SlideShare una empresa de Scribd logo
1.9 Círculo de Mohr para esfuerzos en 2D
1.9. Círculo de Mohr para esfuerzos en 2D
Las dos formas del círculo de Mohr se muestran en la Fig. 1.30, la diferencia son el eje de las
ordenadas  y su correspondiente sentido positivo de los ángulos.
Figura 1.30: Tipos del trazo del círculo de Mohr.
Construcción del círculo de Mohr1:
1. Dibujo de un sistema de ejes coordenados con  como abscisa, positivo hacia la derecha, y
 como ordenada, positivo hacia abajo.
2. Localice el centro  del círculo en el punto con coordenadas  y  = 0.
 =
 + 
2
3. Localice el punto A que representa las condiciones de esfuerzo sobre la cara 1del elemento
mostrado en la Fig. (1.31), marcando sus coordenadas  =  y  = . Note que el punto
 corresponde a  = 0.
4. Localice el punto B que representa las condiciones de esfuerzo sobre la cara del elemento
mostrado en la fig. (1.31) , trazando sus coordenadas  =  y  = −. Observe que el
punto  sobre el círculo corresponde a  = 90.
5. Dibuje una línea del punto  al . Esta línea es un diámetro del círculo y pasa por el
centro . Los puntos  y , que representan los esfuerzos sobre planos a 90 uno del otro
están en extremos opuestos del diámetro (y, por lo tanto, están a 180 uno del otro sobre
el círculo).
6. Con el punto  como centro, trace el círculo de Mohr por los puntos  y . El círculo
dibujado de esta manera tiene radio .
1
Mohr O. (1887). Ueber die bestimmung und die graphische Darstellung von Trâgheitsmomenten ebener
Flâchen, Civilingenieur, columnas 43-68, pp.90
Mohr O. (1914). Abhandlungen aus dem Gebiete der technischen Mechanik (Ernst, Berlin, ed.2), pp. 109
c°Gelacio Juárez, UAM 43
1.9 Círculo de Mohr para esfuerzos en 2D
 =
sµ
 − 
2
¶2
+ 2

7. Cálculo de los esfuerzos principales y ubicación en la fig. (1.31)
σ12 =  ± 
8. Cálculo del ángulo  de la ec. (1.65)
2 = tan
µ
2
 − 
¶
9. Cálculo del esfuerzo cortante máximo,m´ax, y del ángulo .
m´ax = 
Figura 1.31: Trazo Mohr
c°Gelacio Juárez, UAM 44
1.9 Círculo de Mohr para esfuerzos en 2D
1.9.1. Ejemplo
Del estado de esfuerzos mostrado en la fig 1.32 determine: a) los esfuerzos, direcciones principales
y posibles planos de falla y b) el estado de esfuerzos a un ángulo  = 40◦ en dirección contraria
a las manecillas del reloj:
 =
"
40 10
√
3
10
√
3 20
#
MPa
Figura 1.32: Trazo Mohr
Solución
a) Cálculo del centro
 =
40 + 20
2
= 30 MPa
Cálculo del radio
 =
sµ
40 − 20
2
¶2
+
³
10
√
3
´2
= 20 MPa
Cálculo de los esfuerzos principales y ubicación en la fig. (1.32)
1 = 30 + 20 = 50 MPa
2 = 30 − 20 = 10 MPa
Cálculo del ángulo  de la ec. (1.65);
 =
1
2
tan−1
Ã
2(10
√
3)
40 − 20
!
= 30◦
c°Gelacio Juárez, UAM 45
1.9 Círculo de Mohr para esfuerzos en 2D
El esfuerzo cortante máximo ,m´ax, corresponde al radio del círculo:
m´ax =  = 20 MPa
y el ángulo  es:
 = −15◦
Los esfuerzos principales y cortante máximo se muestran en la fig. 1.33
Figura 1.33: Esfuerzos principales y cortante máximo.
b) El ángulo 2 se determina gráficamente de la fig. (1.34)
2 = 2 − 2 = 2(40◦
) − 2(30◦
) = 20◦
Los esfuerzos en el plano 0 y 0 se determinan como:
0 =  +  cos(2) = 30 MPa + 20 MPa cos(20◦
) = 48794 MPa
0 =  −  cos(2) = 30 MPa − 20 MPa cos(20◦
) = 11206 MPa
00 = − sin(2) = −20 MPa sin(20◦
) = −684 MPa
1.9.2. Ejemplo
Determine los esfuerzos y direcciones principales del estado de esfuerzos en cortante puro mostra-
do en la fig. 1.32:
 =
"
0 100
100 0
#
kg
cm2
Cálculo del centro
c°Gelacio Juárez, UAM 46
1.9 Círculo de Mohr para esfuerzos en 2D
Figura 1.34: Trazo Mohr para un ángulo 
Figura 1.35: Trazo Mohr
 =
0 + 0
2
= 0
Cálculo del radio
 =
sµ
0 − 0
2
¶2
+ (100)2
= 100
Cálculo de los esfuerzos principales y ubicación en la fig. (1.35)
σ1 = 0 + 100 = 100
σ2 = 0 − 100 = −100
El ángulo  se calcula de la ec. (1.65)
 =
1
2
tan−1
µ
2(100)
0
¶
; indeterminado
c°Gelacio Juárez, UAM 47
1.9 Círculo de Mohr para esfuerzos en 2D
aunque éste sea indeterminado numéricamente, de la Fig. 1.35 se determina que el ángulo es:
 =
1
2
(90◦
) = 45◦
El esfuerzo cortante máximo ,m´ax, corresponde al radio del círculo:
m´ax =  = 100
ángulo y del ángulo .
 = 0
Los esfuerzos principales y cortante máximo se muestra en la fig. 1.36
Figura 1.36: Esfuerzos principales y cortante máximo.
1.9.3. Ejemplo
Determine los esfuerzos y direcciones principales del estado de esfuerzos en compresión del cilindro
de concreto mostrado en la fig 1.32. El tensor de esfuerzos en está dado por.
 =
"
0 0
0 −250
#
Cálculo del centro
 =
0 − 250
2
= −125
Cálculo del radio
 =
sµ
0 − 250
2
¶2
+ (0)2
= 125
Cálculo de los esfuerzos principales y ubicación en la fig. (1.31)
c°Gelacio Juárez, UAM 48
1.9 Círculo de Mohr para esfuerzos en 2D
Figura 1.37: Cilíndro de concreto sometido a compresión.
σ1 = −125 + 125 = 0
σ2 = −125 − 125 = −250
Figura 1.38: Trazo Mohr
El ángulo  se calcula de la ec. (1.65)
 =
1
2
tan−1
µ
2(0)
0 + 250
¶
 = 0◦
El esfuerzo cortante máximo, m´ax, corresponde al radio del círculo:
c°Gelacio Juárez, UAM 49
1.10 Círculo de Mohr para esfuerzos en 3D
m´ax =  = 125
ángulo y del ángulo .
 = 45◦
Los esfuerzos principales y cortante máximo se muestra en la fig. 1.39
Figura 1.39: Esfuerzos principales y cortante máximo.
1.10. Círculo de Mohr para esfuerzos en 3D
Al calcularse los esfuerzos con las raíces de las ec. (1.24), éstos se localizan en el eje de las absisas
de la fig. (1.40).
Figura 1.40: Trazo Mohr en 3D.
c°Gelacio Juárez, UAM 50
1.10 Círculo de Mohr para esfuerzos en 3D
Los centros y los radios se calculan como:
1 = (2+3)
2 1 = (2−3)
2
2 = (1+3)
2 2 = (1−3)
2
3 = (1+2)
2 3 = (1−2)
2
Las ecuaciones que delimitan los estados de esfuerzos posibles, sombreado en la fig. (1.40) ,son:
2
+ ( − 1) ( − 3) ≤ 0
2
+ ( − 2) ( − 3) ≥ 0
2
+ ( − 1) ( − 2) ≥ 0
El cortante máximo se calcula como:
m´ax =
|1 − 3|
2
1.10.1. Tarea
De los estados de esfuerzos en un sistema coordenado cartesiano dado en los siguientes tensores:
σ =
"
1000 −100
−100 −800
#
; σ =
"
−800 80
80 500
#
; σ =
"
1000 50
50 500
#
(1.73)
1. Determine y grafique mediante el círculo de mohr los esfuerzos principales y las direcciones,
asociadas a éstos.
2. Determine y grafique los esfuerzos cortantes máximos.
3. Grafique los posibles planos de falla.
4. Grafique en una sola figura los tres círculos de la ec. (1.73).
5. Grafique el círculo de mohr en 3D del siguiente sistema estado de esfuerzos.
σ =
⎡
⎢
⎢
⎣
1009631 0 0
0 501123 0
0 0 −810754
⎤
⎥
⎥
⎦
c°Gelacio Juárez, UAM 51

Más contenido relacionado

La actualidad más candente

Esfuerzos cortantes grupo 6
Esfuerzos cortantes grupo 6Esfuerzos cortantes grupo 6
Esfuerzos cortantes grupo 6
Luigi Del Aguila Tapia
 
Resistencia parte 1
Resistencia parte 1Resistencia parte 1
Resistencia parte 1
Anthony Rivas
 
Solucionario de los exámenes de mecánica de suelos II
Solucionario de los exámenes de mecánica de suelos IISolucionario de los exámenes de mecánica de suelos II
Solucionario de los exámenes de mecánica de suelos II
Sandro Daniel Venero Soncco
 
Deflexion en Vigas.pdf
Deflexion en Vigas.pdfDeflexion en Vigas.pdf
Deflexion en Vigas.pdf
CarolinaVelazquez19
 
Clase 04 teorema de castigliano
Clase 04   teorema de castiglianoClase 04   teorema de castigliano
Clase 04 teorema de castigliano
Markos Romero Calizaya
 
Analisis Estructural I - Metodo de la Viga Conjugada
Analisis Estructural I - Metodo de la Viga ConjugadaAnalisis Estructural I - Metodo de la Viga Conjugada
Analisis Estructural I - Metodo de la Viga Conjugada
Enrique Anthony Nunura Castillo
 
Ley de hooke generalizada
Ley de hooke generalizadaLey de hooke generalizada
Ley de hooke generalizada
jhon anthony arrieta manzanares
 
Esfuerzo y Deformación
Esfuerzo y Deformación Esfuerzo y Deformación
Esfuerzo y Deformación
Javier Andrés Escalante Villanueva
 
Esfuerzo y deformacion mediante circulo de Mohr
Esfuerzo y deformacion mediante circulo de MohrEsfuerzo y deformacion mediante circulo de Mohr
Esfuerzo y deformacion mediante circulo de Mohr
KevynVargas3
 
Tensor de Esfuerzos
Tensor de EsfuerzosTensor de Esfuerzos
Tensor de Esfuerzos
Ivo Fritzler
 
8 ava clase resistencia al esfuerzo cortante diapos (1)
8 ava clase   resistencia al esfuerzo cortante diapos (1)8 ava clase   resistencia al esfuerzo cortante diapos (1)
8 ava clase resistencia al esfuerzo cortante diapos (1)
Luisses Huaman Fernadez
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
robert andy wood
 
1. deformación 2010
1. deformación 20101. deformación 2010
1. deformación 2010
juan henrry flores
 
ejercicio de deformacion axial
ejercicio de deformacion axialejercicio de deformacion axial
ejercicio de deformacion axial
Miguel Antonio Bula Picon
 
Esfuerzo en vigas
Esfuerzo en vigas Esfuerzo en vigas
Esfuerzo en vigas
alianzalima123
 
Informe circulo-de-mhor
Informe circulo-de-mhorInforme circulo-de-mhor
Informe circulo-de-mhor
Oscar Palma
 
Estados de tensión y deformación
Estados de tensión y deformaciónEstados de tensión y deformación
Estados de tensión y deformación
Gabriel Pujol
 
Mecanica de suelos en la Ingenieria Practica.---Karl Terzaghi y Realph b
Mecanica de suelos en la Ingenieria Practica.---Karl Terzaghi y Realph bMecanica de suelos en la Ingenieria Practica.---Karl Terzaghi y Realph b
Mecanica de suelos en la Ingenieria Practica.---Karl Terzaghi y Realph b
Alfonso Rodriguez Obando
 
Problemario resistencia 3er parcial
Problemario resistencia 3er parcialProblemario resistencia 3er parcial
Problemario resistencia 3er parcial
250594Richard
 

La actualidad más candente (20)

Esfuerzos cortantes grupo 6
Esfuerzos cortantes grupo 6Esfuerzos cortantes grupo 6
Esfuerzos cortantes grupo 6
 
Resistencia parte 1
Resistencia parte 1Resistencia parte 1
Resistencia parte 1
 
Solucionario de los exámenes de mecánica de suelos II
Solucionario de los exámenes de mecánica de suelos IISolucionario de los exámenes de mecánica de suelos II
Solucionario de los exámenes de mecánica de suelos II
 
Deflexion en Vigas.pdf
Deflexion en Vigas.pdfDeflexion en Vigas.pdf
Deflexion en Vigas.pdf
 
Clase 04 teorema de castigliano
Clase 04   teorema de castiglianoClase 04   teorema de castigliano
Clase 04 teorema de castigliano
 
Metodos de calculo1
Metodos de calculo1Metodos de calculo1
Metodos de calculo1
 
Analisis Estructural I - Metodo de la Viga Conjugada
Analisis Estructural I - Metodo de la Viga ConjugadaAnalisis Estructural I - Metodo de la Viga Conjugada
Analisis Estructural I - Metodo de la Viga Conjugada
 
Ley de hooke generalizada
Ley de hooke generalizadaLey de hooke generalizada
Ley de hooke generalizada
 
Esfuerzo y Deformación
Esfuerzo y Deformación Esfuerzo y Deformación
Esfuerzo y Deformación
 
Esfuerzo y deformacion mediante circulo de Mohr
Esfuerzo y deformacion mediante circulo de MohrEsfuerzo y deformacion mediante circulo de Mohr
Esfuerzo y deformacion mediante circulo de Mohr
 
Tensor de Esfuerzos
Tensor de EsfuerzosTensor de Esfuerzos
Tensor de Esfuerzos
 
8 ava clase resistencia al esfuerzo cortante diapos (1)
8 ava clase   resistencia al esfuerzo cortante diapos (1)8 ava clase   resistencia al esfuerzo cortante diapos (1)
8 ava clase resistencia al esfuerzo cortante diapos (1)
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
1. deformación 2010
1. deformación 20101. deformación 2010
1. deformación 2010
 
ejercicio de deformacion axial
ejercicio de deformacion axialejercicio de deformacion axial
ejercicio de deformacion axial
 
Esfuerzo en vigas
Esfuerzo en vigas Esfuerzo en vigas
Esfuerzo en vigas
 
Informe circulo-de-mhor
Informe circulo-de-mhorInforme circulo-de-mhor
Informe circulo-de-mhor
 
Estados de tensión y deformación
Estados de tensión y deformaciónEstados de tensión y deformación
Estados de tensión y deformación
 
Mecanica de suelos en la Ingenieria Practica.---Karl Terzaghi y Realph b
Mecanica de suelos en la Ingenieria Practica.---Karl Terzaghi y Realph bMecanica de suelos en la Ingenieria Practica.---Karl Terzaghi y Realph b
Mecanica de suelos en la Ingenieria Practica.---Karl Terzaghi y Realph b
 
Problemario resistencia 3er parcial
Problemario resistencia 3er parcialProblemario resistencia 3er parcial
Problemario resistencia 3er parcial
 

Similar a Circulo de mohr

Circunferencia de Mohr - Problemas de Aplicación
Circunferencia de Mohr - Problemas de AplicaciónCircunferencia de Mohr - Problemas de Aplicación
Circunferencia de Mohr - Problemas de Aplicación
Gabriel Pujol
 
Circulo de mohr_ucv
Circulo de mohr_ucvCirculo de mohr_ucv
Circulo de mohr_ucv
cristhian crisanto seminario
 
Problemas de tensiones
Problemas de tensionesProblemas de tensiones
Problemas de tensiones
jokinricoarenal
 
6circulo de mohr.pdf
6circulo de mohr.pdf6circulo de mohr.pdf
6circulo de mohr.pdf
Pacheco Brian
 
Problemas geotecnia cimientos 2
Problemas geotecnia cimientos 2Problemas geotecnia cimientos 2
Problemas geotecnia cimientos 2
Hector Freud Salcedo Torres
 
Mei p6
Mei p6Mei p6
Problemas geotecnia cimientos
Problemas geotecnia cimientosProblemas geotecnia cimientos
Problemas geotecnia cimientos
Julian Socarras
 
Fuerza cortante y momento flector
Fuerza cortante y momento flectorFuerza cortante y momento flector
Fuerza cortante y momento flector
Marlon Torres
 
Jesus dd estatica
Jesus dd estaticaJesus dd estatica
Jesus dd estatica
Galo Bendezu Pori
 
Calculo de giros_y_deflexiones
Calculo de giros_y_deflexionesCalculo de giros_y_deflexiones
Calculo de giros_y_deflexiones
Andres Pinilla
 
C ap15 circunferencia
C ap15 circunferenciaC ap15 circunferencia
C ap15 circunferencia
nivelacion008
 
N c ap15 circunferencia
N c ap15 circunferenciaN c ap15 circunferencia
N c ap15 circunferencia
Student
 
EIIb-Guía de Problemas Propuestos (2da Edición).pdf
EIIb-Guía de Problemas Propuestos (2da Edición).pdfEIIb-Guía de Problemas Propuestos (2da Edición).pdf
EIIb-Guía de Problemas Propuestos (2da Edición).pdf
gabrielpujol59
 
Resistencia transformacion de esfuerzos planos
Resistencia transformacion de esfuerzos planosResistencia transformacion de esfuerzos planos
Resistencia transformacion de esfuerzos planos
gracia zavarce chirinos
 
Estados de Tensión y Deformación - Resolución Ejercicio N° 9.pptx
Estados de Tensión y Deformación - Resolución Ejercicio N° 9.pptxEstados de Tensión y Deformación - Resolución Ejercicio N° 9.pptx
Estados de Tensión y Deformación - Resolución Ejercicio N° 9.pptx
gabrielpujol59
 
Guía de problemas propuestos
Guía de problemas propuestosGuía de problemas propuestos
Guía de problemas propuestos
Gabriel Pujol
 
Apuntes sobre círculo de mohr
Apuntes sobre círculo de mohrApuntes sobre círculo de mohr
Apuntes sobre círculo de mohr
saulquispe96
 
Folleto elementos julio 2011
Folleto elementos julio 2011Folleto elementos julio 2011
Folleto elementos julio 2011
JDBE20061986
 
T4 ejercicios extra ejes 601
T4 ejercicios extra ejes 601T4 ejercicios extra ejes 601
T4 ejercicios extra ejes 601
Maria Isabel Perea Urias
 

Similar a Circulo de mohr (20)

Circunferencia de Mohr - Problemas de Aplicación
Circunferencia de Mohr - Problemas de AplicaciónCircunferencia de Mohr - Problemas de Aplicación
Circunferencia de Mohr - Problemas de Aplicación
 
Circulo de mohr_ucv
Circulo de mohr_ucvCirculo de mohr_ucv
Circulo de mohr_ucv
 
Problemas de tensiones
Problemas de tensionesProblemas de tensiones
Problemas de tensiones
 
6circulo de mohr.pdf
6circulo de mohr.pdf6circulo de mohr.pdf
6circulo de mohr.pdf
 
Problemas geotecnia cimientos 2
Problemas geotecnia cimientos 2Problemas geotecnia cimientos 2
Problemas geotecnia cimientos 2
 
Mei p6
Mei p6Mei p6
Mei p6
 
Problemas geotecnia cimientos
Problemas geotecnia cimientosProblemas geotecnia cimientos
Problemas geotecnia cimientos
 
Fuerza cortante y momento flector
Fuerza cortante y momento flectorFuerza cortante y momento flector
Fuerza cortante y momento flector
 
Jesus dd estatica
Jesus dd estaticaJesus dd estatica
Jesus dd estatica
 
Calculo de giros_y_deflexiones
Calculo de giros_y_deflexionesCalculo de giros_y_deflexiones
Calculo de giros_y_deflexiones
 
C ap15 circunferencia
C ap15 circunferenciaC ap15 circunferencia
C ap15 circunferencia
 
N c ap15 circunferencia
N c ap15 circunferenciaN c ap15 circunferencia
N c ap15 circunferencia
 
EIIb-Guía de Problemas Propuestos (2da Edición).pdf
EIIb-Guía de Problemas Propuestos (2da Edición).pdfEIIb-Guía de Problemas Propuestos (2da Edición).pdf
EIIb-Guía de Problemas Propuestos (2da Edición).pdf
 
Resistencia transformacion de esfuerzos planos
Resistencia transformacion de esfuerzos planosResistencia transformacion de esfuerzos planos
Resistencia transformacion de esfuerzos planos
 
Estados de Tensión y Deformación - Resolución Ejercicio N° 9.pptx
Estados de Tensión y Deformación - Resolución Ejercicio N° 9.pptxEstados de Tensión y Deformación - Resolución Ejercicio N° 9.pptx
Estados de Tensión y Deformación - Resolución Ejercicio N° 9.pptx
 
Guía de problemas propuestos
Guía de problemas propuestosGuía de problemas propuestos
Guía de problemas propuestos
 
Apuntes sobre círculo de mohr
Apuntes sobre círculo de mohrApuntes sobre círculo de mohr
Apuntes sobre círculo de mohr
 
Folleto elementos julio 2011
Folleto elementos julio 2011Folleto elementos julio 2011
Folleto elementos julio 2011
 
Sol3
Sol3Sol3
Sol3
 
T4 ejercicios extra ejes 601
T4 ejercicios extra ejes 601T4 ejercicios extra ejes 601
T4 ejercicios extra ejes 601
 

Circulo de mohr

  • 1. 1.9 Círculo de Mohr para esfuerzos en 2D 1.9. Círculo de Mohr para esfuerzos en 2D Las dos formas del círculo de Mohr se muestran en la Fig. 1.30, la diferencia son el eje de las ordenadas  y su correspondiente sentido positivo de los ángulos. Figura 1.30: Tipos del trazo del círculo de Mohr. Construcción del círculo de Mohr1: 1. Dibujo de un sistema de ejes coordenados con  como abscisa, positivo hacia la derecha, y  como ordenada, positivo hacia abajo. 2. Localice el centro  del círculo en el punto con coordenadas  y  = 0.  =  +  2 3. Localice el punto A que representa las condiciones de esfuerzo sobre la cara 1del elemento mostrado en la Fig. (1.31), marcando sus coordenadas  =  y  = . Note que el punto  corresponde a  = 0. 4. Localice el punto B que representa las condiciones de esfuerzo sobre la cara del elemento mostrado en la fig. (1.31) , trazando sus coordenadas  =  y  = −. Observe que el punto  sobre el círculo corresponde a  = 90. 5. Dibuje una línea del punto  al . Esta línea es un diámetro del círculo y pasa por el centro . Los puntos  y , que representan los esfuerzos sobre planos a 90 uno del otro están en extremos opuestos del diámetro (y, por lo tanto, están a 180 uno del otro sobre el círculo). 6. Con el punto  como centro, trace el círculo de Mohr por los puntos  y . El círculo dibujado de esta manera tiene radio . 1 Mohr O. (1887). Ueber die bestimmung und die graphische Darstellung von Trâgheitsmomenten ebener Flâchen, Civilingenieur, columnas 43-68, pp.90 Mohr O. (1914). Abhandlungen aus dem Gebiete der technischen Mechanik (Ernst, Berlin, ed.2), pp. 109 c°Gelacio Juárez, UAM 43
  • 2. 1.9 Círculo de Mohr para esfuerzos en 2D  = sµ  −  2 ¶2 + 2  7. Cálculo de los esfuerzos principales y ubicación en la fig. (1.31) σ12 =  ±  8. Cálculo del ángulo  de la ec. (1.65) 2 = tan µ 2  −  ¶ 9. Cálculo del esfuerzo cortante máximo,m´ax, y del ángulo . m´ax =  Figura 1.31: Trazo Mohr c°Gelacio Juárez, UAM 44
  • 3. 1.9 Círculo de Mohr para esfuerzos en 2D 1.9.1. Ejemplo Del estado de esfuerzos mostrado en la fig 1.32 determine: a) los esfuerzos, direcciones principales y posibles planos de falla y b) el estado de esfuerzos a un ángulo  = 40◦ en dirección contraria a las manecillas del reloj:  = " 40 10 √ 3 10 √ 3 20 # MPa Figura 1.32: Trazo Mohr Solución a) Cálculo del centro  = 40 + 20 2 = 30 MPa Cálculo del radio  = sµ 40 − 20 2 ¶2 + ³ 10 √ 3 ´2 = 20 MPa Cálculo de los esfuerzos principales y ubicación en la fig. (1.32) 1 = 30 + 20 = 50 MPa 2 = 30 − 20 = 10 MPa Cálculo del ángulo  de la ec. (1.65);  = 1 2 tan−1 Ã 2(10 √ 3) 40 − 20 ! = 30◦ c°Gelacio Juárez, UAM 45
  • 4. 1.9 Círculo de Mohr para esfuerzos en 2D El esfuerzo cortante máximo ,m´ax, corresponde al radio del círculo: m´ax =  = 20 MPa y el ángulo  es:  = −15◦ Los esfuerzos principales y cortante máximo se muestran en la fig. 1.33 Figura 1.33: Esfuerzos principales y cortante máximo. b) El ángulo 2 se determina gráficamente de la fig. (1.34) 2 = 2 − 2 = 2(40◦ ) − 2(30◦ ) = 20◦ Los esfuerzos en el plano 0 y 0 se determinan como: 0 =  +  cos(2) = 30 MPa + 20 MPa cos(20◦ ) = 48794 MPa 0 =  −  cos(2) = 30 MPa − 20 MPa cos(20◦ ) = 11206 MPa 00 = − sin(2) = −20 MPa sin(20◦ ) = −684 MPa 1.9.2. Ejemplo Determine los esfuerzos y direcciones principales del estado de esfuerzos en cortante puro mostra- do en la fig. 1.32:  = " 0 100 100 0 # kg cm2 Cálculo del centro c°Gelacio Juárez, UAM 46
  • 5. 1.9 Círculo de Mohr para esfuerzos en 2D Figura 1.34: Trazo Mohr para un ángulo  Figura 1.35: Trazo Mohr  = 0 + 0 2 = 0 Cálculo del radio  = sµ 0 − 0 2 ¶2 + (100)2 = 100 Cálculo de los esfuerzos principales y ubicación en la fig. (1.35) σ1 = 0 + 100 = 100 σ2 = 0 − 100 = −100 El ángulo  se calcula de la ec. (1.65)  = 1 2 tan−1 µ 2(100) 0 ¶ ; indeterminado c°Gelacio Juárez, UAM 47
  • 6. 1.9 Círculo de Mohr para esfuerzos en 2D aunque éste sea indeterminado numéricamente, de la Fig. 1.35 se determina que el ángulo es:  = 1 2 (90◦ ) = 45◦ El esfuerzo cortante máximo ,m´ax, corresponde al radio del círculo: m´ax =  = 100 ángulo y del ángulo .  = 0 Los esfuerzos principales y cortante máximo se muestra en la fig. 1.36 Figura 1.36: Esfuerzos principales y cortante máximo. 1.9.3. Ejemplo Determine los esfuerzos y direcciones principales del estado de esfuerzos en compresión del cilindro de concreto mostrado en la fig 1.32. El tensor de esfuerzos en está dado por.  = " 0 0 0 −250 # Cálculo del centro  = 0 − 250 2 = −125 Cálculo del radio  = sµ 0 − 250 2 ¶2 + (0)2 = 125 Cálculo de los esfuerzos principales y ubicación en la fig. (1.31) c°Gelacio Juárez, UAM 48
  • 7. 1.9 Círculo de Mohr para esfuerzos en 2D Figura 1.37: Cilíndro de concreto sometido a compresión. σ1 = −125 + 125 = 0 σ2 = −125 − 125 = −250 Figura 1.38: Trazo Mohr El ángulo  se calcula de la ec. (1.65)  = 1 2 tan−1 µ 2(0) 0 + 250 ¶  = 0◦ El esfuerzo cortante máximo, m´ax, corresponde al radio del círculo: c°Gelacio Juárez, UAM 49
  • 8. 1.10 Círculo de Mohr para esfuerzos en 3D m´ax =  = 125 ángulo y del ángulo .  = 45◦ Los esfuerzos principales y cortante máximo se muestra en la fig. 1.39 Figura 1.39: Esfuerzos principales y cortante máximo. 1.10. Círculo de Mohr para esfuerzos en 3D Al calcularse los esfuerzos con las raíces de las ec. (1.24), éstos se localizan en el eje de las absisas de la fig. (1.40). Figura 1.40: Trazo Mohr en 3D. c°Gelacio Juárez, UAM 50
  • 9. 1.10 Círculo de Mohr para esfuerzos en 3D Los centros y los radios se calculan como: 1 = (2+3) 2 1 = (2−3) 2 2 = (1+3) 2 2 = (1−3) 2 3 = (1+2) 2 3 = (1−2) 2 Las ecuaciones que delimitan los estados de esfuerzos posibles, sombreado en la fig. (1.40) ,son: 2 + ( − 1) ( − 3) ≤ 0 2 + ( − 2) ( − 3) ≥ 0 2 + ( − 1) ( − 2) ≥ 0 El cortante máximo se calcula como: m´ax = |1 − 3| 2 1.10.1. Tarea De los estados de esfuerzos en un sistema coordenado cartesiano dado en los siguientes tensores: σ = " 1000 −100 −100 −800 # ; σ = " −800 80 80 500 # ; σ = " 1000 50 50 500 # (1.73) 1. Determine y grafique mediante el círculo de mohr los esfuerzos principales y las direcciones, asociadas a éstos. 2. Determine y grafique los esfuerzos cortantes máximos. 3. Grafique los posibles planos de falla. 4. Grafique en una sola figura los tres círculos de la ec. (1.73). 5. Grafique el círculo de mohr en 3D del siguiente sistema estado de esfuerzos. σ = ⎡ ⎢ ⎢ ⎣ 1009631 0 0 0 501123 0 0 0 −810754 ⎤ ⎥ ⎥ ⎦ c°Gelacio Juárez, UAM 51