SlideShare una empresa de Scribd logo
Aprovechamiento de bagazo de caña en la producción biotecnológica de Xilitol por Cándida parasitosis  En México, la caña de azúcar es uno de los principales cultivos agrícolas. Su industrialización produce el azúcar de mesa (sacarosa). El bagazo es un subproducto del proceso de extracción del azúcar. Este material puede ser utilizado para la obtención de xilitol, el cual es un edulcorante que puede competir con los endulzantes artificiales y los jarabes de maíz ricos en fructosa que desplazan del mercado a la sacarosa. Un proceso biotecnológico optimizado permite producir xilitol de origen natural y con menos costo que el obtenido por síntesis química. En esta investigación se realizaron diversos estudios con la finalidad de emplear el bagazo de caña como fuente de carbono para la levadura Candidaparapsilosis (NRRL Y-2315) en la producción de xilitol. Se determinaron las condiciones óptimas de detoxificación de los hidrolizados de bagazo de caña concentrados para la eliminación de la mayor cantidad de inhibidores del crecimiento microbiano sin afectar la concentración de azúcares. Se realizó un diseño multifactorial fraccionado con tendencia central para determinar el efecto de la concentración de carbón activado, pH inicial y duración del tratamiento a 45°C y 150 rpm, sobre el Porcentaje de Eliminación de Furfural (PEF). Este diseño fue aplicado en hidrolizados obtenidos con 2% de ácido fosfórico a 121°C durante 60 min y concentrados hasta 53.5 g de xilosa/L.
Como resultado se obtuvo que el modelo estadístico predice adecuadamente el PEF y que las condiciones óptimas para la detoxificación son pH 3.8, 58.4 min y carbón activado 1/30 obteniéndose un valor de PEF de 99.95%, conservándose concentraciones de 48.3, 3.6, 6.9 y 3.9 g/L de xilosa, glucosa, arabinosa y ácido acético, respectivamente, lo cual significa una baja concentración de furfural (0.0033 g/L) con un elevado porcentaje de recuperación de azúcares (90.38%). Esto hace que la aplicación de estos licores como medio de fermentación sea adecuada. El estudio de las condiciones de pH, concentración inicial de xilosa y temperatura en las cuales se favorece la producción de xilitol y biomasa, empleando medios de xilosa comercial inoculados con Candidaparapsilosis, permitió establecer que la mayor producción de xilitol se obtuvo con 60 g/L, pH 6 y 26°C, y la mayor formación de biomasa con 15 g/L, pH 5 y 26°C. Los factores que tuvieron un efecto estadísticamente significativo sobre el rendimiento en xilitol fueron concentración inicial de xilosa, temperatura, interacción entre xilosa inicial-pH y pH-temperatura.
 ANTECEDENTES           La caña de azúcar (Saccharumofficinarum) es uno de los principales productos agrícolas de México. 1 Este producto agrícola es industrializado en los ingenios azucareros, girando su economía alrededor de la producción de sacarosa cuya demanda decrece debido al surgimiento de tendencias nutricionales en las que lo cotizado son los alimentos bajos en calorías. Además de la aparición en el mercado de edulcorantes naturales de menor costo y ligeramente mayor poder edulcorante como los jarabes de maíz ricos en fructosa. 2,3            En la actualidad, la industria azucarera debe enfrentarse a la competencia con otros edulcorantes, a la falta de eficiencia energética y a la contaminación que produce. Desarrollar alternativas para utilizar al máximo cada uno de los productos y subproductos derivados de la caña de azúcar contribuirá a mejorar las condiciones económicas de ésta industria. Es decir, l a crisis en la que se encuentra la industria azucarera se puede resolver, entre otras medidas, si se diseña y lleva a cabo un aprovechamiento integral del cultivo de caña con el menor impacto ecológico, industrializándose los subproductos que se obtienen durante la producción de sacarosa tales como el bagazo de caña, las melazas o mieles, la cachaza de los filtros, las cenizas de los hornos y los gases de combustión. De esta manera, la industria azucarera se transformaría en una industria del cultivo de caña con capacidad de responder a las demandas comerciales. 4,5
Un edulcorante que puede competir con los endulzantes artificiales bajos en calorías y con los jarabes de maíz ricos en fructosa es el xilitol, ya que tiene un bajo valor calórico, un sabor fresco característico, no participa en la reacción de Maillard, puede ser consumido por los diabéticos sin causar daño a su salud, no produce caries y tiene un poder edulcorante similar al de la sacarosa, entre otras propiedades, que lo convierten en un edulcorante cotizado en el mercado. 4,6,7,8,9 El xilitol es un endulzante que se encuentra ampliamente distribuido en la naturaleza, pudiéndose obtener a partir de ciertas frutas, hortalizas y cereales pero en muy pequeñas cantidades por lo que su extracción de estas fuentes resulta poco rentable. También puede obtenerse por síntesis química y por fermentación. La síntesis química es un proceso caro que se refleja en el costo de este producto. La producción biotecnológica de xilitol es una alternativa con mucha viabilidad de ser un proceso más rentable si se optimizan todas las etapas de este proceso y se obtiene a partir de materia prima abundante y económica como lo son los materiales lignocelulósicos.6,7,8,9,10,11,12 Se ha demostrado que las levaduras son las mejores productoras de xilitol, especialmente aquellas del género Candida. Estas reducen la xilosa a xilitol bajo la acción de una enzima denominada xilosa reductasa, la cual es NADP-dependiente. La cantidad de xilitol y la productividad del mismo dependerán de las condiciones de cultivo y del tipo de cepa que se utilice. 6,9,13 Este edulcorante se puede producir a partir del bagazo de caña, el cual tiene diversas aplicaciones, pero de muy bajo valor y que, incluso, puede llegar a ser considerado un desecho agroindustrial.4,9,14 Si se efectúa un proceso biotecnológico optimizado se obtendría un producto de origen natural con ventajas sobre el obtenido por síntesis química, ya que los consumidores prefieren lo natural por considerarlo más sano aunque, realmente, la toxicidad de una sustancia no depende de su origen “natural” o “artificial” sino de su composición química y de las condiciones de su consumo. Otra ventaja es que se obtendría con un menor costo. 3, 15,16
La producción de xilitol, junto con la de la sacarosa a partir del cultivo de caña, serviría para abarcar el mercado de los que prefieren lo natural dando opción al consumidor de elegir lo tradicional o lo bajo en calorías. Para que el bagazo de caña pueda ser aprovechado como fuente de carbono en la producción de xilitol, empleando microorganismos, éste debe recibir un tratamiento llamado hidrólisis ácida con el cual se fracciona la hemicelulosa y se obtienen los licores ricos en xilosa. También se debe de aplicar un tratamiento de eliminación de agua para tener una mayor cantidad de xilosa y aumentar los rendimientos en xilitol; presenta como inconveniente el que también se concentran el furfural y el ácido acético, los cuales actúan como inhibidores del crecimiento microbiano. También ocasiona el incremento de la concentración del ácido empleado para llevar a cabo la hidrólisis, por lo que desciende mucho el pH del licor y disminuye la rentabilidad del proceso ya que en la etapa de neutralización, la cual es indispensable para que estos hidrolizados puedan emplearse como medios de cultivo, aumenta el gasto de álcali y de sal formada. 9,14,17,18,19,20,21,22 Se ha empleado el carbón activado para eliminar los inhibidores de crecimiento microbiano formados durante la hidrólisis ácida de materiales lignocelulósicos. Un ejemplo de su uso es en hidrolizados de olote de maíz, en los cuales el rendimiento en xilitol se vio mejorado cuando fue tratado con carbón activado. Se ha estudiado el efecto de la temperatura, pH y proporción de hidrolizado: carbón activado sobre el proceso de adsorción de ácido acético, ácido levulínico, hidroximetilfurfural y furfural, en licores obtenidos por hidrólisis ácida de madera de eucalipto, probando la efectividad del proceso sembrando en ellos Debaryomyceshansenii, levadura productora de xilitol. También se han comparado tratamientos con carbón activado con otros procesos, como por ejemplo, producción de xilitol por Candidaguilliermondii en hidrolizados de eucalipto tratados con carbón activado en combinación con pH, en comparación con el tratamiento en el que se utilizan resinas de intercambio iónico, de los cuales el segundo tuvo mejores resultados. 13,23,24
MATERIALES Hidrolizado de Bagazo de Caña (HBC) El bagazo se obtuvo de la molienda de caña de azúcar de diferentes variedades y fue proporcionado por el Ingenio “Mante”, localizado en Cd. Mante, Tamaulipas, México. Dicho material fue deshidratado, molido y tamizado, posteriormente se le aplicó un tratamiento de hidrólisis ácida con relación sólido-líquido de 1/10, 2% de ácido fosfórico, 121 °C y 60 min 21 La etapa de concentración se realizó hasta obtener un 25% del líquido inicial. Detoxificación del hidrolizado de bagazo de caña} Tres niveles de pH (1, 3 y 5), tiempo (20, 40 y 60min) y carga (1 g de carbón activado/ 50, 40 y 30 g de hidrolizado) fueron probados en HBC conteniendo 53 g de xilosa/L. El pH correspondiente fue ajustado con la adición de CaCO 3 al HBC, seguido por una filtración al vacío. Se colocaron 100 g de HBC en matraces de 250 ml de capacidad, se agitaron a 150 rpm a una temperatura de 45°C .  Neutralización de HBC con CaCO 3, NH 4 OH y ambos álcalis Tres condiciones de neutralización, aplicadas a HBC 50 g de xilosa/L con pH 1.23, fueron probadas: 200 g de CaCO 3 /L; NH 4 OH 5 M, hasta alcanzar un pH de 7; 100 g de CaCO 3 /L y solución NH 4 OH 5 M, hasta alcanzar un pH de 7.12. El volumen gastado de álcali y volumen final de HBC fueron medidos.  Reactivación y mantenimiento de la cepa Se empleó una cepa liofilizada de Candidaparapsilosis NRRL Y-2315 proporcionada por UnitedStatesDepartament of Agricultura Northern, Nacional ResearchLaboratory en Peoria, IL., USA. Este microorganismo fue inoculado en un medio con un contenido de 10 g de xilosa comercial/L, 5 g de peptona/L y 3 g de extracto de levadura/L y fue mantenido en agar, en tubo inclinado conteniendo un medio con los mismos componentes y concentraciones descritas previamente, más 20 g de agar/L.
Preparación del inóculoEl inóculo empleado fue preparado a partir del medio congelado antes mencionado, sembrado en 250 ml de medio con pH 5 y una composición de 60 g de xilosa comercial/L, 5 g de peptona/L, 6 g de extracto de levadura/L y 6 g de extracto de malta/L, incubado a 126 rpm y 26°C durante 144 h 26. Otro inóculo fue preparado en 250 ml de medio con pH 5 y un contenido de 15 g de xilosa comercial/L, 5g de peptona/L, 6 g de extracto de levadura/L, 6 g de extracto de malta/L, 5 g de KH 2 PO 4 /L, 2 g de NH 4 HSO 4 /L, incubado a 126 rpm y 26°C durante 144 h. La adición de KH 2 PO 4 y NH 4 HSO 4 se hizo en base a nutrientes empleados por Furlan y de Castro (2001). Preparación de medios de cultivo Se emplearon medios de cultivo con una composición de 5 g de peptona/L, 6 g de extracto de levadura, 6 g de extracto de malta/L, variando la concentración de xilosa a 15, 30, 45 y 60 g/L, pH 5 y 6, y temperaturas de 26 y 36°C . Cada tratamiento probado se realizó por duplicado en 100ml de medio colocado en matraz de 250ml de capacidad con agitación de 126 rpm y duración de 144 h. Otros medios fueron preparados a partir de soluciones al 0, 2, 4 y 6 % de H 3 PO 4, las cuales fueron neutralizadas con una solución de KOH 5M hasta un pH de 5.0. Fueron medidos el volumen gastado de álcali y el volumen final de la solución. Todos los tratamientos se realizaron por duplicado y tenían un mismo contenido de los siguientes nutrientes: 45 g de xilosa comercial/L, 5 g de peptona/L, 6 g de extracto de malta/L, 6 g de extracto de levadura/L. Las condiciones de incubación fueron 26°C , 126 rpm durante 144 horas.  Métodos analíticos La biomasa fue determinada por peso seco, tomando alícuotas de 3 ml, centrifugación a 4000 rpm durante 15 min y secado en una estufa a 105°C. La determinación de monosacáridos, ácidos orgánicos y productos (xilosa, glucosa, arabinosa, ácido acético, xilitol y etanol) fue realizada en un Cromatógrafo de Líquidos de Alta Eficacia (CLAE) marca Hewlett Packard, serie 1100, con una columna de intercambio iónico para separación de polisacáridos y ácidos orgánicos Transgenomic ICSepICE-ION-300 y detector de Índice de Refracción (IR). La determinación de furfural fue realizada por espectrofotometría UV-Visible a una longitud de onda de 280 nm.
Análisis estadístico Los programas empleados fueron Excel y Statgraphics versión 4.0. En el estudio de la eliminación de inhibidores del crecimiento microbiano en HBC ricos en xilosa se realizó un análisis multifactorial fraccionado con tendencia centrada. En el estudio del efecto de la concentración inicial de xilosa comercial, pH y temperatura sobre el rendimiento en producto, rendimiento en biomasa y productividad en medios de xilosa comercial, se realizó un análisis de varianza multifactorial completo. En el estudio del efecto de la presencia de sales de fosfato sobre el rendimiento en producto, rendimiento en biomasa y productividad en medios de xilosa comercial, se realizó un análisis de varianza unifactorial. CONCLUSIONES Se logró optimizar las condiciones de detoxificación para el Hidrolizado de Bagazo de Caña concentrado (HBC) logrando una eliminación del furfural desde el 88 hasta el 99%, obteniéndose concentraciones inferiores de las conocidas como tóxicas para los microorganismos. En cuanto al cálculo de las pérdidas de HBC rico en xilosa durante la neutralización con diferentes álcalis, de las opciones estudiadas, las que podrían afectar más a la rentabilidad del proceso es emplear solamente CaCO3 ó NH4 OH siendo lo más recomendable aplicar una combinación de ambos. Por otra parte, puede utilizarse el HBC sin tratamiento de concentración cuando se desea producir biomasa y éste debe concentrarse en un rango de 30 a 60g de xilosa/L cuando se utilice para producir xilitol. Debe, asimismo, buscarse condiciones de neutralización en las que las sales formadas sean lo mínimo posible, ya que se observó un efecto negativo de las mismas.    REFERENCIAS 1. SAGARPA-SIAP (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación– Servicio de Información y Estadística Agroalimentaria y Pesquera). 31 de diciembre de 2004. Tamaulipas. Avance de siembras y cosechas (riego + temporal). 2. Félix, Fernando (2002). La paradoja de Kaldor y el comercio de azúcar entre los EE.UU. y México. Trabajo de investigación. Programa de doctorado en economía. Páginas 12-18. 3. Nova González, Armando y Peña Castellanos, Lázaro (2002). El mercado internacional del azúcar, edulcorantes, alcohol y melaza. Centro de Estudios de la Economía Cubana. Universidad de La Habana. Publicación electrónica revisada en el 2004.http://www.nodo50.org/cubasigloXXI/economia/nova4_310802.htm 4. James C., P. Chen (1999). Manual del azúcar de caña, Editorial LIMUSA, S.A. de C.V. 5. SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación). La auditoria ambiental en los ingenios azucareros. Un ejemplo de productividad en este sector industrial. Publicación electrónica revisada en el 2004. http://www.sagarpa.gob.mx/Forma/ documentos/auditoria.htm

Más contenido relacionado

La actualidad más candente

Elaboracion de miel de caña
Elaboracion de miel de cañaElaboracion de miel de caña
Elaboracion de miel de caña
Christian Ramos Nieves
 
LABORATORIO 6-ELABORACION DEL YOGURT
LABORATORIO 6-ELABORACION DEL YOGURTLABORATORIO 6-ELABORACION DEL YOGURT
LABORATORIO 6-ELABORACION DEL YOGURT
Botica Farma Premium
 
Determinacion de proteinas mediante el metodo de kjeldahl nutricion
Determinacion de proteinas mediante el metodo de kjeldahl  nutricionDeterminacion de proteinas mediante el metodo de kjeldahl  nutricion
Determinacion de proteinas mediante el metodo de kjeldahl nutricionJhonás A. Vega
 
Caña de azùcar ! la producción de alcohol carburante
Caña de azùcar ! la producción de alcohol carburanteCaña de azùcar ! la producción de alcohol carburante
Caña de azùcar ! la producción de alcohol carburante
Cristina Cicua
 
[Práctica 3] [2016.11.23] lab. análisis - determinación de cenizas
[Práctica 3] [2016.11.23] lab. análisis - determinación de cenizas[Práctica 3] [2016.11.23] lab. análisis - determinación de cenizas
[Práctica 3] [2016.11.23] lab. análisis - determinación de cenizas
Diego Guzmán
 
Productos derivados caña i unidad 1
Productos derivados caña  i unidad 1Productos derivados caña  i unidad 1
Productos derivados caña i unidad 1julio ulacio
 
Determinacion de acidez de la sandia
Determinacion de acidez de la sandiaDeterminacion de acidez de la sandia
Determinacion de acidez de la sandia
Reny Ramos Quispe
 
Aplicaciones biotecnologicas wiki 5
Aplicaciones biotecnologicas wiki 5Aplicaciones biotecnologicas wiki 5
Aplicaciones biotecnologicas wiki 5
Ana Tarapuez
 
Toxicos industria lactea
Toxicos industria lacteaToxicos industria lactea
Toxicos industria lactea
Cesar Torres
 
Proyecto Biocombustibles
Proyecto BiocombustiblesProyecto Biocombustibles
Proyecto Biocombustibles
sena
 
Determinacion de acidez de la cerveza
Determinacion de acidez de la cervezaDeterminacion de acidez de la cerveza
Determinacion de acidez de la cerveza
Yessenia Katherin Quispe Lázaro
 
DETERMINACION DE HUMEDAD EN ALIMENTOS Y MATERIA SECA
DETERMINACION DE HUMEDAD EN ALIMENTOS Y MATERIA SECA DETERMINACION DE HUMEDAD EN ALIMENTOS Y MATERIA SECA
DETERMINACION DE HUMEDAD EN ALIMENTOS Y MATERIA SECA
Fernando Huayta
 
Fermentación de plátano con levaduras autóctonas
Fermentación de plátano con levaduras autóctonasFermentación de plátano con levaduras autóctonas
Fermentación de plátano con levaduras autóctonas
Adrian Esteban Rodríguez Alvarez
 
Procesos de industrializacion de frutas y hortalizas.criiza
Procesos de industrializacion de frutas y hortalizas.criizaProcesos de industrializacion de frutas y hortalizas.criiza
Procesos de industrializacion de frutas y hortalizas.criiza
Criss Iza Rivera
 
Presentacion aditivos e insumos en el Procesamiento de Productos laceteos
Presentacion aditivos e insumos en el Procesamiento de Productos laceteosPresentacion aditivos e insumos en el Procesamiento de Productos laceteos
Presentacion aditivos e insumos en el Procesamiento de Productos laceteos
leon4816
 
Bebida isotonica-a-base-de-coco-3
Bebida isotonica-a-base-de-coco-3Bebida isotonica-a-base-de-coco-3
Bebida isotonica-a-base-de-coco-3
Sara Betancur
 

La actualidad más candente (19)

Elaboracion de miel de caña
Elaboracion de miel de cañaElaboracion de miel de caña
Elaboracion de miel de caña
 
LABORATORIO 6-ELABORACION DEL YOGURT
LABORATORIO 6-ELABORACION DEL YOGURTLABORATORIO 6-ELABORACION DEL YOGURT
LABORATORIO 6-ELABORACION DEL YOGURT
 
Determinacion de proteinas mediante el metodo de kjeldahl nutricion
Determinacion de proteinas mediante el metodo de kjeldahl  nutricionDeterminacion de proteinas mediante el metodo de kjeldahl  nutricion
Determinacion de proteinas mediante el metodo de kjeldahl nutricion
 
Caña de azùcar ! la producción de alcohol carburante
Caña de azùcar ! la producción de alcohol carburanteCaña de azùcar ! la producción de alcohol carburante
Caña de azùcar ! la producción de alcohol carburante
 
[Práctica 3] [2016.11.23] lab. análisis - determinación de cenizas
[Práctica 3] [2016.11.23] lab. análisis - determinación de cenizas[Práctica 3] [2016.11.23] lab. análisis - determinación de cenizas
[Práctica 3] [2016.11.23] lab. análisis - determinación de cenizas
 
18101604
1810160418101604
18101604
 
Productos derivados caña i unidad 1
Productos derivados caña  i unidad 1Productos derivados caña  i unidad 1
Productos derivados caña i unidad 1
 
almidon
almidonalmidon
almidon
 
Determinacion de acidez de la sandia
Determinacion de acidez de la sandiaDeterminacion de acidez de la sandia
Determinacion de acidez de la sandia
 
Aplicaciones biotecnologicas wiki 5
Aplicaciones biotecnologicas wiki 5Aplicaciones biotecnologicas wiki 5
Aplicaciones biotecnologicas wiki 5
 
Toxicos industria lactea
Toxicos industria lacteaToxicos industria lactea
Toxicos industria lactea
 
Proyecto Biocombustibles
Proyecto BiocombustiblesProyecto Biocombustibles
Proyecto Biocombustibles
 
Determinacion de acidez de la cerveza
Determinacion de acidez de la cervezaDeterminacion de acidez de la cerveza
Determinacion de acidez de la cerveza
 
DETERMINACION DE HUMEDAD EN ALIMENTOS Y MATERIA SECA
DETERMINACION DE HUMEDAD EN ALIMENTOS Y MATERIA SECA DETERMINACION DE HUMEDAD EN ALIMENTOS Y MATERIA SECA
DETERMINACION DE HUMEDAD EN ALIMENTOS Y MATERIA SECA
 
Fermentación de plátano con levaduras autóctonas
Fermentación de plátano con levaduras autóctonasFermentación de plátano con levaduras autóctonas
Fermentación de plátano con levaduras autóctonas
 
Procesos de industrializacion de frutas y hortalizas.criiza
Procesos de industrializacion de frutas y hortalizas.criizaProcesos de industrializacion de frutas y hortalizas.criiza
Procesos de industrializacion de frutas y hortalizas.criiza
 
Laboratorio 2
Laboratorio 2Laboratorio 2
Laboratorio 2
 
Presentacion aditivos e insumos en el Procesamiento de Productos laceteos
Presentacion aditivos e insumos en el Procesamiento de Productos laceteosPresentacion aditivos e insumos en el Procesamiento de Productos laceteos
Presentacion aditivos e insumos en el Procesamiento de Productos laceteos
 
Bebida isotonica-a-base-de-coco-3
Bebida isotonica-a-base-de-coco-3Bebida isotonica-a-base-de-coco-3
Bebida isotonica-a-base-de-coco-3
 

Similar a Aprovechamiento de bagazo de caña en la producción

Teoria de hidrolisis
Teoria de hidrolisisTeoria de hidrolisis
Teoria de hidrolisis
Marco Antonio Colque Poma
 
Aplicaciones de la biotecnología actividad colaborativa wiki 5
Aplicaciones de la biotecnología actividad colaborativa wiki 5Aplicaciones de la biotecnología actividad colaborativa wiki 5
Aplicaciones de la biotecnología actividad colaborativa wiki 5
Ana Tarapuez
 
PRODUCCION DE ETANOL DE RESIDU
PRODUCCION DE ETANOL DE RESIDUPRODUCCION DE ETANOL DE RESIDU
PRODUCCION DE ETANOL DE RESIDU
JUAN ZACARIAS LORENZO GREGORIO
 
Reutilizacion de vinazas producidas durante la destilacion alcoholica
Reutilizacion de vinazas producidas durante la destilacion alcoholicaReutilizacion de vinazas producidas durante la destilacion alcoholica
Reutilizacion de vinazas producidas durante la destilacion alcoholica
ZOILA CHAMAN
 
diapositivas hoja 1 y2 hasta metodods analitiocos.pptx
diapositivas hoja 1 y2 hasta metodods analitiocos.pptxdiapositivas hoja 1 y2 hasta metodods analitiocos.pptx
diapositivas hoja 1 y2 hasta metodods analitiocos.pptx
FrancoDominguez12
 
TendenciaBagazo.pdf
TendenciaBagazo.pdfTendenciaBagazo.pdf
TendenciaBagazo.pdf
LeidyKatherineSerrat
 
Aporte individual Ana Carolina Tarapues
Aporte individual Ana Carolina TarapuesAporte individual Ana Carolina Tarapues
Aporte individual Ana Carolina Tarapues
Ana Tarapuez
 
Elaboración de productos derivados del suero como alternativa para mitigar la...
Elaboración de productos derivados del suero como alternativa para mitigar la...Elaboración de productos derivados del suero como alternativa para mitigar la...
Elaboración de productos derivados del suero como alternativa para mitigar la...
Carlos Molina
 
Tecnologías aplicadas en la transformación del
Tecnologías aplicadas en la transformación delTecnologías aplicadas en la transformación del
Tecnologías aplicadas en la transformación del
andrea ortiz calixto
 
EL MAIZ
EL MAIZEL MAIZ
Capitulo V Area libre. 4o Congreso Internacional Multidisciplinario de Ingeni...
Capitulo V Area libre. 4o Congreso Internacional Multidisciplinario de Ingeni...Capitulo V Area libre. 4o Congreso Internacional Multidisciplinario de Ingeni...
Capitulo V Area libre. 4o Congreso Internacional Multidisciplinario de Ingeni...
Extensión del Instituto Tecnológico de Tuxtla Gutiérrez sede Bochil
 
Obtencion de-harina-y-mermelada-a-partir-de-oca..
Obtencion de-harina-y-mermelada-a-partir-de-oca..Obtencion de-harina-y-mermelada-a-partir-de-oca..
Obtencion de-harina-y-mermelada-a-partir-de-oca..
Eddy Chuquirima
 
Producción biotecnológica de ácido láctico
Producción biotecnológica de ácido lácticoProducción biotecnológica de ácido láctico
Producción biotecnológica de ácido lácticoAlexcyemily
 
Bombé jajane (Extracción de alcohol a partir de jugo de caña de maíz)
Bombé  jajane (Extracción de alcohol a partir de jugo de caña de maíz)Bombé  jajane (Extracción de alcohol a partir de jugo de caña de maíz)
Bombé jajane (Extracción de alcohol a partir de jugo de caña de maíz)
CTeI Putumayo
 
Folleto acecore
Folleto acecoreFolleto acecore
Bioetanol a base del almidon de maiz
Bioetanol a base del almidon de maizBioetanol a base del almidon de maiz
Bioetanol a base del almidon de maiz
Gustavo Limo
 

Similar a Aprovechamiento de bagazo de caña en la producción (20)

Teoria de hidrolisis
Teoria de hidrolisisTeoria de hidrolisis
Teoria de hidrolisis
 
Fermentacion
FermentacionFermentacion
Fermentacion
 
Fermentacion
FermentacionFermentacion
Fermentacion
 
95914403
9591440395914403
95914403
 
Aplicaciones de la biotecnología actividad colaborativa wiki 5
Aplicaciones de la biotecnología actividad colaborativa wiki 5Aplicaciones de la biotecnología actividad colaborativa wiki 5
Aplicaciones de la biotecnología actividad colaborativa wiki 5
 
PRODUCCION DE ETANOL DE RESIDU
PRODUCCION DE ETANOL DE RESIDUPRODUCCION DE ETANOL DE RESIDU
PRODUCCION DE ETANOL DE RESIDU
 
Reutilizacion de vinazas producidas durante la destilacion alcoholica
Reutilizacion de vinazas producidas durante la destilacion alcoholicaReutilizacion de vinazas producidas durante la destilacion alcoholica
Reutilizacion de vinazas producidas durante la destilacion alcoholica
 
diapositivas hoja 1 y2 hasta metodods analitiocos.pptx
diapositivas hoja 1 y2 hasta metodods analitiocos.pptxdiapositivas hoja 1 y2 hasta metodods analitiocos.pptx
diapositivas hoja 1 y2 hasta metodods analitiocos.pptx
 
TendenciaBagazo.pdf
TendenciaBagazo.pdfTendenciaBagazo.pdf
TendenciaBagazo.pdf
 
Aporte individual Ana Carolina Tarapues
Aporte individual Ana Carolina TarapuesAporte individual Ana Carolina Tarapues
Aporte individual Ana Carolina Tarapues
 
Elaboración de productos derivados del suero como alternativa para mitigar la...
Elaboración de productos derivados del suero como alternativa para mitigar la...Elaboración de productos derivados del suero como alternativa para mitigar la...
Elaboración de productos derivados del suero como alternativa para mitigar la...
 
Tecnologías aplicadas en la transformación del
Tecnologías aplicadas en la transformación delTecnologías aplicadas en la transformación del
Tecnologías aplicadas en la transformación del
 
EL MAIZ
EL MAIZEL MAIZ
EL MAIZ
 
Capitulo V Area libre. 4o Congreso Internacional Multidisciplinario de Ingeni...
Capitulo V Area libre. 4o Congreso Internacional Multidisciplinario de Ingeni...Capitulo V Area libre. 4o Congreso Internacional Multidisciplinario de Ingeni...
Capitulo V Area libre. 4o Congreso Internacional Multidisciplinario de Ingeni...
 
Fermentacion
Fermentacion Fermentacion
Fermentacion
 
Obtencion de-harina-y-mermelada-a-partir-de-oca..
Obtencion de-harina-y-mermelada-a-partir-de-oca..Obtencion de-harina-y-mermelada-a-partir-de-oca..
Obtencion de-harina-y-mermelada-a-partir-de-oca..
 
Producción biotecnológica de ácido láctico
Producción biotecnológica de ácido lácticoProducción biotecnológica de ácido láctico
Producción biotecnológica de ácido láctico
 
Bombé jajane (Extracción de alcohol a partir de jugo de caña de maíz)
Bombé  jajane (Extracción de alcohol a partir de jugo de caña de maíz)Bombé  jajane (Extracción de alcohol a partir de jugo de caña de maíz)
Bombé jajane (Extracción de alcohol a partir de jugo de caña de maíz)
 
Folleto acecore
Folleto acecoreFolleto acecore
Folleto acecore
 
Bioetanol a base del almidon de maiz
Bioetanol a base del almidon de maizBioetanol a base del almidon de maiz
Bioetanol a base del almidon de maiz
 

Más de zuritam

La vialidad sostenible
La vialidad sostenibleLa vialidad sostenible
La vialidad sosteniblezuritam
 
Diseño, síntesis y evaluación biológica de nuevos
Diseño, síntesis y evaluación biológica de nuevosDiseño, síntesis y evaluación biológica de nuevos
Diseño, síntesis y evaluación biológica de nuevoszuritam
 
Influencia de la televisión en el rendimiento escolar
Influencia de la televisión en el rendimiento escolarInfluencia de la televisión en el rendimiento escolar
Influencia de la televisión en el rendimiento escolarzuritam
 
Análisis del diagrama de radiación de agrupaciones lineales
Análisis del diagrama de radiación de agrupaciones linealesAnálisis del diagrama de radiación de agrupaciones lineales
Análisis del diagrama de radiación de agrupaciones linealeszuritam
 
jornaleros tamaulipecos
jornaleros tamaulipecos jornaleros tamaulipecos
jornaleros tamaulipecos zuritam
 
iniciativa méxico 2011, c.z.m.
 iniciativa méxico 2011, c.z.m. iniciativa méxico 2011, c.z.m.
iniciativa méxico 2011, c.z.m.
zuritam
 
TECNOLOGÍA MÓVIL
TECNOLOGÍA MÓVIL TECNOLOGÍA MÓVIL
TECNOLOGÍA MÓVIL zuritam
 
C:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De RedesC:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De Redeszuritam
 
C:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De RedesC:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De Redeszuritam
 
C:\Fakepath\Capitulo 3
C:\Fakepath\Capitulo 3C:\Fakepath\Capitulo 3
C:\Fakepath\Capitulo 3zuritam
 
C:\Fakepath\Capitulo 3
C:\Fakepath\Capitulo 3C:\Fakepath\Capitulo 3
C:\Fakepath\Capitulo 3zuritam
 
C:\Fakepath\Mapas De Aplicaciones[1]
C:\Fakepath\Mapas De Aplicaciones[1]C:\Fakepath\Mapas De Aplicaciones[1]
C:\Fakepath\Mapas De Aplicaciones[1]zuritam
 
C:\Fakepath\Mapas De Aplicaciones[1]
C:\Fakepath\Mapas De Aplicaciones[1]C:\Fakepath\Mapas De Aplicaciones[1]
C:\Fakepath\Mapas De Aplicaciones[1]zuritam
 
C:\Fakepath\PresentacióN1criss
C:\Fakepath\PresentacióN1crissC:\Fakepath\PresentacióN1criss
C:\Fakepath\PresentacióN1crisszuritam
 
C:\Fakepath\PresentacióN1criss
C:\Fakepath\PresentacióN1crissC:\Fakepath\PresentacióN1criss
C:\Fakepath\PresentacióN1crisszuritam
 
C:\Fakepath\Cristina Zurita Mendez
C:\Fakepath\Cristina Zurita MendezC:\Fakepath\Cristina Zurita Mendez
C:\Fakepath\Cristina Zurita Mendezzuritam
 
C:\Fakepath\Cristina Zurita Mendez
C:\Fakepath\Cristina Zurita MendezC:\Fakepath\Cristina Zurita Mendez
C:\Fakepath\Cristina Zurita Mendezzuritam
 
E:\Tarea Del Blog
E:\Tarea Del BlogE:\Tarea Del Blog
E:\Tarea Del Blogzuritam
 
C:\Fakepath\Planeta Web Criss
C:\Fakepath\Planeta Web CrissC:\Fakepath\Planeta Web Criss
C:\Fakepath\Planeta Web Crisszuritam
 
C:\Fakepath\Planeta Web Criss
C:\Fakepath\Planeta Web CrissC:\Fakepath\Planeta Web Criss
C:\Fakepath\Planeta Web Crisszuritam
 

Más de zuritam (20)

La vialidad sostenible
La vialidad sostenibleLa vialidad sostenible
La vialidad sostenible
 
Diseño, síntesis y evaluación biológica de nuevos
Diseño, síntesis y evaluación biológica de nuevosDiseño, síntesis y evaluación biológica de nuevos
Diseño, síntesis y evaluación biológica de nuevos
 
Influencia de la televisión en el rendimiento escolar
Influencia de la televisión en el rendimiento escolarInfluencia de la televisión en el rendimiento escolar
Influencia de la televisión en el rendimiento escolar
 
Análisis del diagrama de radiación de agrupaciones lineales
Análisis del diagrama de radiación de agrupaciones linealesAnálisis del diagrama de radiación de agrupaciones lineales
Análisis del diagrama de radiación de agrupaciones lineales
 
jornaleros tamaulipecos
jornaleros tamaulipecos jornaleros tamaulipecos
jornaleros tamaulipecos
 
iniciativa méxico 2011, c.z.m.
 iniciativa méxico 2011, c.z.m. iniciativa méxico 2011, c.z.m.
iniciativa méxico 2011, c.z.m.
 
TECNOLOGÍA MÓVIL
TECNOLOGÍA MÓVIL TECNOLOGÍA MÓVIL
TECNOLOGÍA MÓVIL
 
C:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De RedesC:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De Redes
 
C:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De RedesC:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De Redes
 
C:\Fakepath\Capitulo 3
C:\Fakepath\Capitulo 3C:\Fakepath\Capitulo 3
C:\Fakepath\Capitulo 3
 
C:\Fakepath\Capitulo 3
C:\Fakepath\Capitulo 3C:\Fakepath\Capitulo 3
C:\Fakepath\Capitulo 3
 
C:\Fakepath\Mapas De Aplicaciones[1]
C:\Fakepath\Mapas De Aplicaciones[1]C:\Fakepath\Mapas De Aplicaciones[1]
C:\Fakepath\Mapas De Aplicaciones[1]
 
C:\Fakepath\Mapas De Aplicaciones[1]
C:\Fakepath\Mapas De Aplicaciones[1]C:\Fakepath\Mapas De Aplicaciones[1]
C:\Fakepath\Mapas De Aplicaciones[1]
 
C:\Fakepath\PresentacióN1criss
C:\Fakepath\PresentacióN1crissC:\Fakepath\PresentacióN1criss
C:\Fakepath\PresentacióN1criss
 
C:\Fakepath\PresentacióN1criss
C:\Fakepath\PresentacióN1crissC:\Fakepath\PresentacióN1criss
C:\Fakepath\PresentacióN1criss
 
C:\Fakepath\Cristina Zurita Mendez
C:\Fakepath\Cristina Zurita MendezC:\Fakepath\Cristina Zurita Mendez
C:\Fakepath\Cristina Zurita Mendez
 
C:\Fakepath\Cristina Zurita Mendez
C:\Fakepath\Cristina Zurita MendezC:\Fakepath\Cristina Zurita Mendez
C:\Fakepath\Cristina Zurita Mendez
 
E:\Tarea Del Blog
E:\Tarea Del BlogE:\Tarea Del Blog
E:\Tarea Del Blog
 
C:\Fakepath\Planeta Web Criss
C:\Fakepath\Planeta Web CrissC:\Fakepath\Planeta Web Criss
C:\Fakepath\Planeta Web Criss
 
C:\Fakepath\Planeta Web Criss
C:\Fakepath\Planeta Web CrissC:\Fakepath\Planeta Web Criss
C:\Fakepath\Planeta Web Criss
 

Aprovechamiento de bagazo de caña en la producción

  • 1. Aprovechamiento de bagazo de caña en la producción biotecnológica de Xilitol por Cándida parasitosis  En México, la caña de azúcar es uno de los principales cultivos agrícolas. Su industrialización produce el azúcar de mesa (sacarosa). El bagazo es un subproducto del proceso de extracción del azúcar. Este material puede ser utilizado para la obtención de xilitol, el cual es un edulcorante que puede competir con los endulzantes artificiales y los jarabes de maíz ricos en fructosa que desplazan del mercado a la sacarosa. Un proceso biotecnológico optimizado permite producir xilitol de origen natural y con menos costo que el obtenido por síntesis química. En esta investigación se realizaron diversos estudios con la finalidad de emplear el bagazo de caña como fuente de carbono para la levadura Candidaparapsilosis (NRRL Y-2315) en la producción de xilitol. Se determinaron las condiciones óptimas de detoxificación de los hidrolizados de bagazo de caña concentrados para la eliminación de la mayor cantidad de inhibidores del crecimiento microbiano sin afectar la concentración de azúcares. Se realizó un diseño multifactorial fraccionado con tendencia central para determinar el efecto de la concentración de carbón activado, pH inicial y duración del tratamiento a 45°C y 150 rpm, sobre el Porcentaje de Eliminación de Furfural (PEF). Este diseño fue aplicado en hidrolizados obtenidos con 2% de ácido fosfórico a 121°C durante 60 min y concentrados hasta 53.5 g de xilosa/L.
  • 2. Como resultado se obtuvo que el modelo estadístico predice adecuadamente el PEF y que las condiciones óptimas para la detoxificación son pH 3.8, 58.4 min y carbón activado 1/30 obteniéndose un valor de PEF de 99.95%, conservándose concentraciones de 48.3, 3.6, 6.9 y 3.9 g/L de xilosa, glucosa, arabinosa y ácido acético, respectivamente, lo cual significa una baja concentración de furfural (0.0033 g/L) con un elevado porcentaje de recuperación de azúcares (90.38%). Esto hace que la aplicación de estos licores como medio de fermentación sea adecuada. El estudio de las condiciones de pH, concentración inicial de xilosa y temperatura en las cuales se favorece la producción de xilitol y biomasa, empleando medios de xilosa comercial inoculados con Candidaparapsilosis, permitió establecer que la mayor producción de xilitol se obtuvo con 60 g/L, pH 6 y 26°C, y la mayor formación de biomasa con 15 g/L, pH 5 y 26°C. Los factores que tuvieron un efecto estadísticamente significativo sobre el rendimiento en xilitol fueron concentración inicial de xilosa, temperatura, interacción entre xilosa inicial-pH y pH-temperatura.
  • 3. ANTECEDENTES La caña de azúcar (Saccharumofficinarum) es uno de los principales productos agrícolas de México. 1 Este producto agrícola es industrializado en los ingenios azucareros, girando su economía alrededor de la producción de sacarosa cuya demanda decrece debido al surgimiento de tendencias nutricionales en las que lo cotizado son los alimentos bajos en calorías. Además de la aparición en el mercado de edulcorantes naturales de menor costo y ligeramente mayor poder edulcorante como los jarabes de maíz ricos en fructosa. 2,3 En la actualidad, la industria azucarera debe enfrentarse a la competencia con otros edulcorantes, a la falta de eficiencia energética y a la contaminación que produce. Desarrollar alternativas para utilizar al máximo cada uno de los productos y subproductos derivados de la caña de azúcar contribuirá a mejorar las condiciones económicas de ésta industria. Es decir, l a crisis en la que se encuentra la industria azucarera se puede resolver, entre otras medidas, si se diseña y lleva a cabo un aprovechamiento integral del cultivo de caña con el menor impacto ecológico, industrializándose los subproductos que se obtienen durante la producción de sacarosa tales como el bagazo de caña, las melazas o mieles, la cachaza de los filtros, las cenizas de los hornos y los gases de combustión. De esta manera, la industria azucarera se transformaría en una industria del cultivo de caña con capacidad de responder a las demandas comerciales. 4,5
  • 4. Un edulcorante que puede competir con los endulzantes artificiales bajos en calorías y con los jarabes de maíz ricos en fructosa es el xilitol, ya que tiene un bajo valor calórico, un sabor fresco característico, no participa en la reacción de Maillard, puede ser consumido por los diabéticos sin causar daño a su salud, no produce caries y tiene un poder edulcorante similar al de la sacarosa, entre otras propiedades, que lo convierten en un edulcorante cotizado en el mercado. 4,6,7,8,9 El xilitol es un endulzante que se encuentra ampliamente distribuido en la naturaleza, pudiéndose obtener a partir de ciertas frutas, hortalizas y cereales pero en muy pequeñas cantidades por lo que su extracción de estas fuentes resulta poco rentable. También puede obtenerse por síntesis química y por fermentación. La síntesis química es un proceso caro que se refleja en el costo de este producto. La producción biotecnológica de xilitol es una alternativa con mucha viabilidad de ser un proceso más rentable si se optimizan todas las etapas de este proceso y se obtiene a partir de materia prima abundante y económica como lo son los materiales lignocelulósicos.6,7,8,9,10,11,12 Se ha demostrado que las levaduras son las mejores productoras de xilitol, especialmente aquellas del género Candida. Estas reducen la xilosa a xilitol bajo la acción de una enzima denominada xilosa reductasa, la cual es NADP-dependiente. La cantidad de xilitol y la productividad del mismo dependerán de las condiciones de cultivo y del tipo de cepa que se utilice. 6,9,13 Este edulcorante se puede producir a partir del bagazo de caña, el cual tiene diversas aplicaciones, pero de muy bajo valor y que, incluso, puede llegar a ser considerado un desecho agroindustrial.4,9,14 Si se efectúa un proceso biotecnológico optimizado se obtendría un producto de origen natural con ventajas sobre el obtenido por síntesis química, ya que los consumidores prefieren lo natural por considerarlo más sano aunque, realmente, la toxicidad de una sustancia no depende de su origen “natural” o “artificial” sino de su composición química y de las condiciones de su consumo. Otra ventaja es que se obtendría con un menor costo. 3, 15,16
  • 5. La producción de xilitol, junto con la de la sacarosa a partir del cultivo de caña, serviría para abarcar el mercado de los que prefieren lo natural dando opción al consumidor de elegir lo tradicional o lo bajo en calorías. Para que el bagazo de caña pueda ser aprovechado como fuente de carbono en la producción de xilitol, empleando microorganismos, éste debe recibir un tratamiento llamado hidrólisis ácida con el cual se fracciona la hemicelulosa y se obtienen los licores ricos en xilosa. También se debe de aplicar un tratamiento de eliminación de agua para tener una mayor cantidad de xilosa y aumentar los rendimientos en xilitol; presenta como inconveniente el que también se concentran el furfural y el ácido acético, los cuales actúan como inhibidores del crecimiento microbiano. También ocasiona el incremento de la concentración del ácido empleado para llevar a cabo la hidrólisis, por lo que desciende mucho el pH del licor y disminuye la rentabilidad del proceso ya que en la etapa de neutralización, la cual es indispensable para que estos hidrolizados puedan emplearse como medios de cultivo, aumenta el gasto de álcali y de sal formada. 9,14,17,18,19,20,21,22 Se ha empleado el carbón activado para eliminar los inhibidores de crecimiento microbiano formados durante la hidrólisis ácida de materiales lignocelulósicos. Un ejemplo de su uso es en hidrolizados de olote de maíz, en los cuales el rendimiento en xilitol se vio mejorado cuando fue tratado con carbón activado. Se ha estudiado el efecto de la temperatura, pH y proporción de hidrolizado: carbón activado sobre el proceso de adsorción de ácido acético, ácido levulínico, hidroximetilfurfural y furfural, en licores obtenidos por hidrólisis ácida de madera de eucalipto, probando la efectividad del proceso sembrando en ellos Debaryomyceshansenii, levadura productora de xilitol. También se han comparado tratamientos con carbón activado con otros procesos, como por ejemplo, producción de xilitol por Candidaguilliermondii en hidrolizados de eucalipto tratados con carbón activado en combinación con pH, en comparación con el tratamiento en el que se utilizan resinas de intercambio iónico, de los cuales el segundo tuvo mejores resultados. 13,23,24
  • 6. MATERIALES Hidrolizado de Bagazo de Caña (HBC) El bagazo se obtuvo de la molienda de caña de azúcar de diferentes variedades y fue proporcionado por el Ingenio “Mante”, localizado en Cd. Mante, Tamaulipas, México. Dicho material fue deshidratado, molido y tamizado, posteriormente se le aplicó un tratamiento de hidrólisis ácida con relación sólido-líquido de 1/10, 2% de ácido fosfórico, 121 °C y 60 min 21 La etapa de concentración se realizó hasta obtener un 25% del líquido inicial. Detoxificación del hidrolizado de bagazo de caña} Tres niveles de pH (1, 3 y 5), tiempo (20, 40 y 60min) y carga (1 g de carbón activado/ 50, 40 y 30 g de hidrolizado) fueron probados en HBC conteniendo 53 g de xilosa/L. El pH correspondiente fue ajustado con la adición de CaCO 3 al HBC, seguido por una filtración al vacío. Se colocaron 100 g de HBC en matraces de 250 ml de capacidad, se agitaron a 150 rpm a una temperatura de 45°C .  Neutralización de HBC con CaCO 3, NH 4 OH y ambos álcalis Tres condiciones de neutralización, aplicadas a HBC 50 g de xilosa/L con pH 1.23, fueron probadas: 200 g de CaCO 3 /L; NH 4 OH 5 M, hasta alcanzar un pH de 7; 100 g de CaCO 3 /L y solución NH 4 OH 5 M, hasta alcanzar un pH de 7.12. El volumen gastado de álcali y volumen final de HBC fueron medidos.  Reactivación y mantenimiento de la cepa Se empleó una cepa liofilizada de Candidaparapsilosis NRRL Y-2315 proporcionada por UnitedStatesDepartament of Agricultura Northern, Nacional ResearchLaboratory en Peoria, IL., USA. Este microorganismo fue inoculado en un medio con un contenido de 10 g de xilosa comercial/L, 5 g de peptona/L y 3 g de extracto de levadura/L y fue mantenido en agar, en tubo inclinado conteniendo un medio con los mismos componentes y concentraciones descritas previamente, más 20 g de agar/L.
  • 7. Preparación del inóculoEl inóculo empleado fue preparado a partir del medio congelado antes mencionado, sembrado en 250 ml de medio con pH 5 y una composición de 60 g de xilosa comercial/L, 5 g de peptona/L, 6 g de extracto de levadura/L y 6 g de extracto de malta/L, incubado a 126 rpm y 26°C durante 144 h 26. Otro inóculo fue preparado en 250 ml de medio con pH 5 y un contenido de 15 g de xilosa comercial/L, 5g de peptona/L, 6 g de extracto de levadura/L, 6 g de extracto de malta/L, 5 g de KH 2 PO 4 /L, 2 g de NH 4 HSO 4 /L, incubado a 126 rpm y 26°C durante 144 h. La adición de KH 2 PO 4 y NH 4 HSO 4 se hizo en base a nutrientes empleados por Furlan y de Castro (2001). Preparación de medios de cultivo Se emplearon medios de cultivo con una composición de 5 g de peptona/L, 6 g de extracto de levadura, 6 g de extracto de malta/L, variando la concentración de xilosa a 15, 30, 45 y 60 g/L, pH 5 y 6, y temperaturas de 26 y 36°C . Cada tratamiento probado se realizó por duplicado en 100ml de medio colocado en matraz de 250ml de capacidad con agitación de 126 rpm y duración de 144 h. Otros medios fueron preparados a partir de soluciones al 0, 2, 4 y 6 % de H 3 PO 4, las cuales fueron neutralizadas con una solución de KOH 5M hasta un pH de 5.0. Fueron medidos el volumen gastado de álcali y el volumen final de la solución. Todos los tratamientos se realizaron por duplicado y tenían un mismo contenido de los siguientes nutrientes: 45 g de xilosa comercial/L, 5 g de peptona/L, 6 g de extracto de malta/L, 6 g de extracto de levadura/L. Las condiciones de incubación fueron 26°C , 126 rpm durante 144 horas.  Métodos analíticos La biomasa fue determinada por peso seco, tomando alícuotas de 3 ml, centrifugación a 4000 rpm durante 15 min y secado en una estufa a 105°C. La determinación de monosacáridos, ácidos orgánicos y productos (xilosa, glucosa, arabinosa, ácido acético, xilitol y etanol) fue realizada en un Cromatógrafo de Líquidos de Alta Eficacia (CLAE) marca Hewlett Packard, serie 1100, con una columna de intercambio iónico para separación de polisacáridos y ácidos orgánicos Transgenomic ICSepICE-ION-300 y detector de Índice de Refracción (IR). La determinación de furfural fue realizada por espectrofotometría UV-Visible a una longitud de onda de 280 nm.
  • 8. Análisis estadístico Los programas empleados fueron Excel y Statgraphics versión 4.0. En el estudio de la eliminación de inhibidores del crecimiento microbiano en HBC ricos en xilosa se realizó un análisis multifactorial fraccionado con tendencia centrada. En el estudio del efecto de la concentración inicial de xilosa comercial, pH y temperatura sobre el rendimiento en producto, rendimiento en biomasa y productividad en medios de xilosa comercial, se realizó un análisis de varianza multifactorial completo. En el estudio del efecto de la presencia de sales de fosfato sobre el rendimiento en producto, rendimiento en biomasa y productividad en medios de xilosa comercial, se realizó un análisis de varianza unifactorial. CONCLUSIONES Se logró optimizar las condiciones de detoxificación para el Hidrolizado de Bagazo de Caña concentrado (HBC) logrando una eliminación del furfural desde el 88 hasta el 99%, obteniéndose concentraciones inferiores de las conocidas como tóxicas para los microorganismos. En cuanto al cálculo de las pérdidas de HBC rico en xilosa durante la neutralización con diferentes álcalis, de las opciones estudiadas, las que podrían afectar más a la rentabilidad del proceso es emplear solamente CaCO3 ó NH4 OH siendo lo más recomendable aplicar una combinación de ambos. Por otra parte, puede utilizarse el HBC sin tratamiento de concentración cuando se desea producir biomasa y éste debe concentrarse en un rango de 30 a 60g de xilosa/L cuando se utilice para producir xilitol. Debe, asimismo, buscarse condiciones de neutralización en las que las sales formadas sean lo mínimo posible, ya que se observó un efecto negativo de las mismas.    REFERENCIAS 1. SAGARPA-SIAP (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación– Servicio de Información y Estadística Agroalimentaria y Pesquera). 31 de diciembre de 2004. Tamaulipas. Avance de siembras y cosechas (riego + temporal). 2. Félix, Fernando (2002). La paradoja de Kaldor y el comercio de azúcar entre los EE.UU. y México. Trabajo de investigación. Programa de doctorado en economía. Páginas 12-18. 3. Nova González, Armando y Peña Castellanos, Lázaro (2002). El mercado internacional del azúcar, edulcorantes, alcohol y melaza. Centro de Estudios de la Economía Cubana. Universidad de La Habana. Publicación electrónica revisada en el 2004.http://www.nodo50.org/cubasigloXXI/economia/nova4_310802.htm 4. James C., P. Chen (1999). Manual del azúcar de caña, Editorial LIMUSA, S.A. de C.V. 5. SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación). La auditoria ambiental en los ingenios azucareros. Un ejemplo de productividad en este sector industrial. Publicación electrónica revisada en el 2004. http://www.sagarpa.gob.mx/Forma/ documentos/auditoria.htm