years With the results of annual circulating volume (Tab. 3) it is proposed to classify the hydrological years in normal, wet or dry, with the following criteria: - If volume is fewer than 300 Hm3 then it considers dry year. - If volume is greater than 300 Hm3 and fewer than 700 Hm3 then it considers normal year. - If volume is greater than 700 Hm3 then it considers wet year. According to this classification, in the period under review, there's one dry year (1930/31), five normal years and five wet years.
  • 45. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 44 Table 3. Annual volume at station of Archena in the period between 1920/21 and 1930/31. 3.3. Flow distribution depending on the type of year It is proposed the following average monthly flow distributions: for dry years the distribution of the year 1930/31. For normal and wet years the distribution corresponding to average values. The results obtained are shown in the Table 4. Table 4. Average monthly flow distributions depending on the type of year. The average monthly flows in natural regimen show variability along the hydrological year. The regimen of the river at that time was linked to meteorological variability of the basin. The low rainfall in summer originated severe droughts. Therefore, accused droughts are observed in dry years. On July 8 th 1931 a daily average flow of 0.32 m3/s was recorded in station of Archena. 3.4. New monthly minimum flow regimes The Segura River Basin Management Plan (2014) establishes the environmental flow regimen, during droughts, which can be seen in the Table 5: Table 5. Environmental flow regimen in the Segura River between Ojós and Archena, during droughts. But this flow regimen does not reproduce the natural variability of historic flows along hydrological year. These flows respond to the altered flow regimen that imposes the high regulation existing in the Segura River Basin.
  • 46. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 45 Then the new monthly flow regimen in situations of drought is calculated as follows: Between October and March the regimen would be 15% of average monthly flows for the normal year. From April to September the regimen would be 50% of the monthly flows for the dry year. Table 6. Monthly flow regimen in situations of drought. Montana method recommended flow rates calculated as a percentage of average annual flow restored to natural regimen in the wet season and dry season (Tennant 1976). According this methodology, if more than 90% of the average annual flow is abstracted, it could trigger the beginning of the damage in the river and its biodiversity. Therefore, 10% of the average annual flow should be a reference threshold. Table 7. Average flow distribution in the period between 1920/21 and 1930/31. The Figure 2 shows that the proposed flow regimen is close to the 10% of the average monthly flow in the period 1920/21 to 1930/31.
  • 47. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 46 Figure 2. Minimum flow regimes on drought situation. Segura River. Ojós- Archena. 4. THE GROUNDWATER INDICATOR Low groundwater levels may be caused by periods of low rainfall during the period of recharge (generally in autumn and winter), but the effects can be prolonged or made worse by abstraction at critical periods. In the Segura River Basin during droughts, groundwater is placed under even greater pressure due to different users (agriculture, industry...) pump out too much water. As the different water bodies (rivers, lakes, aquifers, wetlands) are hydraulically connected, groundwater level reduction will result in reduction of water resources, imbalance in the hydrologic water cycle and can lead to serious water stress and scarcity conditions.
  • 48. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 47 Figure 3. Evolution of the relative depth in the year 2008/09. Piezometer "Pozos de Torres". Figure 3 shows the evolution of the relative depth in Oro-Ricote hydrogeological unit during the year 2008/09 with an example of lower threshold. For each piezometer, thresholds would be established in order to know the state of the aquifer in the influence area. The groundwater level indicator can be presented on a map of the Segura River Basin. The map would show the situation of groundwater level every month, for each aquifer.
  • 49. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 48 5. CONCLUSIONS In the Segura River Basin the reduction of rainfall leads to more pronounced reductions in rivers flows. Besides, the Segura River is strongly regulated. Therefore, it’s not easy reproducing the natural variability of historic flows and it’s difficult respecting the environmental conditions in the river, especially during droughts. This paper describes a methodology based on the analysis of low flows in a reach of the Segura River, which uses historical data of natural flows. It has been proposed a new minimum flow regimen between Ojós and Archena. The new regimen obtained is representative of the natural variability of the river during droughts. The implementation and monitoring of the minimum flows in the Automatic Hydrological Information Systems at Water Authorities would be a useful control tool. The consideration of a groundwater level indicator has great relevance during periods of drought. The groundwater indicator can be used to assess hydrological drought and if it is combined with other indicators, it can be used for water policy (restriction of water use, management at local level, awareness raising purposes...) Finally, this little paper aims the thinking on the need for European Drought Directive that homogenizes criteria about environmental flows and groundwater abstraction. 6. REFERENCES Comité de Expertos en Sequía. 2007. La sequía en España. Directrices para minimizar su impacto. Ministerio de Medio Ambiente. European Environment Agency, 2012. Towards efficient use of water resources in Europe. EEA Report No 1/2012. Ferreras, C. 2004. Inundaciones y sequías en la cuenca del Río Segura. Comunidad Autónoma de la Región de Murcia. Consejería de Agricultura, Agua y Medio Ambiente.
  • 50. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 49 Herrero, R. 2014. The last water resources planning and the environmental flows regimens in rivers. Tecnoaqua. Volume 5. 94-100. Schmidt, G. et al. 2012. Environmental flows in the EU. Discussion paper. Draft 1.0, for discussion at the EG WS&D. Tallaksen L. et al. 2004. Hydrological Drought. Processes and estimation methods for streamflow and groundwater. Elsevier. Témez, J. R. 2004. El periodo seco 1980-95. Su rareza y efectos en el sureste español. Revista de Obras Públicas nº 3448. 33-39. Tennant, D. L. 1976. Instream Flow Regimens for Fish, Wildlife, Recreation and Related Environmental Resources. Procs. on Instream flow needs Symp. 326- 327.
  • 51. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 50 TRANSITORIOS HIDRÁULICOS EN TUBERÍAS 1. INTRODUCCIÓN Con este post se inaugura una nueva categoría denominada “flujo en presión” en el blog de www.eselagua.com y trata sobre los transitorios hidráulicos que tienen lugar en las tuberías a presión. En concreto, se va a efectuar un análisis del golpe de ariete que aparece en la tubería forzada de un sistema hidroeléctrico tras el cierre, parcial o total, de la válvula de alimentación a la turbina, y la oscilación en masa que, como consecuencia del mencionado cierre, se establece entre la chimenea de equilibrio y el embalse a través de la galería de conducción. 2. PLANTEAMIENTO DEL PROBLEMA Consideremos un sistema hidroeléctrico constituido por una presa con un nivel de embalse de explotación normal a la cota Z1 = 1530 m. Desde el embalse arranca una galería de conducción de sección circular de 2 m de diámetro, cuyo eje en la embocadura está a la cota Z2 = 1500 m. La galería de conducción tiene una longitud de 1550 m. Figura 1. Esquema del sistema hidroeléctrico analizado.
  • 52. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 51 Al final de la galería de conducción y sobre el punto de entronque con la tubería forzada se ha dispuesto una chimenea de equilibrio de 10 m de diámetro interior. La tubería forzada tiene 800 m de longitud, es de fundición dúctil de 2 m de diámetro y tiene un espesor de 0,0315 m. La tubería parte de la cota Z3 = 1498 m y desciende hasta la cota Z4 = 849 m donde se encuentra el conjunto válvula en línea y válvula de seguridad que regula la entrada de caudal a la turbina de la central hidroeléctrica existente. El golpe de ariete aparece en la tubería forzada del sistema hidroeléctrico tras el cierre, parcial o total, de la válvula. Mientras que entre la chimenea de equilibrio y el embalse se produce una oscilación en masa, a lo largo de la galería de conducción. En el caso planteado existen tres contornos: el inicio de la galería de conducción en el lado del embalse, el final de la tubería forzada a la llegada a la válvula de cierre (que controla el caudal de alimentación a la turbina) y el punto de unión de la galería y de la tubería, donde se encuentra la chimenea de equilibrio. Los datos de la instalación se reflejan en la tabla siguiente: Tabla 1. Datos de la galería de conducción y de la tubería forzada. La chimenea de equilibrio tiene un diámetro interior de 10 m y por lo tanto el área es de 78,54 m2. La válvula es de mariposa de 2 m de diámetro con un coeficiente de caudal Kvo de 76000 m3/h. Para la ley de cierre de la válvula se plantea un cierre lineal con apertura inicial al 100% y apertura final de cero (cierre total) en 120 segundos.
  • 53. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 52 Se estudiará un primer escenario donde no se considera el efecto de la chimenea de equilibrio y posteriormente un segundo escenario considerando el efecto de la chimenea de equilibrio. 3. MODELACIÓN DEL PROBLEMA Cuando los cambios de presión y velocidad se producen con gran rapidez, hay que contar con la compresibilidad del agua y con la elasticidad de la tubería, y resolver el sistema de ecuaciones diferenciales no lineal en derivadas parciales de tipo hiperbólico que gobierna el fenómeno hidráulico que tiene lugar. Generalmente se recurre al método de las características, que proporciona una solución numérica de las funciones caudal Q = Q(x,t) y altura piezométrica H = H(x,t), que describen el comportamiento del sistema, como respuesta a unas determinadas condiciones de contorno, en este caso el cierre de una válvula que controla la alimentación de caudal a la turbina. Para realizar la modelación del sistema se ha empleado el software Dyagats 2.0, Diseño y Análisis del Golpe de Ariete en Tubería Simple, desarrollado por la Unidad Docente de Mecánica de Fluidos de la Universidad Politécnica de Valencia (1993) que es aplicable a una tubería simple y que proporciona las envolventes de alturas piezométricas máximas y mínimas, tras resolver las ecuaciones que gobiernan el fenómeno del golpe de ariete. La versión gratuita del programa se puede descargar en la siguiente dirección web: http://fluing.upv.es/dyagats.php El programa no simula cavitaciones. No debe aparecer cavitación en el sistema ya que la rotura de la columna líquida no se contempla en la resolución analítica. El hecho de que la línea de piezométricas sobrepase (por debajo) la línea de cavitación significa que la instalación no funcionaría correctamente y hay que proceder a modificar el diseño. Al realizar el cálculo del régimen permanente se obtienen los siguientes resultados:
  • 54. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 53 Tabla 2. Resultados del cálculo en régimen permanente. Figura 2. Línea piezométrica de la instalación en régimen permanente. En la figura siguiente se muestran los valores iniciales (instante t = 0) de la altura y del caudal en la chimenea de equilibrio, así como la apertura y el caudal de la válvula de regulación:
  • 55. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 54 Figura 3. Valores iniciales (t = 0) para el cálculo del régimen transitorio. Los parámetros de cálculo utilizados son un intervalo de discretización temporal de 0,18229 s y un número de puntos de cálculo total de 13 en la galería y en la tubería. Obsérvese que aunque el cierre de la válvula es lineal a lo largo de los 120 s que dura la maniobra, el desagüe de caudal no es lineal. Por ejemplo, cuando se ha cerrado un 50% de la válvula, transcurrido el primer minuto, el caudal de salida se ha reducido en tres cuartas partes, tal y como se aprecia en el gráfico siguiente.
  • 56. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 55 Gráfico 1. Apertura de válvula y caudal de salida hacia turbina. 4. ESCENARIO 1 SIN CHIMENEA DE EQUILIBRIO En la galería de conducción las máximas sobrepresiones se producen en las inmediaciones del entronque con la tubería forzada (nodo 9, tramo 1) y tienen lugar durante el primer minuto. Recordemos que en los primeros 60 segundos la válvula se cerraba al 50% y el caudal de salida se reducía a un cuarto respecto al valor de régimen permanente. La presión máxima en la galería de conducción sería de 47,267 m.c.a y la presión mínima sería de 17,152 m.c.a. El incremento de presión respecto al régimen permanente sería de 30,115 m.c.a.
  • 57. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 56 Gráfico 2. Presiones a lo largo de la galería de conducción. En la tubería forzada las máximas sobrepresiones se producen en las inmediaciones de la válvula (nodo 5, tramo 2) y tienen lugar durante el primer minuto. La presión máxima en la tubería forzada sería de 703,774 m.c.a y la presión mínima sería de 658,489 m.c.a. El incremento de presión respecto al régimen permanente sería de 45,285 m.c.a.
  • 58. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 57 Gráfico 3. Presiones a lo largo de la tubería forzada. 5. ESCENARIO 2 CON LA CHIMENEA DE EQUILIBRIO Inicialmente la chimenea tiene una altura de agua que coincide con la altura piezométrica del régimen permanente, es decir, 17,152 m. La altura máxima se alcanza a los 196 segundos con un valor de 40,049 m. Conforme se amortigua el fenómeno, con el paso del tiempo, la altura de agua en la chimenea tiende a 32 m, coincidiendo con el nivel de explotación del embalse (1530 m), y el caudal de entrada y salida a la chimenea tiende a cero, ya que la válvula se ha cerrado por completo.
  • 59. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 58 Gráfico 4. Altura y caudal de entrada y salida a chimenea de equilibrio durante la oscilación en masa en la galería de conducción. Las leyes de presiones se han suavizado por el efecto de la chimenea de equilibrio. La presión máxima en la galería de conducción sería de 40,049 m.c.a y la presión mínima sería de 17,152 m.c.a. El incremento de presión respecto al régimen permanente sería de 22,897 m.c.a. Gráfico 5. Presiones a lo largo de la galería de conducción con la chimenea.
  • 60. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 59 La presión máxima en la tubería forzada sería de 690,243 m.c.a y la presión mínima sería de 658,489 m.c.a. El incremento de presión respecto al régimen permanente sería de 31,754 m.c.a. Gráfico 6. Presiones a lo largo de la tubería forzada con la chimenea. 6. CONCLUSIONES Se ha realizado el análisis del golpe de ariete que aparece en la tubería forzada de un sistema hidroeléctrico tras el cierre, parcial o total, de la válvula de alimentación a la turbina, y la oscilación en masa que, como consecuencia del mencionado cierre, se establece entre la chimenea de equilibrio y el embalse a través de la galería de conducción. Se ha comprobado la eficacia de la chimenea de equilibrio para amortiguar las sobrepresiones en la galería de conducción. Es interesante observar la evolución de los valores de la presión durante el transitorio en la galería. También se ha comprobado que las máximas sobrepresiones se alcanzan en los primeros segundos del transitorio.
  • 61. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 60 7. REFERENCIAS BIBLIOGRÁFICAS Fullana Serra, V., Cabrera Marcet, E. 1977. Análisis simultáneo de las chimeneas de equilibrio y del golpe de ariete por el método de las características. Revista de Obras Públicas Nº 3142. Mendiluce Rosich, E. 1987. Discrepancias en el cálculo del golpe de ariete. Revista de Obras Públicas. Pág. 575 a 581. Abreu, J.M., et al. 1995. El golpe de ariete en tuberías de impulsión. Comentarios a las expresiones de Mendiluce.
  • 62. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 61 HACER UN USO SOSTENIBLE DEL AGUA ¿UTOPÍA O REALIDAD? “No podremos acabar con ciertas enfermedades del mundo hasta que no hayamos ganado la batalla del agua potable y del saneamiento.” Kofi Annan Nacimiento del río Segura en Pontones (Jaén) 1. INTRODUCCIÓN El Programa de Naciones Unidas para el Desarrollo (PNUD) establece que el agua desempeña un papel fundamental en el desarrollo sostenible, incluida la reducción de la pobreza. Y por esta razón la gestión de los recursos hídricos adquiere una enorme relevancia. Una gestión sostenible del agua implica atender las demandas de agua y también proteger las aguas superficiales y subterráneas para que alcancen un buen estado. Un modelo de gestión sostenible fomenta el ahorro de agua, asegura que el agua se devuelve al medio ambiente con la calidad adecuada y garantiza el suministro de la demanda mediante fuentes alternativas de agua.
  • 63. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 62 2. DATOS Y PREVISIONES NO SOSTENIBLES La FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura) prevé que habrá que incrementar la productividad agraria en más de un 70% antes del año 2.050 para alimentar a 9.000 millones de personas. En los últimos 50 años la población mundial ha aumentado en cuatro mil millones de personas. Para el horizonte de 2.050 la demanda del agua podría llegar a superar en más de un 40% los recursos hídricos disponibles. Gráfico de evolución de la población mundial Actualmente, y a pesar de los avances científicos y tecnológicos, en el mundo más de 1.000 millones de personas no tienen acceso al agua potable y pasan hambre de forma crónica. En contrapartida 1.400 millones de personas sufrimos sobrepeso. Y más de 2.500 millones de personas no disponen de saneamiento adecuado (letrinas apropiadas, alcantarillado,…). El 85% de las enfermedades del tercer mundo se deben a la mala calidad del agua. La crisis mundial del agua provoca más de 2 millones de muertes infantiles al año por diarreas. Cada año mueren millones de animales y se pierde el 25% de la superficie agrícola sembrada por efecto de las sequías y las inundaciones.
  • 64. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 63 En el Sahel mujeres y niñas recorren una media de seis kilómetros a pie todos los días para llevar a casa algunos litros de agua. Estas cifras no van acordes al derecho humano al agua establecido por las Naciones Unidas que otorga el derecho al agua en cantidad y calidad para todas las personas. A día de hoy existe incertidumbre del impacto del cambio climático en la disponibilidad del agua. 3. USO SOSTENIBLE DEL AGUA ¿CÓMO? Los gobiernos se están haciendo cada vez más conscientes de su vulnerabilidad ante la escasez de agua debido al crecimiento demográfico, al crecimiento económico, a los nuevos patrones de consumo (mayor consumo de carne), al cambio climático, etc. Algunas formas de asegurar un futuro sostenible en materia hídrica pasan por: 1) Concienciar a los ciudadanos sobre la importancia del uso responsable del agua mediante la implantación de planes integrales orientados al establecimiento de objetivos de ahorro de agua. Incluyendo un consumo responsable que apuesta por los alimentos que consumen menos agua, aprovechando mejor los alimentos y no tirándolos (los europeos tiramos una media del 30% de los alimentos que compramos), ahorrando agua doméstica, etc. 2) Fomentar la agricultura eficiente: en agricultura es posible ser más eficientes y ahorrar más agua haciendo uso de la llamada “tecnología 3.0”, mediante la elaboración de planes de cultivos para los agricultores y la utilización de sensores para medir la humedad del suelo, el estado de la planta, las variables climáticas, etc. Y todo ello para ajustar el agua que hay que aportar a los cultivos, enviando información al agricultor con las recomendaciones de riego. También se pueden mejorar los rendimientos empleando sistemas que generen sombra para reducir la temperatura y la evaporación y conservar la humedad del suelo.
  • 65. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 64 Y sensibilizar a los agricultores sobre el valor del agua por falta de una estructura de precios y un marco normativo adecuados. 3) Captar y almacenar el agua de lluvia y del ambiente representan una opción real para abastecer con agua de calidad y de manera constante, viable y económica a las personas, especialmente en aquellas regiones donde las fuentes de aguas superficiales y subterráneas se encuentran sobreexplotadas o contaminadas. Para ello hay que captar el agua, almacenarla y aplicarle los tratamientos necesarios de potabilización y purificación. ¿Qué hace falta para apostar por proyectos de captación de agua de lluvia? Voluntad política, participación de la comunidad, asistencia técnica y financiación. 4) Reutilizar las aguas. Si las inversiones en infraestructuras de reutilización se hacen cada vez más rentables y los precios de obtención del metro cúbico de agua regenerada disminuyen, puede ser una solución muy interesante para el futuro. Actualmente existe legislación sobre la reutilización del agua que define la calidad que debe tener el agua regenerada y los usos a que se puede destinar. En concreto, en España existe un Real Decreto que establece el régimen jurídico de la reutilización de las aguas depuradas de 2007 y una Guía del Ministerio de 2010. El beneficio más importante derivado de la reutilización de las aguas es la posibilidad de reservar el agua de mejor calidad para los usos más exigentes tales como la producción de agua potable. ¿Por qué la reutilización del agua no acaba de implantarse en la vida cotidiana? Tal vez porque existe desconocimiento de la población hacia la reutilización lo que no favorece la aceptación social, tal vez por falta de infraestructuras que faciliten la reutilización urbana, domiciliaria, etc. 5) Desalar el agua de mar permite incrementar los recursos hídricos disponibles y mejorar la calidad de las aguas. En España es un complemento para combatir la escasez de agua en la vertiente mediterránea. En el caso de las islas Canarias y Baleares es fundamental. También en Ceuta y Melilla.
  • 66. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 65 La optimización de los costes energéticos es prioritaria para hacer la desalación cada vez más rentable. Se están produciendo avances importantes ya que se ha conseguido pasar de consumir 5 a 3 Kwh para desalar 1 m3 de agua en las nuevas desaladoras. 6) Medir bien el agua que se consume y poner un precio justo al agua: una adecuada medición es importante para alcanzar una gestión eficiente del recurso. Un precio real del agua estimula la eficiencia y permite la recuperación de costes. En el caso de España sería necesario implantar una metodología nacional de obligado cumplimiento para el cálculo de las tarifas del agua urbana y del agua para el regadío. 7) Planificar: una correcta planificación hídrica, energética, agraria y urbanística permite que el crecimiento y el desarrollo no vayan por delante de la disponibilidad de recursos hídricos o energéticos o de la capacidad de depuración y de reutilización de los recursos hídricos, una vez que han sido utilizados. 8) Gestionar eficazmente. Es necesario un marco normativo eficiente y que se lleve a la práctica para regular los usos del agua en las cuencas hidrográficas. El concepto de ciudad inteligente trata de una evolución en los modelos de gestión de las ciudades para tener presente en el día a día el desarrollo sostenible y la gestión eficiente de los recursos. Haciendo uso de la tecnología más avanzada se optimizan los procesos de la gestión integral del agua logrando: - La disminución del consumo de agua mediante la mejora de las redes de distribución, la detección de averías, fugas, etc. - La mejora de la calidad de las aguas vertidas mediante sistemas de control de contaminantes en redes de saneamiento, depósitos de tormentas, etc. 9) Favorecer el acceso al agua potable y al saneamiento: el acceso al agua potable y al saneamiento son fundamentales para que la población pueda salir de la pobreza. Tener acceso al agua potable en cantidad y calidad es un derecho fundamental del ser humano.
  • 67. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 66 La escasez de agua puede superarse, pero tiene un coste para la construcción de nuevas infraestructuras, para mejorar la eficiencia de los sistemas existentes de abastecimiento y saneamiento, etc. Infografía con propuestas para hacer un uso sostenible del agua
  • 68. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 67 4. REFLEXIÓN FINAL Es muy importante recuperar el equilibrio entre el consumo de agua dulce y su renovación natural, y realizar un esfuerzo en concienciar respecto al uso responsable del agua en beneficio de las generaciones presentes y futuras. Una agricultura de precisión puede producir más y con menos agua respecto a los métodos tradicionales. En las industrias y en las ciudades también se puede ahorrar agua. Es posible reducir la extracción de agua aumentando la reutilización, utilizando fuentes alternativas como la captación del agua de lluvia y mejorando eficiencias en procesos de producción (agricultura, industria, etc.) Tenemos un gran reto por delante para satisfacer las necesidades hídricas actuales y para no comprometer a las generaciones futuras. Si hacer un uso sostenible del agua no es una utopía ¿qué puedo aportar yo, en mi vida diaria, para hacer un uso sostenible del agua? En momentos de escasez de agua y de tensiones sociales ¿ayudaría el hecho de que la Unión Europea aprobara una Directiva Europea de Sequías y velara por su cumplimiento?
  • 69. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 68 ¿ESTA PRESA ES SEGURA? VALORES UMBRALES DE LAS DEFORMACIONES Y FILTRACIONES La mayor parte de las patologías de origen geotécnico (a excepción, quizá, de algunos casos concretos de erosión interna “súbita” en presas de materiales sueltos) tienen un reflejo evidente (durante un período de tiempo significativo y suficiente) en las filtraciones y/o las deformaciones de la presa. Otra cosa diferente es que el ingeniero sea capaz de detectarlo e interpretarlo correctamente… Francisco Javier Sánchez Caro Presa de Béznar en Granada 1. INTRODUCCIÓN Los elementos básicos que permiten realizar el análisis de la seguridad de una presa son: la auscultación (instrumentación y mediciones), las inspecciones (observaciones), la representación y la interpretación de las mediciones y de las observaciones, y finalmente la toma de decisiones para realizar las actuaciones de corrección necesarias, orientadas a garantizar el nivel de seguridad adecuado.
  • 70. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 69 Fases del análisis de la seguridad de una presa La auscultación por instrumentación puede detectar ciertas anomalías, mientras que otras pueden ser detectadas únicamente por inspección visual. A cada presa, ya sea de una u otra tipología, le ocurre como a las personas, es decir, que no hay dos iguales, y por lo tanto, cada una tiene sus particularidades que deben ser tenidas en consideración de manera adecuada. Además, las presas también cumplen años y por lo tanto son concebidas, nacen, maduran y envejecen. De esta manera se pueden definir cuatro periodos en la vida de la presa: construcción, primer llenado, explotación y envejecimiento. En la Cuenca del Segura se construyeron presas de laminación a raíz del Plan de Defensa de 1987 frente a avenidas en las que todavía no se ha producido el primer llenado, ya que después de 25 años, no han ocurrido avenidas en esas subcuencas con unos volúmenes de hidrograma suficientes para llenar el vaso de los embalses.
  • 71. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 70 Y los problemas pueden aparecer durante la construcción, durante el primer llenado, en los primeros años de vida de la obra o hacia el ocaso de la misma. Por lo tanto, la medición y la observación siempre deben estar presentes en estas obras. 2. MODOS DE FALLO Para cualquier presa es fundamental diagnosticar adecuadamente cuál es el modo de fallo más desfavorable y evaluar correctamente cuáles son las acciones y resistencias asociadas. Los modos de fallo consensuados por ICOLD (International Commission On Large Dams) se corresponden con los que se señalan a continuación: 1) Sobrevertido (Insuficiencia ante la solicitación hidrológica), 2) Inestabilidad de laderas en embalse (Insuficiencia de resistencia al corte), 3) Inestabilidad dinámica (Insuficiencia ante la solicitación sísmica), 4) Inestabilidad elástica (Insuficiencia estructural) o erosión interna del cuerpo de presa (Insuficiencia de estabilidad interna en cuerpo de presa), 5) Inestabilidad estática al deslizamiento o inestabilidad de taludes de presa (Insuficiencia de resistencia al corte), pudiendo afectar o no al cimiento, 6) Erosión interna del cimiento (Insuficiencia de estabilidad interna en general, incluyendo problemas asociados a solubilidad, sifonamiento, filtraciones, etc.) Al analizar los modos de fallo se trata de dar respuesta a preguntas como las siguientes ¿Cómo puede fallar esta presa? ¿Qué causas provocarían su rotura? El modo de fallo depende de la tipología de presa. Por ejemplo, en una presa bóveda el origen del modo de fallo puede venir del: 1) Cimiento: asientos y creación de fisuras, deslizamientos (por fallo del apoyo en la roca,…), socavación o erosión de la cimentación (por vertidos sobre coronación,…) 2) Cuerpo de presa: reacción del árido (silíceo) con los álcali del cemento (disminución de la resistencia a tracción del hormigón, mayor fisuración, etc.)
  • 72. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 71 3) Embalse: deslizamientos de laderas (generación de olas y vertidos sobre coronación,…) Un mal diseño o una mala construcción pueden desencadenar, por ejemplo, el pandeo por ejecutar la bóveda demasiado delgada, o fisuraciones intensas por no enfriar correctamente el hormigón o por aplicar presiones muy elevadas de inyección en las juntas de construcción. 3. ¿QUÉ SE ENTIENDE POR UNA PRESA SEGURA? ¿Qué condición se debe cumplir para que una presa sea segura? Pues que la probabilidad de fallo sea admisible. Y entonces, ¿qué sería lo ideal? Lo ideal sería que la presa contara con: 1) Un diseño correcto, 2) Una ejecución y construcción de calidad, 3) Un mantenimiento adecuado de todos sus elementos (hidromecánicos, accesos, instrumentación, galerías, aliviadero, etc.) 4) Auscultación completa y realización de inspecciones periódicas de la cimentación, del cuerpo de la presa y del embalse (laderas,…) con el correspondiente registro de datos, análisis e interpretación de las mediciones y de las observaciones. 5) Toma de decisiones (responsabilidad) y actuaciones de corrección necesarias en un plazo de tiempo acorde a la situación. 4. RECOMENDACIONES PARA EL SISTEMA DE AUSCULTACIÓN Hay que tener en cuenta que el número de instrumentos a instalar en una presa es un problema técnico, pero también es un problema económico, ya que la adquisición de los instrumentos, la instalación, el mantenimiento y el trabajo de análisis de datos tienen un coste. Y el mantenimiento y la explotación es un coste mantenido en el tiempo, durante la vida útil de la presa, por lo que debe ser asumible y realista.
  • 73. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 72 La experiencia recomienda: 1) Apostar por un sistema de auscultación sencillo, robusto y de fácil lectura y que abarque el cuerpo de presa, la cimentación y el embalse. Se trata de limitar el número de instrumentos a un valor razonable y de ubicarlos de manera que detecten anomalías posibles en el comportamiento de la presa. Instrumentar una presa no consiste en colocar el mayor número de instrumentos posible, sino en diseñar un sistema lógico y útil de instrumentación. Es mejor tener pocos instrumentos que sean de confianza y seguros que muchos inestables y con fallos frecuentes. Es preferible disponer de menos datos pero que sean de calidad y con interpretación, que disponer de muchos datos que no se interpretan y que son de calidad baja. Además de representar gráficamente los datos, se debe realizar una interpretación de las mediciones en un tiempo prudencial. 2) Partir de unos criterios de selección de la instrumentación: instrumentos robustos poco sensibles a la temperatura, a la humedad, a las vibraciones, etc., instrumentos reemplazables y accesibles (no embebidos en el hormigón) para garantizar la operatividad, la lectura, la calibración y la continuidad de la serie histórica de los datos, instrumentos fáciles de interpretar y con las constantes visibles para convertir las magnitudes eléctricas a unidades físicas de ingeniería (mm de deformación, grados centígrados de temperatura, m.c.a. para la presión, litros por segundo para los caudales, etc.) e instrumentos estables. Tener estos criterios claros desde el principio es clave, ya que al escuchar a los proveedores, cada uno defiende vender el mejor tipo de instrumento. 3) Combinar la auscultación instrumental con inspecciones cuidadosas. Las inspecciones visuales de la presa pueden detectar anomalías no detectables por la instrumentación (nuevas fisuras, nuevas filtraciones, etc.) 4) Hay que estudiar cada caso particular y tener en cuenta la necesidad de cierta redundancia en los puntos más importantes.
  • 74. Segundo año apostando por la ingeniería del agua w w w . e s e l a g u a . c o m Página 73 5) Se deben evitar las lecturas encadenadas. Por ejemplo, cuando el desplazamiento de la coronación se obtiene sumando lecturas de varios péndulos cortos, escalonados en la vertical, ya que los errores se van sumando y si falta una lectura, el resto de la cadena pierde el valor. Las presas arco presentan una ventaja respecto a otros tipos de presa, ya que todos los puntos de la presa están conectados rígidamente entre sí, de manera que cualquier evento extraordinario se puede notar a distancia de su origen, lo que facilita su detección. Sin embargo, esto no ocurre en una presa de materiales sueltos larga, donde por ejemplo, un problema de sifonamiento puede producirse en un sector de la obra sin que se note nada en otra zona de la presa. Entonces en presas de tierra largas no se deben concentrar los piezómetros en el núcleo en pocas secciones transversales, es decir, no se deben dejar tramos largos no instrumentados. Sería más eficiente subdividir la presa en tramos cortos y medir los caudales de filtración en cada tramo y así tener una auscultación real de toda la obra. 5. REPRESENTACIÓN GRÁFICA E INTERPRETACIÓN DE LOS VALORES MEDIDOS La representación gráfica de los datos es el primer paso en la interpretación de los resultados de la auscultación. Y es necesaria, pero no es suficiente, ya que hay que continuar el seguimiento de los datos, el establecimiento de umbrales o tolerancias de cada variable y de cada presa en particular, la detección de anomalías (superación de umbrales, cambios de tendencia en las series de datos, etc.) el análisis, la interpretación, y finalmente, la toma de decisiones. Un primer esquema de interpretación consiste en utilizar un método estadístico que compara los datos actuales con los datos históricos. Sin embargo, si existe un problema en la presa desde su construcción, no se va a detectar ya que el mismo comportamiento se reproduce cada vez que las condiciones externas son similares. Un segundo esquema de interpretación lo ofrece el método determinístico cuya base consiste en establecer una comparativa entre el comportamiento real de la presa y el comportamiento previsto en proyecto.