CITOESQUELETO MOVIMIENTO CELULAR
OBJETIVOS Conocer la función del citoesqueleto y su papel en el proceso de mitosis y movimiento celular. Distinguir  las diferentes estructuras que conforman el citoesqueleto. Comprender la estructura, función, constitución y ubicación de los Filamentos de actina, microtúbulos, Filamentos intermedios. Reconocer agrupaciones complejas de microtúbulos: centriolo, cilios, flagelos y comprender sus conceptos, estructura, composición, función.
CITOESQUELETO ES UN COMPLEJO  SISTEMA TRIDIMENSIONAL DE FIBRAS PROTEÍNICAS QUE  SE UNEN A LAS MEMBRANAS CELULARES Y ENTRE SÍ GRACIAS A PROTEÍNAS DE UNIÓN Y FIJACIÓN QUE FORMAN UN ARMAZÓN TRIDIMENSIONAL DINÁMICO INTERNO EN LA CÉLULA.
Consiste de tres tipos de fibras citosólicas de polímeros ordenados a partir de monómeros unidos por enlaces no covalentes. Dependiendo del tamaño de sus filamentos:  CITOESQUELETO  formados por seis proteínas principales que varían según el tipo de célula que se trate
mantenimiento de la arquitectura celular  (forma de la célula). facilitación de la motilidad celular anclaje de células facilitación del transporte de material por el citosol  división del citosol en distintas áreas funcionalmente distintas FUNCIONES: Este entramado está en continuo ensamblaje y desemsamblaje, pero los períodos de estabilidad contribuyen a determinados papeles funcionales:
Los microfilamentos actúan directamente en los movimientos celulares y se encuentran en la mayoría de células. Están compuestos por actina y otras proteínas asociadas. La  Actina  es la proteína intracelular mas abundante en eucariotes. Puede llegar a representar hasta el 10% del peso total de proteína. Pesa alrededor de 43 kD y está conservada evolutivamente.  MICROFILAMENTOS: CITOESQUELETO DE ACTINA
Existe como un monómero  globular llamado G-actina  y como  polímero filamentoso, F-actina . Cada molécula de actina  tiene un ión de Mg +2  que forma complejo bien con ATP o con ADP, existiendo por lo tanto cuatro formas diferentes de actina.  El plegamiento de la proteína permite la formación de  dos lóbulos  con  una hendidura  en la mitad que permite la  unión del ATP  y el  Mg +2 , y un  cambio de conformación .
La actina en presencia de ATP, Mg +2 , K + , tiende a formar microfilamentos, una vez formado el microfilamento (nucleación), éste crece diez veces más rápido en uno de sus extremos que en el otro, por eso un extremo es + y el otro extremo es -.  Esto es debido a cambios conformacionales de cada subunidad cuando se incorpora al polímero. Los monómeros se unen también a ATP. POLIMERIZACIÓN
PROTEÍNAS QUE REGULAN LA FORMACIÓN DE LOS MICROFILAMENTOS PROTEÍNAS QUE FAVORECEN LA POLIMERIZACIÓN DE LA ACTINA Y LA ELONGACIÓN DE LOS MICROFILAMENTOS: GTPasas de la familia Ras (Cdc42, Rac, Rho) Profilina Faloidinas PROTEÍNAS QUE IMPIDEN LA POLIMERIZACIÓN DE LA  ACTINA EN FILAMENTOS: Cofilina Latrunculina PROTEÍNAS QUE FAVORECEN LA DESPOLIMERIZACIÓN DE LOS FILAMENTOS DE ACTINA: Cofilina Citocalasina Gelsolina Fragmina o Severina PROTEÍNAS QUE ESTABILIZAN LOS FILAMENTOS DE ACTINA: Proteína de coronación Tropomodulina
ORGANIZACIÓN DE LOS MICROFILAMENTOS Redes: Haces no contráctiles: Los filamentos de actina pueden adoptar dos formas: redes y haces.  A su vez los haces de filamentos pueden ser de dos tipos: contráctiles y no contráctiles. Se presenta principalmente hacia la periferia de la célula, es un a lineamiento de fibras paralelas y son la base de la formación de  microvellosidades (filopodios).   Las redes entrecruzadas pueden ser de dos tipos, las cercanas a la membrana que le sirven de soporte y son bidimensionales, y las que ocupan todo el citosol que tienen un carácter tridimensional y que le dan características de gel.  Presentes  en  lamelipodios. Haces contráctiles
Microvellosidades
REDES DE MICROFILAMENTOS Para que los filamentos formen estas redes se requiere la proteína  FILAMINA , que se sitúa periódicamente a lo largo de los filamentos de actina  y perpendicularmente a estos. Filamina  (280 kd)
HACES DE MICROFILAMENTOS Para que los microfilamentos formen haces es necesaria la proteína  TROPOMIOSINA , que se adosa ininterrumpidamente a todo lo largo de los microfilamentos. Estos haces pueden unirse a: ACTININA ALFA  e interaccionar con moléculas de  MIOSINA  para dar lugar a haces contráctiles    Fibras de tensión o de estrés. ó FIMBRINA  y  MINIMIOSINA  para dar lugar a haces de filamentos no contráctiles    Microvellosidades (filopodios). Fimbrina  (68 kd)  -actinina  (102 kd)
Hay dos formas de haces de Actina de especial interés: FIBRAS DE TENSIÓN: relacionados con la capacidad de extenderse sobre una superficie. ANILLO CONTRÁCTIL: el cual se forma al final del ciclo de división celular para separar las células hijas.
PROTEÍNAS DE UNIÓN A LA ACTINA Diversas proteínas de unión a la actina producen ciertos cambios en las formas moleculares de ésta y pueden clasificarse en cuatro grupos según sus funciones: PROTEÍNAS DE CORTE o  FRAGMENTADORAS PROTEÍNAS DE UNIÓN PROTEINAS REGULADORAS (MIOSINAS ó MECANOENZIMAS) PROTEÍNAS DE ANCLAJE
1) PROTEÍNAS DE CORTE Asociados a otras proteínas los filamentos de actina forman una capa (la corteza celular) por debajo de la membrana celular.  Este entramado es resistente a fuerzas deformantes repentinas, pero permite cambios en la forma celular, acción facilitada por proteínas que cortan las fibras de actina. La  gelsolina, severina  y la  colfilina  rompen filamentos de actina en presencia de iones de calcio.  Esta propiedad permite a la célula romper la corteza de la membrana cuando lo precisa  para facilitar procesos como la fagocitosis.
2) PROTEÍNAS DE UNIÓN Se unen a la actina y se enrollan con ésta.  La actina puede unirse en series apretadas de hebras paralelas mediante “proteínas de atado”     fimbrina.   Por el contrario, puede disponerse en un gel fluido mediante las “proteínas formadores de geles”     filamina , que establece enlaces cruzados entre las hebras.
Esta es la base de la contracción de las células musculares pero también es importante en células no musculares, en las que la unión transitoria de la actina y la miosina produce un  anillo contráctil  que separa las células en la división celular.  Otras proteínas accesorias como la troponina afectan las interacciones de actina-miosina. 3) MIOSINAS (reguladoras)   Son miembros de una familia de proteínas que mueven grupos de filamentos de actina orientados en sentidos opuestos, alineados entre sí.  En todas las células los filamentos de actina interactúan con la miosina para generar fuerzas motrices.
La miosina es una ATPasa activada por la actina  y está compuesta por: 2 cadenas pesadas que se disponen formando una cola larga  4 ligeras que se disponen formando una cabeza globular, estas cabezas de miosina pueden unirse a la actina e hidrolizar el ATP a ADP.
4) PROTEÍNAS DE ANCLAJE (estructural).  Median la unión de filamentos de actina a la membrana plasmática.  Este grupo incluye  actinina ,  vinculina, talina, fodrina , y  distrofina . Las redes de filamento de actina son capaces de dar  soporte mecánico a la membrana celular  gracias a su unión a la misma por medio de proteínas de anclaje a la membrana.
Además la actina puede unirse a las proteínas transmembrana en zonas especializadas de la membrana plasmática, denominadas uniones adherentes o contactos focales, que están unidas externamente a otras células o estructuras celulares, por tanto, la red de filamentos de actina de una célula puede unirse a otras células o estructuras. Los filamentos de actina pueden formar haces rígidos denominados microvellosidades y que sirven para estabilizar las protusiones de la membrana celular.
 
MOVIMIENTO DE FIBROBLASTOS CICLOSIS DE CÉLULAS VEGETALES FUSIÓN DE ÓRGANOS MEMBRANOSOS DESPLAZAMIENTO DE RECEPTORES DE MEMBRANA
Los microtúbulos son polímeros de la proteína tubulina, un heterodímero de  alfa y beta tubulina  de unos 55 kD.  Las proteínas globulares pueden también agruparse en diminutos  túbulos huecos  que actúan como entramado estructural de las células.  MICROTÚBULOS:  sostienen las organelas internas y guían el movimiento en el transporte intracelular.
Los microtúbulos constituyen también la estructura interna de los  cilios y   flagelos,  son responsables de su movimiento y del movimiento de vesículas intracelularmente.  Esto es el resultado de la polimerización y despolimerización de microtúbulos y de la acción de proteínas motoras.
Los microtúbulos están presentes en todas las células excepto los eritocitos maduros.  Se forman a partir de dos subunidades proteicas, la  ALFA y la BETA  TUBULINA , que se polimerizan siguiendo el esquema de cabeza-cola para formar  PROTOFILAMENTOS .  Estos se organizan en grupos  de 13 y forman  tubos  huecos de 25 nm de diámetro.
Los microtúbulos están constantemente polimerizándose y despolimerizándose en la célula; Las  proteínas microtubulares asociadas (PAMs) estabilizan los microtúbulos  y a estos con   los organelos y membrana, convirtiendo la red de microtúbulos inestable en un armazón relativamente permanente. Las MAPs se clasifican en dos grupos, según su peso molecular: MAP de alto peso molecular (200 – 1000 kDa).  Se aprecian como proyecciones de unos 10 nm de longitud, perpendiculares a la pared del microtúbulo. MAP de bajo peso molecular (55 – 62 kDa) o proteína Tau.  No forman proyecciones pero configuran una capa rugosa que recubre el microtúbulo. PROTEÍNAS ASOCIADAS A MICROTÚBULOS
PROTEINAS MOTORAS DE MICROTÚBULOS: ESTRUCTURA DE DINEINAS Y QUINESINAS QUINESINA . Es importante en todas las células para mantener el retículo endoplasmático alejado del centro celular e interviene en el movimiento de los cromosomas en la mitosis. DINEINA CITOPLASMÁTICA .  Es importante en todas las células para el flujo de vesículas y para la localización del complejo de golgi en el centro celular, contrarrestando su tendencia  a emigrar. Interviene en el movimiento de los cromosomas en la mitosis.
Otras proteínas relacionadas con los microtubulos son: * Dineína ciliar / flagelar * Dinamina La distribución y la actividad de los microfilamentos y microtúbulos pueden variar    cambian la manera en la que la célula interactúa con sus vecinos, así como la apariencia celular.  Cambios en el citoesqueleto también pueden alterar la adhesión celular y su movimiento.
AGENTES QUE REGULAN LA FORMACIÓN DE MICROTÚBULOS AGENTES QUE FAVORECEN LA FORMACIÓN DE MICROTÚBULOS: Taxol Policationes Insulina Factor de crecimiento nervioso AGENTES QUE IMPIDEN LA POLIMERIZACIÓN DE MICROTÚBULOS: Colchiccina Alcaloides Griseofulvina Temperaturas extremas AGENTES QUE FAVORECEN LA DESPOLIMERIZACIÓN DE LOS MICROTÚBULOS: Catanina Catastrofina
FUNCIÓN DE LOS MICROTÚBULOS Se asocian con las membranas de las vesículas y organelas y facilitan su movimiento por la célula. Este proceso es particularmente importante en  el transporte de organelas a lo largo de las prolongaciones celulares de las neuronas. Los microtúbulos también forman una red  para los compartimientos celulares rodeados de membrana (por ej. Mantienen la organización tubular del RE).
Los microtúbulos  no se distribuyen al azar, sino organizados según su función, que está en relación con la forma, transporte y división de la célula: FORMA CELULAR BANDA MARGINAL DE ERITROCITOS Y PLAQUETAS . Su función es mantener la forma elíptica y biconvexa de la célula. MANGUITO O VAINA CAUDAL DE ESPERMÁTIDAS . Importante en la configuración de la cabeza del espermatozoide. AXOPODIOS . Son proyecciones citoplasmáticas rectas, presentes en un número elevado en algunos protozoos recubriendo todo el cuerpo celular. CÉLULAS LIBRES . Principalmente en fibroblastos y leucocitos. CÉLULAS EPITELIALES . Junto con los filamentos intermedios, los microtúbulos contribuyen al mantenimiento de la forma celular.
2. TRANSPORTE CELULAR TRANSPORTE AXÓNICO . En las neuronas los microtúbulos forman haces que recorren las prolongaciones celulares (dendritas y axón).  MELANÓFOROS DE PECES ANFIBIOS O REPTILES.   Poseen numerosas prolongaciones citoplasmáticas por las que emigran los gránulos de melanina.  EXOCITOSIS, ENDOCITOSIS Y TRÁFICO DE VESÍCULAS.   Las vesículas de secreción viajan desde el ap. De Golgi hasta la membrana plasmática, con la que se fusionan, produciéndose la exocitosis. Los microtúbulos son responsables del transporte pero no intervienen en la fusión de las vesículas con la membrana ni con otras vesículas. FORMACIÓN DE LA PARED CELULAR.   En células vegetales existen microtúbulos periféricos que se disponen  paralelos a las microfibrillas de celulosa de la pared celular.
3. TRANSDUCCIÓN DE ESTÍMULOS EN LAS CÉLULAS NEUROSENSORIALES Muchas células sensoriales epiteliales presentan pelos sensoriales, que son estereocilios con abundantes microfilamentos o cilios inmóviles. 4. DESPLAZAMIENTO DE LOS RECEPTORES DE MEMBRANA. Muchos receptores se encuentran conectados por microfilamentos a haces de microtúbulos que se encuentran bajo la membrana plasmática e intervienen en el desplazamiento de receptores  por la membrana. 5. MOVIMIENTO DE LOS CROMOSOMAS. Los cromosomas se organizan durante la división celular a lo largo del huso microtubular de la célula.
CENTROS ORGANIZADORES DE MICROTÚBULOS El crecimiento de los microtúbulos en la célula en condiciones fisiológicas se ve favorecido por las  MAPs , el  AMPc  (que participa en la fosforilación de las MAP), concentración adecuada de  Ca +2 , pero sobre todo de los  Centros Organizadores de Microtúbulos.
Estos  Centros  actúan como lugares de iniciación de la tubulogénesis, los mejor conocidos son: Centríolos  Cuerpos basales de los cilios Cinetocoros de los cromosomas Poros de la envoltura nuclear
EL CENTRIOLO:  actúa como una región que organiza la distribución de los microtúbulos. Los microtúbulos se originan en el centro organizador de los microtúbulos.  Esta región especial de la célula conocida como el  CENTROSOMA , es una organela que contiene un par de centríolos. Cada centrosoma con su pareja de centríolos actúa como el centro de nucleación para la polimerización de los microtúbulos; estos se irradian desde el centrosoma siguiendo un patrón estrellado que se denominada  ÁSTER .
La estructura consta de una zona interior donde aparece el  DIPLOSOMA , formado por  dos centríolos  dispuestos perpendicularmente entre sí. Cada centríolo consta de  9 grupos de 3 microtúbulos que forman un cilindro . Este cilindro se mantiene gracias a unas  proteínas (nexina) que unen los tripletes .  Estructura 9 3  + 0
Existe además, un material denso que rodea los tripletes y que proporciona un armazón o matriz al centríolo    MATERIAL PERICENTRIOLAR. Este material contiene las proteínas: CENTRINA: para la duplicación del centríolo. PERICENTRINA:  para la formación de la astrosfera. Esta matriz no se distingue del Hialoplasma.
Organiza la red citoplasmática microtubular tanto en las células normales como en las que están en división. Organiza el desarrollo de microtúbulos especializados hacia cilios móviles. Actúa como centro para la reorganización celular en la respuesta de los agreosomas. Forma el huso acromático, que facilita la separación de las cromátidas en la mitosis; y la estructura del citoesqueleto, cuyos filamentos se organizan alrededor de los microtúbulos.  El centríolo desempeña varios papeles en la célula:
Algunas células tienen proyecciones del citoesqueleto que sobresalen de la membrana plasmática.  Si las proyecciones son pocas y muy largas, reciben el nombre de  FLAGELOS . Ejemplo: espermatozoide.  Si las proyecciones son muchas y cortas, se denominan  CILIOS . Ej. las células del tracto respiratorio.  Ambos contienen 9 pares de microtúbulos que forman un anillo alrededor de dos microtúbulos centrales. MOTILIDAD
Un flagelo consta de tres partes: filamento, gancho y cuerpo basal.  El flagelo es un largo  FILAMENTO  con la apariencia de un cabello, que sale de la membrana de la célula. El filamento externo se compone de un solo tipo de proteína, llamado  flagelina    contacta con el líquido durante la natación.  Al final del filamento de flagelina cerca de la superficie de la célula hay una protuberancia en el grosor del flagelo. El filamento se une a la transmisión del rotor.  El material de la unión se compone de una sustancia llamada  «PROTEÍNA DE CODO» ó  GANCHO     actúa como una articulación o bisagra que permite que el flagelo se oriente en diferentes direcciones. El filamento de un flagelo bacteriano, a diferencia del caso del cilio,  no contiene proteína motora; si se desprende, el filamento se limita a flotar rígido en el agua.  LOS FLAGELOS  Estructura 9 2  + 2
El   CUERPO BASAL  que se encuentra dentro de la célula está compuesto por un cilindro central y varios anillos.  Las bacterias  Gramnegativas  tienen 2 pares de anillos, los exteriores unidos a la pared celular y los interiores a la membrana citoplásmica.  En las bacterias  Grampositivas  sólo existe un par de anillos, uno está en la membrana citoplasmática y el otro en la pared celular.  Los flagelos funcionan rotando como un sacacorcho lo que permite a la bacteria moverse en los líquidos. Los anillos del cuerpo basal, a través de reacciones químicas que consumen energía, rotan el flagelo.
No todas las bacterias tienen flagelos (son raros en los cocos) pero en aquellas que los poseen (muchos bacilos y espirilos) se utilizan como criterio de clasificación la posición y el número de flagelos.
Un eje o  AXONEMA  (complejo filamentoso axial),  rodeado por la membrana plasmática     Estructura 9 2  + 2.   Los dobletes periféricos están constituidos por  microtúbulos A  completos y  microtúbulos B  incompletos; los primeros presentan unos brazos proteicos de dineína, que se prolongan hacia el par adyacente. Cada doblete se une al adyacente mediante una proteína, nexina;  ZONA DE TRANSICIÓN ,  en ella desaparece el doblete central y en su lugar aparece la placa basal;  CORPÚSCULO BASAL ,  situado justo por debajo de la membrana plasmática, presenta una estructura similar a la de los centriolos. Los tripletes adyacentes se unen mediante puentes para asegurar la estructura. LOS CILIOS
Estructura 9 2  + 2 AXONEMA
Los cilios son orgánulos sobre las superficies de muchas células animales y vegetales inferiores que sirven para mover fluido sobre la superficie de la célula o para «remar» células simples por un fluido.  En los seres humanos, las células epiteliales que recubren el tracto respiratorio tienen c/u de ellas 200 cilios que pulsan en sincronía para impulsar la mucosidad hacia la garganta para su eliminación.
La movilidad del axonema se va a producir por el deslizamiento de unos dobletes periféricos con respecto a otros, siendo la DINEÍNA  la responsable de este proceso. Las proteínas que se asocian a los microtúbulos del axonema, se disponen en forma regular a lo largo de los microtúbulos, sus principales funciones son:  mantener unidos a los microtúbulos que forman el axonema;  generar la fuerza que permite el movimiento de inclinación del cilio;  regular la interacción de los componentes del axonema para producir un cambio coordinado en la forma del cilio.
Son formaciones piliformes, no helicoidales, que no tienen nada que ver con el movimiento .  Suelen ser más cortos, más delgados y más numerosos que los flagelos.  Están formados por subunidades de una proteína llamada  PILINA . Diferentes tipos de pili están asociados a diferentes funciones: Adherencia a superficies Conjugación: paso de plásmidos a través del pili de una célula a otra. LAS FIMBRIAS O PILIS
Proteínas fuertes, estables y poco solubles. Diámetro aproximado 10 nm. Tienen como funciones mantener la fuerza de tensión celular (principal) y como  soporte mecánico. La mayoría de células adultas posee un solo tipo de filamentos intermedios citoplasmáticos. El patrón de distribución celular de los filamentos intermedios puede ayudar al diagnóstico oncológico. Las.  Proteínas Asociadas a los Filamentos Intermedios  (IFAPs) forman una red con los filamentos intermedios, organelos y la membrana plasmática FILAMENTOS INTERMEDIOS Se extienden desde la zona nuclear hasta la membrana plasmática.  En células epiteliales, se unen a la membrana en desmosomas y hemidesmosomas.  Juegan también papeles especializados en células nerviosas y musculares.
ESTRUCTURA DE LOS FILAMENTOS INTERMEDIOS Compuestas por proteínas fibrosas que se combinan en dímeros helicoidales, que se asocian para formar tetrámeros alargados (protofibrillas).  MONOMERO DIMERO TETRAMERO (protofibrillas) 1 porción helicoidal y 2 extremos globulares 2 monómeros entrelazados 48 nm 2 dímeros asociados en forma antiparalela 2 tetrámeros asociados  8 tetrámeros entrelazados SUBFILAMENTOS FILAMENTO INTERMEDIO
Tipo I:  Queratinas ácidas  Epitelio Tipo II:  Queratinas básicas  Epitelio Tipo III:  Vimentina   Mesenquima Desmina   Músculo Periferina   Neuronas Tipo IV:  Neurofilamento (L,M,H)  Neuronas Internexina  alfa S. Nervioso en formación Tipo V:  Lamininas A,B 1 , B 2 ,C   Núcleo todas las células Tipo VI: Prot. Ácida fibrilar glial  Astrocitos gliales CLASIFICACIÓN DE LAS PROTEÍNAS DE LOS FILAMENTOS INTERMEDIOS
CITOQUERATINAS:  se expresan característicamente en el epitelio. Existen 10 citoqueratinas específicas de los tejidos duros (p. ej., uñas y pelo).  NEUROFILAMENTOS:  se encuentran en los axones de las neuronas. Pueden ser los responsables de la resistencia y rigidez del axón. PROTEÍNA FIBRILAR ÁCIDA DE LA GLÍA:  se encuentra en las células de la glía que rodean las neuronas. VIMENTINA:  se expresa en las células mesenquimatosas, como los fibroblastos y en las células endoteliales.  DESMINA:  se encuentra predominantemente en las células musculares.
GRACIAS !

8 citoesqueleto

  • 1.
  • 2.
    OBJETIVOS Conocer lafunción del citoesqueleto y su papel en el proceso de mitosis y movimiento celular. Distinguir las diferentes estructuras que conforman el citoesqueleto. Comprender la estructura, función, constitución y ubicación de los Filamentos de actina, microtúbulos, Filamentos intermedios. Reconocer agrupaciones complejas de microtúbulos: centriolo, cilios, flagelos y comprender sus conceptos, estructura, composición, función.
  • 3.
    CITOESQUELETO ES UNCOMPLEJO SISTEMA TRIDIMENSIONAL DE FIBRAS PROTEÍNICAS QUE SE UNEN A LAS MEMBRANAS CELULARES Y ENTRE SÍ GRACIAS A PROTEÍNAS DE UNIÓN Y FIJACIÓN QUE FORMAN UN ARMAZÓN TRIDIMENSIONAL DINÁMICO INTERNO EN LA CÉLULA.
  • 4.
    Consiste de trestipos de fibras citosólicas de polímeros ordenados a partir de monómeros unidos por enlaces no covalentes. Dependiendo del tamaño de sus filamentos: CITOESQUELETO formados por seis proteínas principales que varían según el tipo de célula que se trate
  • 5.
    mantenimiento de laarquitectura celular (forma de la célula). facilitación de la motilidad celular anclaje de células facilitación del transporte de material por el citosol división del citosol en distintas áreas funcionalmente distintas FUNCIONES: Este entramado está en continuo ensamblaje y desemsamblaje, pero los períodos de estabilidad contribuyen a determinados papeles funcionales:
  • 6.
    Los microfilamentos actúandirectamente en los movimientos celulares y se encuentran en la mayoría de células. Están compuestos por actina y otras proteínas asociadas. La Actina es la proteína intracelular mas abundante en eucariotes. Puede llegar a representar hasta el 10% del peso total de proteína. Pesa alrededor de 43 kD y está conservada evolutivamente. MICROFILAMENTOS: CITOESQUELETO DE ACTINA
  • 7.
    Existe como unmonómero globular llamado G-actina y como polímero filamentoso, F-actina . Cada molécula de actina tiene un ión de Mg +2 que forma complejo bien con ATP o con ADP, existiendo por lo tanto cuatro formas diferentes de actina. El plegamiento de la proteína permite la formación de dos lóbulos con una hendidura en la mitad que permite la unión del ATP y el Mg +2 , y un cambio de conformación .
  • 8.
    La actina enpresencia de ATP, Mg +2 , K + , tiende a formar microfilamentos, una vez formado el microfilamento (nucleación), éste crece diez veces más rápido en uno de sus extremos que en el otro, por eso un extremo es + y el otro extremo es -. Esto es debido a cambios conformacionales de cada subunidad cuando se incorpora al polímero. Los monómeros se unen también a ATP. POLIMERIZACIÓN
  • 9.
    PROTEÍNAS QUE REGULANLA FORMACIÓN DE LOS MICROFILAMENTOS PROTEÍNAS QUE FAVORECEN LA POLIMERIZACIÓN DE LA ACTINA Y LA ELONGACIÓN DE LOS MICROFILAMENTOS: GTPasas de la familia Ras (Cdc42, Rac, Rho) Profilina Faloidinas PROTEÍNAS QUE IMPIDEN LA POLIMERIZACIÓN DE LA ACTINA EN FILAMENTOS: Cofilina Latrunculina PROTEÍNAS QUE FAVORECEN LA DESPOLIMERIZACIÓN DE LOS FILAMENTOS DE ACTINA: Cofilina Citocalasina Gelsolina Fragmina o Severina PROTEÍNAS QUE ESTABILIZAN LOS FILAMENTOS DE ACTINA: Proteína de coronación Tropomodulina
  • 10.
    ORGANIZACIÓN DE LOSMICROFILAMENTOS Redes: Haces no contráctiles: Los filamentos de actina pueden adoptar dos formas: redes y haces. A su vez los haces de filamentos pueden ser de dos tipos: contráctiles y no contráctiles. Se presenta principalmente hacia la periferia de la célula, es un a lineamiento de fibras paralelas y son la base de la formación de microvellosidades (filopodios). Las redes entrecruzadas pueden ser de dos tipos, las cercanas a la membrana que le sirven de soporte y son bidimensionales, y las que ocupan todo el citosol que tienen un carácter tridimensional y que le dan características de gel. Presentes en lamelipodios. Haces contráctiles
  • 11.
  • 12.
    REDES DE MICROFILAMENTOSPara que los filamentos formen estas redes se requiere la proteína FILAMINA , que se sitúa periódicamente a lo largo de los filamentos de actina y perpendicularmente a estos. Filamina (280 kd)
  • 13.
    HACES DE MICROFILAMENTOSPara que los microfilamentos formen haces es necesaria la proteína TROPOMIOSINA , que se adosa ininterrumpidamente a todo lo largo de los microfilamentos. Estos haces pueden unirse a: ACTININA ALFA e interaccionar con moléculas de MIOSINA para dar lugar a haces contráctiles  Fibras de tensión o de estrés. ó FIMBRINA y MINIMIOSINA para dar lugar a haces de filamentos no contráctiles  Microvellosidades (filopodios). Fimbrina (68 kd)  -actinina (102 kd)
  • 14.
    Hay dos formasde haces de Actina de especial interés: FIBRAS DE TENSIÓN: relacionados con la capacidad de extenderse sobre una superficie. ANILLO CONTRÁCTIL: el cual se forma al final del ciclo de división celular para separar las células hijas.
  • 15.
    PROTEÍNAS DE UNIÓNA LA ACTINA Diversas proteínas de unión a la actina producen ciertos cambios en las formas moleculares de ésta y pueden clasificarse en cuatro grupos según sus funciones: PROTEÍNAS DE CORTE o FRAGMENTADORAS PROTEÍNAS DE UNIÓN PROTEINAS REGULADORAS (MIOSINAS ó MECANOENZIMAS) PROTEÍNAS DE ANCLAJE
  • 16.
    1) PROTEÍNAS DECORTE Asociados a otras proteínas los filamentos de actina forman una capa (la corteza celular) por debajo de la membrana celular. Este entramado es resistente a fuerzas deformantes repentinas, pero permite cambios en la forma celular, acción facilitada por proteínas que cortan las fibras de actina. La gelsolina, severina y la colfilina rompen filamentos de actina en presencia de iones de calcio. Esta propiedad permite a la célula romper la corteza de la membrana cuando lo precisa para facilitar procesos como la fagocitosis.
  • 17.
    2) PROTEÍNAS DEUNIÓN Se unen a la actina y se enrollan con ésta. La actina puede unirse en series apretadas de hebras paralelas mediante “proteínas de atado”  fimbrina. Por el contrario, puede disponerse en un gel fluido mediante las “proteínas formadores de geles”  filamina , que establece enlaces cruzados entre las hebras.
  • 18.
    Esta es labase de la contracción de las células musculares pero también es importante en células no musculares, en las que la unión transitoria de la actina y la miosina produce un anillo contráctil que separa las células en la división celular. Otras proteínas accesorias como la troponina afectan las interacciones de actina-miosina. 3) MIOSINAS (reguladoras) Son miembros de una familia de proteínas que mueven grupos de filamentos de actina orientados en sentidos opuestos, alineados entre sí. En todas las células los filamentos de actina interactúan con la miosina para generar fuerzas motrices.
  • 19.
    La miosina esuna ATPasa activada por la actina y está compuesta por: 2 cadenas pesadas que se disponen formando una cola larga 4 ligeras que se disponen formando una cabeza globular, estas cabezas de miosina pueden unirse a la actina e hidrolizar el ATP a ADP.
  • 20.
    4) PROTEÍNAS DEANCLAJE (estructural). Median la unión de filamentos de actina a la membrana plasmática. Este grupo incluye actinina , vinculina, talina, fodrina , y distrofina . Las redes de filamento de actina son capaces de dar soporte mecánico a la membrana celular gracias a su unión a la misma por medio de proteínas de anclaje a la membrana.
  • 21.
    Además la actinapuede unirse a las proteínas transmembrana en zonas especializadas de la membrana plasmática, denominadas uniones adherentes o contactos focales, que están unidas externamente a otras células o estructuras celulares, por tanto, la red de filamentos de actina de una célula puede unirse a otras células o estructuras. Los filamentos de actina pueden formar haces rígidos denominados microvellosidades y que sirven para estabilizar las protusiones de la membrana celular.
  • 22.
  • 23.
    MOVIMIENTO DE FIBROBLASTOSCICLOSIS DE CÉLULAS VEGETALES FUSIÓN DE ÓRGANOS MEMBRANOSOS DESPLAZAMIENTO DE RECEPTORES DE MEMBRANA
  • 24.
    Los microtúbulos sonpolímeros de la proteína tubulina, un heterodímero de alfa y beta tubulina de unos 55 kD. Las proteínas globulares pueden también agruparse en diminutos túbulos huecos que actúan como entramado estructural de las células. MICROTÚBULOS: sostienen las organelas internas y guían el movimiento en el transporte intracelular.
  • 25.
    Los microtúbulos constituyentambién la estructura interna de los cilios y flagelos, son responsables de su movimiento y del movimiento de vesículas intracelularmente. Esto es el resultado de la polimerización y despolimerización de microtúbulos y de la acción de proteínas motoras.
  • 26.
    Los microtúbulos estánpresentes en todas las células excepto los eritocitos maduros. Se forman a partir de dos subunidades proteicas, la ALFA y la BETA TUBULINA , que se polimerizan siguiendo el esquema de cabeza-cola para formar PROTOFILAMENTOS . Estos se organizan en grupos de 13 y forman tubos huecos de 25 nm de diámetro.
  • 27.
    Los microtúbulos estánconstantemente polimerizándose y despolimerizándose en la célula; Las proteínas microtubulares asociadas (PAMs) estabilizan los microtúbulos y a estos con los organelos y membrana, convirtiendo la red de microtúbulos inestable en un armazón relativamente permanente. Las MAPs se clasifican en dos grupos, según su peso molecular: MAP de alto peso molecular (200 – 1000 kDa). Se aprecian como proyecciones de unos 10 nm de longitud, perpendiculares a la pared del microtúbulo. MAP de bajo peso molecular (55 – 62 kDa) o proteína Tau. No forman proyecciones pero configuran una capa rugosa que recubre el microtúbulo. PROTEÍNAS ASOCIADAS A MICROTÚBULOS
  • 28.
    PROTEINAS MOTORAS DEMICROTÚBULOS: ESTRUCTURA DE DINEINAS Y QUINESINAS QUINESINA . Es importante en todas las células para mantener el retículo endoplasmático alejado del centro celular e interviene en el movimiento de los cromosomas en la mitosis. DINEINA CITOPLASMÁTICA . Es importante en todas las células para el flujo de vesículas y para la localización del complejo de golgi en el centro celular, contrarrestando su tendencia a emigrar. Interviene en el movimiento de los cromosomas en la mitosis.
  • 29.
    Otras proteínas relacionadascon los microtubulos son: * Dineína ciliar / flagelar * Dinamina La distribución y la actividad de los microfilamentos y microtúbulos pueden variar  cambian la manera en la que la célula interactúa con sus vecinos, así como la apariencia celular. Cambios en el citoesqueleto también pueden alterar la adhesión celular y su movimiento.
  • 30.
    AGENTES QUE REGULANLA FORMACIÓN DE MICROTÚBULOS AGENTES QUE FAVORECEN LA FORMACIÓN DE MICROTÚBULOS: Taxol Policationes Insulina Factor de crecimiento nervioso AGENTES QUE IMPIDEN LA POLIMERIZACIÓN DE MICROTÚBULOS: Colchiccina Alcaloides Griseofulvina Temperaturas extremas AGENTES QUE FAVORECEN LA DESPOLIMERIZACIÓN DE LOS MICROTÚBULOS: Catanina Catastrofina
  • 31.
    FUNCIÓN DE LOSMICROTÚBULOS Se asocian con las membranas de las vesículas y organelas y facilitan su movimiento por la célula. Este proceso es particularmente importante en el transporte de organelas a lo largo de las prolongaciones celulares de las neuronas. Los microtúbulos también forman una red para los compartimientos celulares rodeados de membrana (por ej. Mantienen la organización tubular del RE).
  • 32.
    Los microtúbulos no se distribuyen al azar, sino organizados según su función, que está en relación con la forma, transporte y división de la célula: FORMA CELULAR BANDA MARGINAL DE ERITROCITOS Y PLAQUETAS . Su función es mantener la forma elíptica y biconvexa de la célula. MANGUITO O VAINA CAUDAL DE ESPERMÁTIDAS . Importante en la configuración de la cabeza del espermatozoide. AXOPODIOS . Son proyecciones citoplasmáticas rectas, presentes en un número elevado en algunos protozoos recubriendo todo el cuerpo celular. CÉLULAS LIBRES . Principalmente en fibroblastos y leucocitos. CÉLULAS EPITELIALES . Junto con los filamentos intermedios, los microtúbulos contribuyen al mantenimiento de la forma celular.
  • 33.
    2. TRANSPORTE CELULARTRANSPORTE AXÓNICO . En las neuronas los microtúbulos forman haces que recorren las prolongaciones celulares (dendritas y axón). MELANÓFOROS DE PECES ANFIBIOS O REPTILES. Poseen numerosas prolongaciones citoplasmáticas por las que emigran los gránulos de melanina. EXOCITOSIS, ENDOCITOSIS Y TRÁFICO DE VESÍCULAS. Las vesículas de secreción viajan desde el ap. De Golgi hasta la membrana plasmática, con la que se fusionan, produciéndose la exocitosis. Los microtúbulos son responsables del transporte pero no intervienen en la fusión de las vesículas con la membrana ni con otras vesículas. FORMACIÓN DE LA PARED CELULAR. En células vegetales existen microtúbulos periféricos que se disponen paralelos a las microfibrillas de celulosa de la pared celular.
  • 34.
    3. TRANSDUCCIÓN DEESTÍMULOS EN LAS CÉLULAS NEUROSENSORIALES Muchas células sensoriales epiteliales presentan pelos sensoriales, que son estereocilios con abundantes microfilamentos o cilios inmóviles. 4. DESPLAZAMIENTO DE LOS RECEPTORES DE MEMBRANA. Muchos receptores se encuentran conectados por microfilamentos a haces de microtúbulos que se encuentran bajo la membrana plasmática e intervienen en el desplazamiento de receptores por la membrana. 5. MOVIMIENTO DE LOS CROMOSOMAS. Los cromosomas se organizan durante la división celular a lo largo del huso microtubular de la célula.
  • 35.
    CENTROS ORGANIZADORES DEMICROTÚBULOS El crecimiento de los microtúbulos en la célula en condiciones fisiológicas se ve favorecido por las MAPs , el AMPc (que participa en la fosforilación de las MAP), concentración adecuada de Ca +2 , pero sobre todo de los Centros Organizadores de Microtúbulos.
  • 36.
    Estos Centros actúan como lugares de iniciación de la tubulogénesis, los mejor conocidos son: Centríolos Cuerpos basales de los cilios Cinetocoros de los cromosomas Poros de la envoltura nuclear
  • 37.
    EL CENTRIOLO: actúa como una región que organiza la distribución de los microtúbulos. Los microtúbulos se originan en el centro organizador de los microtúbulos. Esta región especial de la célula conocida como el CENTROSOMA , es una organela que contiene un par de centríolos. Cada centrosoma con su pareja de centríolos actúa como el centro de nucleación para la polimerización de los microtúbulos; estos se irradian desde el centrosoma siguiendo un patrón estrellado que se denominada ÁSTER .
  • 38.
    La estructura constade una zona interior donde aparece el DIPLOSOMA , formado por dos centríolos dispuestos perpendicularmente entre sí. Cada centríolo consta de 9 grupos de 3 microtúbulos que forman un cilindro . Este cilindro se mantiene gracias a unas proteínas (nexina) que unen los tripletes . Estructura 9 3 + 0
  • 39.
    Existe además, unmaterial denso que rodea los tripletes y que proporciona un armazón o matriz al centríolo  MATERIAL PERICENTRIOLAR. Este material contiene las proteínas: CENTRINA: para la duplicación del centríolo. PERICENTRINA: para la formación de la astrosfera. Esta matriz no se distingue del Hialoplasma.
  • 40.
    Organiza la redcitoplasmática microtubular tanto en las células normales como en las que están en división. Organiza el desarrollo de microtúbulos especializados hacia cilios móviles. Actúa como centro para la reorganización celular en la respuesta de los agreosomas. Forma el huso acromático, que facilita la separación de las cromátidas en la mitosis; y la estructura del citoesqueleto, cuyos filamentos se organizan alrededor de los microtúbulos. El centríolo desempeña varios papeles en la célula:
  • 41.
    Algunas células tienenproyecciones del citoesqueleto que sobresalen de la membrana plasmática. Si las proyecciones son pocas y muy largas, reciben el nombre de FLAGELOS . Ejemplo: espermatozoide. Si las proyecciones son muchas y cortas, se denominan CILIOS . Ej. las células del tracto respiratorio. Ambos contienen 9 pares de microtúbulos que forman un anillo alrededor de dos microtúbulos centrales. MOTILIDAD
  • 42.
    Un flagelo constade tres partes: filamento, gancho y cuerpo basal. El flagelo es un largo FILAMENTO con la apariencia de un cabello, que sale de la membrana de la célula. El filamento externo se compone de un solo tipo de proteína, llamado flagelina  contacta con el líquido durante la natación. Al final del filamento de flagelina cerca de la superficie de la célula hay una protuberancia en el grosor del flagelo. El filamento se une a la transmisión del rotor. El material de la unión se compone de una sustancia llamada «PROTEÍNA DE CODO» ó GANCHO  actúa como una articulación o bisagra que permite que el flagelo se oriente en diferentes direcciones. El filamento de un flagelo bacteriano, a diferencia del caso del cilio, no contiene proteína motora; si se desprende, el filamento se limita a flotar rígido en el agua. LOS FLAGELOS Estructura 9 2 + 2
  • 43.
    El CUERPO BASAL que se encuentra dentro de la célula está compuesto por un cilindro central y varios anillos. Las bacterias Gramnegativas tienen 2 pares de anillos, los exteriores unidos a la pared celular y los interiores a la membrana citoplásmica. En las bacterias Grampositivas sólo existe un par de anillos, uno está en la membrana citoplasmática y el otro en la pared celular. Los flagelos funcionan rotando como un sacacorcho lo que permite a la bacteria moverse en los líquidos. Los anillos del cuerpo basal, a través de reacciones químicas que consumen energía, rotan el flagelo.
  • 44.
    No todas lasbacterias tienen flagelos (son raros en los cocos) pero en aquellas que los poseen (muchos bacilos y espirilos) se utilizan como criterio de clasificación la posición y el número de flagelos.
  • 45.
    Un eje o AXONEMA (complejo filamentoso axial), rodeado por la membrana plasmática  Estructura 9 2 + 2. Los dobletes periféricos están constituidos por microtúbulos A completos y microtúbulos B incompletos; los primeros presentan unos brazos proteicos de dineína, que se prolongan hacia el par adyacente. Cada doblete se une al adyacente mediante una proteína, nexina; ZONA DE TRANSICIÓN , en ella desaparece el doblete central y en su lugar aparece la placa basal; CORPÚSCULO BASAL , situado justo por debajo de la membrana plasmática, presenta una estructura similar a la de los centriolos. Los tripletes adyacentes se unen mediante puentes para asegurar la estructura. LOS CILIOS
  • 46.
    Estructura 9 2 + 2 AXONEMA
  • 47.
    Los cilios sonorgánulos sobre las superficies de muchas células animales y vegetales inferiores que sirven para mover fluido sobre la superficie de la célula o para «remar» células simples por un fluido. En los seres humanos, las células epiteliales que recubren el tracto respiratorio tienen c/u de ellas 200 cilios que pulsan en sincronía para impulsar la mucosidad hacia la garganta para su eliminación.
  • 48.
    La movilidad delaxonema se va a producir por el deslizamiento de unos dobletes periféricos con respecto a otros, siendo la DINEÍNA la responsable de este proceso. Las proteínas que se asocian a los microtúbulos del axonema, se disponen en forma regular a lo largo de los microtúbulos, sus principales funciones son: mantener unidos a los microtúbulos que forman el axonema; generar la fuerza que permite el movimiento de inclinación del cilio; regular la interacción de los componentes del axonema para producir un cambio coordinado en la forma del cilio.
  • 49.
    Son formaciones piliformes,no helicoidales, que no tienen nada que ver con el movimiento . Suelen ser más cortos, más delgados y más numerosos que los flagelos. Están formados por subunidades de una proteína llamada PILINA . Diferentes tipos de pili están asociados a diferentes funciones: Adherencia a superficies Conjugación: paso de plásmidos a través del pili de una célula a otra. LAS FIMBRIAS O PILIS
  • 50.
    Proteínas fuertes, establesy poco solubles. Diámetro aproximado 10 nm. Tienen como funciones mantener la fuerza de tensión celular (principal) y como soporte mecánico. La mayoría de células adultas posee un solo tipo de filamentos intermedios citoplasmáticos. El patrón de distribución celular de los filamentos intermedios puede ayudar al diagnóstico oncológico. Las. Proteínas Asociadas a los Filamentos Intermedios (IFAPs) forman una red con los filamentos intermedios, organelos y la membrana plasmática FILAMENTOS INTERMEDIOS Se extienden desde la zona nuclear hasta la membrana plasmática. En células epiteliales, se unen a la membrana en desmosomas y hemidesmosomas. Juegan también papeles especializados en células nerviosas y musculares.
  • 51.
    ESTRUCTURA DE LOSFILAMENTOS INTERMEDIOS Compuestas por proteínas fibrosas que se combinan en dímeros helicoidales, que se asocian para formar tetrámeros alargados (protofibrillas). MONOMERO DIMERO TETRAMERO (protofibrillas) 1 porción helicoidal y 2 extremos globulares 2 monómeros entrelazados 48 nm 2 dímeros asociados en forma antiparalela 2 tetrámeros asociados 8 tetrámeros entrelazados SUBFILAMENTOS FILAMENTO INTERMEDIO
  • 52.
    Tipo I: Queratinas ácidas Epitelio Tipo II: Queratinas básicas Epitelio Tipo III: Vimentina Mesenquima Desmina Músculo Periferina Neuronas Tipo IV: Neurofilamento (L,M,H) Neuronas Internexina alfa S. Nervioso en formación Tipo V: Lamininas A,B 1 , B 2 ,C Núcleo todas las células Tipo VI: Prot. Ácida fibrilar glial Astrocitos gliales CLASIFICACIÓN DE LAS PROTEÍNAS DE LOS FILAMENTOS INTERMEDIOS
  • 53.
    CITOQUERATINAS: seexpresan característicamente en el epitelio. Existen 10 citoqueratinas específicas de los tejidos duros (p. ej., uñas y pelo). NEUROFILAMENTOS: se encuentran en los axones de las neuronas. Pueden ser los responsables de la resistencia y rigidez del axón. PROTEÍNA FIBRILAR ÁCIDA DE LA GLÍA: se encuentra en las células de la glía que rodean las neuronas. VIMENTINA: se expresa en las células mesenquimatosas, como los fibroblastos y en las células endoteliales. DESMINA: se encuentra predominantemente en las células musculares.
  • 54.