SlideShare una empresa de Scribd logo
Ejercicios de Física
Dinámica
J. C. Moreno Marín y S. Heredia Avalos, DFISTS
Escuela Politécnica Superior
Universidad de Alicante
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
1.  Un bloque de 5 kg está sostenido por una cuerda y
se tira de él hacia arriba con una aceleración de 2 m/
s2
.
a) ¿Cuál es la tensión de la cuerda?
b) Una vez que el bloque se haya en movimiento se
reduce la tensión de la cuerda a 49N, ¿Qué clase de
movimiento tendrá lugar?
c)  Si la cuerda se aflojase por completo se observaría
que el cuerpo recorre aún 2m hacia arriba antes de
detenerse, ¿Con qué velocidad se movía?
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
a)  ¿Cuál es la tensión de la cuerda?
T
mg
∑ = maF mamgT =−
( )gamT += ( ) N598.925 =+=T
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
b) Una vez que el bloque se haya en movimiento se
reduce la tensión de la cuerda a 49 N, ¿Qué clase
de movimiento tendrá lugar?
T
mg
∑ = maF mamgT =− g
m
T
a −=
2
m/s08.9
5
49
=−=a
movimiento
uniforme
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
c)  Si la cuerda se aflojase por completo se observaría
que el cuerpo recorre aún 2 m hacia arriba antes de
detenerse, ¿Con qué velocidad se movía?
T
mg
at+= if vv gt−= i0 v
g
t iv
=
ggg
gtth
2
i
2
i
2
i2
i
2
1
2
1
2
1 vvv
v =−=−=
g
h
2
i
2
1 v
= i 2 4·9.8 6.26 m/sgh= = =v
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
Un caballo no quiere tirar de su carro. Las razones que da el
caballo son: “De acuerdo con la tercera ley de Newton, la fuerza
que yo ejerzo sobre el carro será contrarrestada por una fuerza
igual y opuesta que ejercerá dicho carro sobre mí, de manera
que la fuerza neta será cero y no tendré posibilidad de acelerar
el carro” ¿Cuál es el error de este razonamiento?
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
2.  Dos bloques de masas m1 = 20 kg y m2 = 15 kg,
apoyados el uno contra el otro, descansan sobre un
suelo perfectamente liso. Se aplica al bloque m1 una
fuerza F = 40 N horizontal y se pide:
a) Aceleración con la que se mueve el sistema
b) Fuerzas de interacción entre ambos bloques.
Resolver el mismo problema para el caso en que el
coeficiente de rozamiento entre los bloques y el
suelo sea de 0.02.
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
2.  Dos bloques de masas m1 = 20 kg y m2 = 15 kg,
apoyados el uno contra el otro, descansan sobre un
suelo perfectamente liso. Se aplica al bloque m1 una
fuerza F = 40 N horizontal y se pide:
a) Aceleración con la que se mueve el sistema
b) Fuerzas de interacción entre ambos bloques.
F
m1
m2
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
a)  Aceleración con la que se mueve el sistema.
b)  Fuerzas de interacción entre ambos bloques.
En el bloque de masa m2:
F
P1 P2
N1
N2
F1 F2
2
21
m/s14.1
1520
40
=
+
=
+
=
mm
F
a( )ammF 21 +=
N1.1714.11522 =⋅== amF
En el bloque de masa m1:
N1.1721 == FF
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
a)  Aceleración con la que se mueve el sistema.
b)  Fuerzas de interacción entre ambos bloques.
La aceleración de m2:
F
P1 P2
N1
N2
F1 F2
2
21
m/s14.1
1520
40
=
+
=
+
=
mm
F
a( )ammF 21 +=
2
2
2
m/s14.1
15
1.17
===
m
F
a
N1.172 =F
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
a)  Aceleración con la que se mueve el sistema.
b)  Fuerzas de interacción entre ambos bloques.
La aceleración de m1:
F
P1 P2
N1
N2
F1 F2
2
21
m/s14.1
1520
40
=
+
=
+
=
mm
F
a( )ammF 21 +=
2
1
1
m/s14.1
20
9.22
==
−
=
m
FF
a
N9.221.17401 =−=−FF
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
a)  Aceleración con la que se mueve el sistema.
Resolver el mismo problema cuando el coeficiente de
rozamiento entre los bloques y el suelo es de 0.02.
F
P1 P2
N1
N2F’1 F’2
FR1 FR2
⎭
⎬
⎫
=
=
gmN
gmN
22
11
⎭
⎬
⎫
µ=
µ=
gmF
gmF
22r
11r
( ) '212r1r ammFFF +=−−
( )
21
21
'
mm
mmgF
a
+
+µ−
=
2
m/s94.0
35
358.902.040
' =
⋅⋅−
=a
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
b)  Fuerzas de interacción entre ambos bloques.
Resolver el mismo problema cuando el coeficiente de
rozamiento entre los bloques y el suelo es de 0.02.
F
P1 P2
N1
N2F’1 F’2
FR1 FR2
En el bloque de masa m2:
'' 22r2 amFF =− '' 22r2 amFF +=
N04.17
94.0158.91502.0'2
=
⋅+⋅⋅=F
N04.17'' 21 == FF
En el bloque de masa m1:
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
3.  Un cuerpo desliza a lo largo de un plano inclinado
con un ángulo de 30º y luego continúa moviéndose
sobre el plano horizontal. Determinar el coeficiente
de rozamiento si se sabe que el cuerpo recorre en el
plano inclinado la misma distancia que en el
horizontal.
v=0v
v=0
at
a’t’30º
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
La velocidad inicial del tramo inclinado y la velocidad
final del tramo horizontal son nulas.
Plano inclinado:
v=0v
v=0
at
a’t’30º
2
2
1
ate = at+= if vv at=fv
2
i ''
2
1
''' tate −= v '''' if ta−= vv '''i ta=v
Plano horizontal:
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
La velocidad al final del tramo inclinado el igual a la
velocidad al inicio del tramo horizontal:
at=fv
'''i ta=v
'if vv = ''taat =
La distancia recorrida en el plano inclinado es igual a
la distancia recorrida en el tramo horizontal
2222
i
2
''
2
1
''
2
1
''''
2
1
'''
2
1
tatatatate
ate
=−=−=
=
v
'
'
tt
aa
=
=
'ee =
22
''taat =
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
Plano inclinado:
Plano horizontal:
v=0v
v=0
at
a’t’30º
θµ−θ= cossin mgmgF ( )θµ−θ= cossinga
mgF µ=' ga µ='
θ+
θ
=µ
cos1
sin
268.0
º30cos1
º30sin
=
+
=µ
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
4.  Por una pista horizontal cubierta de nieve, se
desliza un trineo, de masa m = 105 kg, con
velocidad v = 36 km/h. El coeficiente de rozamien-
to entre el trineo y la nieve es de µ = 0.025.
Calcula:
a)  El tiempo que tardará en pararse el trineo.
b)  Distancia recorrida antes de pararse.
mg
N
FR
v0
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
a)  El tiempo que tardará en pararse el trineo.
N7.258.9105025.0r =⋅⋅=µ= mgF
maF =r
2r
m/s24476.0
105
7.25
===
m
F
a
0if =−= atvv s86.40
24476.03600
36000i
=
⋅
==
a
t
v
mg
N
FR
v0
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
b)  Distancia recorrida antes de pararse.
mg
N
FR
v0
m3.20486.4024476.0
2
1
86.4010
2
1 22
i =⋅−⋅=−= attx v
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
5.  Un bloque de 16 kg y otro de 8 kg se encuentran
sobre una superficie horizontal sin rozamiento
unidos por una cuerda A y son arrastrados sobre la
superficie por una segunda cuerda B, adquiriendo
una aceleración constante de 0.5 m/s2. Calcúlese la
tensión de cada cuerda.
a
A
TA
mB=16kgTA TB
mA=8kg
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
a
A
TA
mB=16kgTA TB
mA=8kg
⎭
⎬
⎫
=−
=
amTT
amT
BAB
AA
( ) ( ) N125.0168BAB =+=+= ammT
N45.08AA =⋅== amT
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
6.  Calcular las aceleraciones de los bloques A y B de
masas 200 kg y 100 kg suponiendo que el sistema
parte del reposo, que el coeficiente de rozamiento
entre el bloque B y el plano es de 0.25 y que se
desprecia la masa de las poleas y el rozamiento de
las cuerdas.
A
B
30º
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
T’
mA.g
T’T’
T
A
B
mB.g
mB.g.sen30º
30º
FR
Dinámica
El espacio recorrido por el bloque B es el doble del
recorrido por el bloque A.
La ec. de Newton para la polea, bloque A y bloque B:
⎪
⎭
⎪
⎬
⎫
=θ−θµ−
=−
=
BBBB
AAA
sincos'
'2
amgmgmT
amTgm
TT
AB 2aa =
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
BBAABBA 2sin2cos2 amamgmgmgm +=θ−θµ−
AB 2aa =
2
BA
BBA
A m/s92.0
4
sin2cos2
=
+
θ−θµ−
=
mm
gmgmgm
a
2
AB m/s84.12 == aa
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
a=1m/s2
T
M.g
_
+
Dinámica
7.  Un ascensor que pesa 8 toneladas está sometido a
una aceleración dirigida hacia arriba de 1m/s2.
a)  Calcular la tensión del cable que lo sostiene.
b)  ¿Qué fuerza vertical hacia arriba ejercerá el
ascensor sobre un viajero que pesa 80 kg?
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
a)  Calcular la tensión del cable que lo sostiene.
b)  ¿Qué fuerza vertical hacia arriba ejercerá el
ascensor sobre un viajero que pesa 80 kg?
maTmg =− ( )180008.98000 −=−⋅ T
N864008.108000 =⋅=T
maFmg =− ( )agmF −=
( )[ ] N86418.980 =−−=F
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
d
m.g
FN=m.aN=m.v2
/R
α
e=7.2m
α
N
R=600m
Dinámica
8.  Una autopista tiene 7.2 m de ancho. Calcula la
diferencia de nivel entre los bordes externo e interno
del camino a fin de que un automóvil pueda viajar a
80 km/h (sin experimentar fuerzas laterales)
alrededor de una curva cuyo radio es de 600 m.
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
d
m.g
FN=m.aN=m.v2
/R
α
e=7.2m
α
N
R=600m
Dinámica
⎪
⎭
⎪
⎬
⎫
=α
=α
mgN
mN
cos
sin
R
v2
e
d
==α
gR
v2
tan
R
v2
mmaF NN ==
( ) m6.0
6008.9
2.73600/80000
2
=
⋅
⋅
==
gR
v2
e
d
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
9.  A través de una polea que permanece inmóvil, pasa
una cuerda de la cual están suspendidas tres masas
de 2 kg cada una. Encuentra la aceleración del
sistema y la tensión de la cuerda que une las cargas
A y B.
A
BD
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
mA.g
TA
mB.g
mC.g
TA
TBTC
⎪
⎭
⎪
⎬
⎫
=−
=+−
=−
maTmg
maTTmg
mamgT
A
AB
C
ag 3=
3
g
a =
N06.138.92
3
2
3
2
A =⋅==−= mgmamgT
Sumando…
BC TT =
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
10.  Un punto material de masa m está suspendido de
un hilo inextensible y sin masa de longitud L. El
otro extremo está fijo al eje vertical que gira con
velocidad angular constante ω, arrastrando en su
rotación al hilo y a la masa m. Determinar, en
función de ω, el ángulo que forman el hilo y la
vertical.
m.g
T
FC
L
R=Lsenθ
θ
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
m.g
T
FC
L
R=Lsenθ
θ
⎪
⎪
⎭
⎪⎪
⎬
⎫
=θ
ω==
mg
F
Rm
R
mF
C
2
2
C
tan
v
⎭
⎬
⎫
θ=
θω=
tan
sin
C
2
C
mgF
LmF
θ=θω tansin2
mgLm
L
g
2
cos
ω
=θ
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
11.  Una mesa de 26 kg es arrastrada por el suelo por
una fuerza constante de 230 N, siendo µ = 0.5 el
coeficiente de rozamiento.
a)  Hállese la aceleración de la mesa.
b)  Calcúlese la fuerza normal sobre cada pata.
F
G
90 cm
90 cm90 cm
60 cm
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
a)  Hállese la aceleración de la mesa.
Al arrastrar no deberá volcar:
m.g
R1
N1
G
R2
N2
F
maRRF =−− 21 maNNF =µ−µ− 21
mgNN =+ 21
0G =∑M
0906.0609.03.0 1122 =⋅+⋅µ−⋅µ−⋅−⋅− .NN.NNF
042 21 =+− NNF
0.3
0.6
0.9
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
a)  Hállese la aceleración de la mesa.
m.g
R1
N1
G
R2
N2
F
⎪
⎭
⎪
⎬
⎫
=+−
=+
=−−
042
22
21
21
21
NNF
mgNN
maNNF
⎪
⎭
⎪
⎬
⎫
=+−
=+
=−−
042230
8.254
52460
21
21
21
NN
NN
aNN
2
m/s94.3
52
2.205
==a
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
a)  Calcúlese la fuerza normal sobre cada pata.
m.g
R1
N1
G
R2
N2
F
⎪
⎭
⎪
⎬
⎫
=+−
=+
=−−
042230
8.254
52460
21
21
21
NN
NN
aNN
⎭
⎬
⎫
=−
=+
1152
8.254
21
21
NN
NN
8.1393 2 =N
N6.462 =N N2.2088.254 21 =−= NN
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
12.  Se deja caer un cuerpo de densidad 0.8 g/cm3 y
1000 cm3 de volumen desde una altura de 78.4 m
sobre benceno, de densidad 0.9 g/cm3. Calcula el
tiempo que tardará en alcanzar la profundidad
máxima.
¿Cómo funciona un termómetro
de Galileo? Se trata de una colum-
na cilíndrica de vidrio cerrada con
un líquido transparente. En el inte-
rior hay varias “esferas” de vidrio
de distinta densidad, con una cha-
pita en la cual se marca una tem-
peratura.
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
Velocidad con la que llega el cuerpo a la superficie:
Tiempo que tarda:
Cuando se sumerge, aparece el empuje como fuerza
de frenado:
m/s2.394.788.922 =⋅⋅== ghv
s4
8.9
2.39
1 ===
g
t
v
maPEF =−= VaVgVg cuerpocuerpobenceno ρ=ρ−ρ
2
cuerpo
cuerpobenceno
m/s225.18.9
8.0
8.09.0
=
−
=
ρ
ρ−ρ
= ga
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
Tiempo que tarda en parar es:
Y por lo tanto, el tiempo total en alcanzar la profundi-
dad máxima es la suma de los dos tiempos:
2if 0 at−== vv s32
225.1
2.39i
2 ===
a
t
v
s3643221total =+=+= ttt
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
13. Una masa puntual de 2 kg describe una curva en el
espacio. La curva tiene por ecuaciones:
siendo t el tiempo. Calcula al cabo de 2 segundos:
a)  Los vectores velocidad y aceleración.
b)  El vector cantidad de movimiento.
c)  El momento cinético respecto al origen.
d)  La fuerza que actúa sobre la masa puntual.
3 2 4
, 2 , 1 4 ,x t y t t z t= = − =
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
a)  Los vectores velocidad y aceleración.
3
2
d
d
41
d
d
3
d
d
t
t
z
t
t
y
t
t
x
z
y
x
==
−==
==
v
v
v
( )
( )
( ) m/s82
m/s72
m/s122
==
−==
==
t
t
t
z
y
x
v
v
v
( ) m/s87122 kjiv +−==t
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
a)  Los vectores velocidad y aceleración.
2
3
d
d
4
d
d
6
d
d
t
t
a
t
t
a
t
t
a
z
z
y
y
x
x
==
−==
==
v
v
v
( )
( )
( ) 2
2
2
m/s122
m/s42
m/s122
==
−==
==
ta
ta
ta
z
y
x
( ) 2
m/s124122 kjia +−==t
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
b)  El vector cantidad de movimiento.
( ) m/skg16142487122 ⋅+−=+−== kjikjivp m
( ) ( )kjikjiprL 161424468 +−×+−=×=
s/mkg323240 2
⋅+−−= kjiL
( ) 2
m/skg24824124122 ⋅+−=+−== kjikjiaF m
d)  La fuerza que actúa sobre la masa puntual.
c)  El momento cinético respecto al origen.
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
14.  El vector de posición de un punto material de 2 kg,
que se desplaza en el plano XY es:
Calcula:
a)  El momento respecto al origen de coordenadas de
la fuerza responsable de su movimiento.
b)  El momento lineal de la partícula.
c)  El momento angular de la partícula respecto al
origen de coordenadas.
jir 2
43 tt +=
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
a)  El momento respecto al origen de coordenadas de
la fuerza responsable de su movimiento.
jir 2
43 tt +=
( ) m/skg16643
d
d
d
d 2
⋅+=−=== jiji
r
vp ttt
t
m
t
mm
N16
d
d
j
p
F ==
t
mN48
0160
043 2
⋅==×= k
kji
FrM ttt
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
b)  El momento lineal de la partícula.
c)  El momento angular de la partícula respecto al
origen de coordenadas.
( ) m/skg16643
d
d
d
d 2
⋅+=−=== jiji
r
vp ttt
t
m
t
mm
/smkg24
0166
043 222
⋅==×= k
kji
prL t
t
tt
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
15.  Un proyectil sale por la boca de un arma con una
velocidad de 500 m/s. La fuerza resultante ejercida
por los gases sobre el proyectil viene dada por:
a)  Construye un gráfico de F en función de t.
b)  Halla el tiempo que estuvo el proyectil dentro del
arma si F en la boca del arma valía sólo 200 N.
c)  Halla el impulso ejercido sobre el mismo y su
masa.
(SI)10·2800 5
tF −=
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
a)  Construye un gráfico de F en función de t.
t(s) 0 10-7 10-6 10-5 10-4 10-3
F(N) 800 799.98 799.8 798 780 600
F es una recta con pendiente negativa -2·10-5 N/s
(decreciente) y ordenada en el origen 800 N.
(SI)10·2800 5
tF −=
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
b)  Halla el tiempo que estuvo el proyectil dentro del
arma si F en la boca del arma valía sólo 200 N.
20010·2800 5
=−= tF ms3s003.0
10·2
200800
5
==
−
=t
J. C. Moreno Marín y S. Heredia Avalos
DFISTS
Escuela Politécnica Superior
Universidad de Alicante
Dinámica
c)  Halla el impulso ejercido sobre el mismo y su
masa.
t
p
F
d
d
= tFp dd = ∫=−
t
t
tFpp
0
d0
( ) 255
10800d10·2800
0
ttttp
t
t
−=−= ∫
( ) kg·m/s5.19.04.210·3104.210800
23525
=−=−=−== −
ttpI
kg003.0
500
5.1
===
v
I
m

Más contenido relacionado

La actualidad más candente

Problema resuelto no1
Problema resuelto no1Problema resuelto no1
Problema resuelto no1
JOSEOSE RODRIGUEZ RAMIREZ
 
Ley de Coulomb
Ley de CoulombLey de Coulomb
Ley de Coulomb
Yuri Milachay
 
Resistencia Interna de una bobina
Resistencia Interna de una bobinaResistencia Interna de una bobina
Resistencia Interna de una bobina
Cristian Rodriguez
 
Campos Electromagneticos - Tema 2
Campos Electromagneticos - Tema 2Campos Electromagneticos - Tema 2
Campos Electromagneticos - Tema 2
Diomedes Ignacio Domínguez Ureña
 
Pregunta ecaes fisica moderna
Pregunta ecaes fisica modernaPregunta ecaes fisica moderna
Pregunta ecaes fisica moderna
yohanvargas1
 
Problemas resueltos capitulo 23 fisica-serway
Problemas resueltos capitulo 23 fisica-serwayProblemas resueltos capitulo 23 fisica-serway
Problemas resueltos capitulo 23 fisica-serway
Victor Gutierrez
 
Potencial eléctrico (1)
Potencial eléctrico (1)Potencial eléctrico (1)
Potencial eléctrico (1)
Daniel Villota
 
05 fisica - ejercicios trabajo
05   fisica - ejercicios trabajo05   fisica - ejercicios trabajo
05 fisica - ejercicios trabajoQuimica Tecnologia
 
Lab propagación de errores
Lab propagación de erroresLab propagación de errores
Lab propagación de erroresSilvia Cedrez
 
Aplicaciones de dinámica al M.C.U.
Aplicaciones de dinámica al M.C.U.Aplicaciones de dinámica al M.C.U.
Aplicaciones de dinámica al M.C.U.
saliradu
 
FíSica CuáNtica
FíSica CuáNticaFíSica CuáNtica
FíSica CuáNticadiarmseven
 
S04-CT4- ECUACIONES DIMENSIONALES I
S04-CT4- ECUACIONES DIMENSIONALES IS04-CT4- ECUACIONES DIMENSIONALES I
S04-CT4- ECUACIONES DIMENSIONALES I
Jorge La Chira
 
F. g. taller nº 2 - trabajo, potencia y energia
F. g.   taller nº 2 - trabajo, potencia y energiaF. g.   taller nº 2 - trabajo, potencia y energia
F. g. taller nº 2 - trabajo, potencia y energia
Cesar Julio Rivera Gamboa
 
Problemario funciones
Problemario funcionesProblemario funciones
Problemario funcionestio2010
 
guia de fisica colegios mendel
guia de fisica  colegios mendelguia de fisica  colegios mendel
guia de fisica colegios mendel
williamhuillcara1
 
Ejercicio 4.37-t
Ejercicio 4.37-tEjercicio 4.37-t
Ejercicio 4.37-tMiguel Pla
 
Fuerza ejercicios soluciones
Fuerza ejercicios solucionesFuerza ejercicios soluciones
Fuerza ejercicios soluciones
roberto902
 

La actualidad más candente (20)

Problema resuelto no1
Problema resuelto no1Problema resuelto no1
Problema resuelto no1
 
Ley de Coulomb
Ley de CoulombLey de Coulomb
Ley de Coulomb
 
Resistencia Interna de una bobina
Resistencia Interna de una bobinaResistencia Interna de una bobina
Resistencia Interna de una bobina
 
Campos Electromagneticos - Tema 2
Campos Electromagneticos - Tema 2Campos Electromagneticos - Tema 2
Campos Electromagneticos - Tema 2
 
Pregunta ecaes fisica moderna
Pregunta ecaes fisica modernaPregunta ecaes fisica moderna
Pregunta ecaes fisica moderna
 
Problemas resueltos capitulo 23 fisica-serway
Problemas resueltos capitulo 23 fisica-serwayProblemas resueltos capitulo 23 fisica-serway
Problemas resueltos capitulo 23 fisica-serway
 
Potencial eléctrico (1)
Potencial eléctrico (1)Potencial eléctrico (1)
Potencial eléctrico (1)
 
05 fisica - ejercicios trabajo
05   fisica - ejercicios trabajo05   fisica - ejercicios trabajo
05 fisica - ejercicios trabajo
 
Lab propagación de errores
Lab propagación de erroresLab propagación de errores
Lab propagación de errores
 
Aplicaciones de dinámica al M.C.U.
Aplicaciones de dinámica al M.C.U.Aplicaciones de dinámica al M.C.U.
Aplicaciones de dinámica al M.C.U.
 
FíSica CuáNtica
FíSica CuáNticaFíSica CuáNtica
FíSica CuáNtica
 
Potencial electrico
Potencial electricoPotencial electrico
Potencial electrico
 
practica 3
 practica 3 practica 3
practica 3
 
Pd cap 2 2
Pd cap 2 2Pd cap 2 2
Pd cap 2 2
 
S04-CT4- ECUACIONES DIMENSIONALES I
S04-CT4- ECUACIONES DIMENSIONALES IS04-CT4- ECUACIONES DIMENSIONALES I
S04-CT4- ECUACIONES DIMENSIONALES I
 
F. g. taller nº 2 - trabajo, potencia y energia
F. g.   taller nº 2 - trabajo, potencia y energiaF. g.   taller nº 2 - trabajo, potencia y energia
F. g. taller nº 2 - trabajo, potencia y energia
 
Problemario funciones
Problemario funcionesProblemario funciones
Problemario funciones
 
guia de fisica colegios mendel
guia de fisica  colegios mendelguia de fisica  colegios mendel
guia de fisica colegios mendel
 
Ejercicio 4.37-t
Ejercicio 4.37-tEjercicio 4.37-t
Ejercicio 4.37-t
 
Fuerza ejercicios soluciones
Fuerza ejercicios solucionesFuerza ejercicios soluciones
Fuerza ejercicios soluciones
 

Similar a Dinamica ejercicios

Dinamica ejercicios SANTA CLARA 6TO B DE SECUNDARIA AÑO 2021 CLASES VIRTULES
Dinamica ejercicios SANTA CLARA 6TO B DE SECUNDARIA AÑO 2021 CLASES VIRTULESDinamica ejercicios SANTA CLARA 6TO B DE SECUNDARIA AÑO 2021 CLASES VIRTULES
Dinamica ejercicios SANTA CLARA 6TO B DE SECUNDARIA AÑO 2021 CLASES VIRTULES
JosManuelAlvarezAyal
 
dinamica-ejercicios.pdf
dinamica-ejercicios.pdfdinamica-ejercicios.pdf
dinamica-ejercicios.pdf
RickMiltonDelgadillo
 
dinamica_ejercicios_01.pdf
dinamica_ejercicios_01.pdfdinamica_ejercicios_01.pdf
dinamica_ejercicios_01.pdf
DeliciaAkumSimaObono
 
Taller Nº5-Fisica-2011 Resuelto.doc
Taller Nº5-Fisica-2011 Resuelto.docTaller Nº5-Fisica-2011 Resuelto.doc
Taller Nº5-Fisica-2011 Resuelto.doc
Servicio de Salud de Ñuble
 
Taller de dinámica física 10º ab iip 2011
Taller de dinámica física 10º ab  iip 2011Taller de dinámica física 10º ab  iip 2011
Taller de dinámica física 10º ab iip 2011Alba Rojas
 
Repaso segundo parcial fisica basica
Repaso segundo parcial fisica basicaRepaso segundo parcial fisica basica
Repaso segundo parcial fisica basica
Cesar García Najera
 
segundo parcial de fisica del cbc
segundo parcial de fisica del cbcsegundo parcial de fisica del cbc
segundo parcial de fisica del cbcapuntescbc
 
DIAPOSITIVAS FISICA 3º BGU BLOQUE DINAMICA.pptx
DIAPOSITIVAS FISICA 3º BGU BLOQUE DINAMICA.pptxDIAPOSITIVAS FISICA 3º BGU BLOQUE DINAMICA.pptx
DIAPOSITIVAS FISICA 3º BGU BLOQUE DINAMICA.pptx
Victor Hugo Caiza
 
Ej campoelectrico03
Ej campoelectrico03Ej campoelectrico03
Ej campoelectrico03
FreddyMartinez65
 
Tarea 1 fisica113_dinamica
Tarea 1 fisica113_dinamicaTarea 1 fisica113_dinamica
Tarea 1 fisica113_dinamica
Eduardo Mera
 
Ejercicios de mecanica clasica
Ejercicios de mecanica clasicaEjercicios de mecanica clasica
Ejercicios de mecanica clasica
Rodolfo Alvarez
 
Examen de física matemática de bachillerato con solucionario 2015
Examen de física matemática de bachillerato con solucionario 2015Examen de física matemática de bachillerato con solucionario 2015
Examen de física matemática de bachillerato con solucionario 2015
MCMurray
 
Dinamica
DinamicaDinamica
Dinamica
ROMMER ESCOBAR
 
Problema tema 2
Problema tema 2Problema tema 2
Problema tema 2
Olga Degracia
 
Dinamica semana 4 - 5
Dinamica   semana 4 - 5Dinamica   semana 4 - 5
Dinamica semana 4 - 5
Neil Sulca Taipe
 
Autoevaluación de dinámica
Autoevaluación de dinámicaAutoevaluación de dinámica
Autoevaluación de dinámica
daniel escobar
 
Examen de admisión fisica y quimica UNI 2013-I ccesa007
Examen de admisión  fisica y quimica  UNI 2013-I  ccesa007Examen de admisión  fisica y quimica  UNI 2013-I  ccesa007
Examen de admisión fisica y quimica UNI 2013-I ccesa007
Demetrio Ccesa Rayme
 

Similar a Dinamica ejercicios (20)

Dinamica ejercicios SANTA CLARA 6TO B DE SECUNDARIA AÑO 2021 CLASES VIRTULES
Dinamica ejercicios SANTA CLARA 6TO B DE SECUNDARIA AÑO 2021 CLASES VIRTULESDinamica ejercicios SANTA CLARA 6TO B DE SECUNDARIA AÑO 2021 CLASES VIRTULES
Dinamica ejercicios SANTA CLARA 6TO B DE SECUNDARIA AÑO 2021 CLASES VIRTULES
 
dinamica-ejercicios.pdf
dinamica-ejercicios.pdfdinamica-ejercicios.pdf
dinamica-ejercicios.pdf
 
dinamica_ejercicios_01.pdf
dinamica_ejercicios_01.pdfdinamica_ejercicios_01.pdf
dinamica_ejercicios_01.pdf
 
Taller Nº5-Fisica-2011 Resuelto.doc
Taller Nº5-Fisica-2011 Resuelto.docTaller Nº5-Fisica-2011 Resuelto.doc
Taller Nº5-Fisica-2011 Resuelto.doc
 
Taller de dinámica física 10º ab iip 2011
Taller de dinámica física 10º ab  iip 2011Taller de dinámica física 10º ab  iip 2011
Taller de dinámica física 10º ab iip 2011
 
Repaso segundo parcial fisica basica
Repaso segundo parcial fisica basicaRepaso segundo parcial fisica basica
Repaso segundo parcial fisica basica
 
segundo parcial de fisica del cbc
segundo parcial de fisica del cbcsegundo parcial de fisica del cbc
segundo parcial de fisica del cbc
 
DIAPOSITIVAS FISICA 3º BGU BLOQUE DINAMICA.pptx
DIAPOSITIVAS FISICA 3º BGU BLOQUE DINAMICA.pptxDIAPOSITIVAS FISICA 3º BGU BLOQUE DINAMICA.pptx
DIAPOSITIVAS FISICA 3º BGU BLOQUE DINAMICA.pptx
 
Dinamica
DinamicaDinamica
Dinamica
 
Grupo4 s2.doc
Grupo4 s2.docGrupo4 s2.doc
Grupo4 s2.doc
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
Ej campoelectrico03
Ej campoelectrico03Ej campoelectrico03
Ej campoelectrico03
 
Tarea 1 fisica113_dinamica
Tarea 1 fisica113_dinamicaTarea 1 fisica113_dinamica
Tarea 1 fisica113_dinamica
 
Ejercicios de mecanica clasica
Ejercicios de mecanica clasicaEjercicios de mecanica clasica
Ejercicios de mecanica clasica
 
Examen de física matemática de bachillerato con solucionario 2015
Examen de física matemática de bachillerato con solucionario 2015Examen de física matemática de bachillerato con solucionario 2015
Examen de física matemática de bachillerato con solucionario 2015
 
Dinamica
DinamicaDinamica
Dinamica
 
Problema tema 2
Problema tema 2Problema tema 2
Problema tema 2
 
Dinamica semana 4 - 5
Dinamica   semana 4 - 5Dinamica   semana 4 - 5
Dinamica semana 4 - 5
 
Autoevaluación de dinámica
Autoevaluación de dinámicaAutoevaluación de dinámica
Autoevaluación de dinámica
 
Examen de admisión fisica y quimica UNI 2013-I ccesa007
Examen de admisión  fisica y quimica  UNI 2013-I  ccesa007Examen de admisión  fisica y quimica  UNI 2013-I  ccesa007
Examen de admisión fisica y quimica UNI 2013-I ccesa007
 

Último

Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
Edurne Navarro Bueno
 
Semana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxSemana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptx
LorenaCovarrubias12
 
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de MadridHorarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
20minutos
 
Portafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPNPortafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPN
jmorales40
 
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
UNIDAD DE APRENDIZAJE DEL MES  Junio 2024UNIDAD DE APRENDIZAJE DEL MES  Junio 2024
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
EdwardYumbato1
 
PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.
https://gramadal.wordpress.com/
 
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernándezPRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
Ruben53283
 
Introducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BIIntroducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BI
arleyo2006
 
Fase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometricoFase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometrico
YasneidyGonzalez
 
Educar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdfEducar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdf
Demetrio Ccesa Rayme
 
Junio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividadesJunio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividades
cintiat3400
 
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdfAsistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Demetrio Ccesa Rayme
 
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptxCLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
LilianaRivera778668
 
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
HuallpaSamaniegoSeba
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
CESAR MIJAEL ESPINOZA SALAZAR
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
ClaudiaAlcondeViadez
 
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
sandradianelly
 
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptxSemana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
LorenaCovarrubias12
 
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdfHABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
DIANADIAZSILVA1
 
El fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docxEl fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docx
Alejandrino Halire Ccahuana
 

Último (20)

Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
 
Semana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxSemana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptx
 
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de MadridHorarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
 
Portafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPNPortafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPN
 
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
UNIDAD DE APRENDIZAJE DEL MES  Junio 2024UNIDAD DE APRENDIZAJE DEL MES  Junio 2024
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
 
PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.
 
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernándezPRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
 
Introducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BIIntroducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BI
 
Fase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometricoFase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometrico
 
Educar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdfEducar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdf
 
Junio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividadesJunio 2024 Fotocopiables Ediba actividades
Junio 2024 Fotocopiables Ediba actividades
 
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdfAsistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
 
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptxCLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
 
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
 
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
 
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptxSemana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
 
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdfHABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
HABILIDADES MOTRICES BASICAS Y ESPECIFICAS.pdf
 
El fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docxEl fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docx
 

Dinamica ejercicios

  • 1. Ejercicios de Física Dinámica J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante
  • 2. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica 1.  Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de 2 m/ s2 . a) ¿Cuál es la tensión de la cuerda? b) Una vez que el bloque se haya en movimiento se reduce la tensión de la cuerda a 49N, ¿Qué clase de movimiento tendrá lugar? c)  Si la cuerda se aflojase por completo se observaría que el cuerpo recorre aún 2m hacia arriba antes de detenerse, ¿Con qué velocidad se movía?
  • 3. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica a)  ¿Cuál es la tensión de la cuerda? T mg ∑ = maF mamgT =− ( )gamT += ( ) N598.925 =+=T
  • 4. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica b) Una vez que el bloque se haya en movimiento se reduce la tensión de la cuerda a 49 N, ¿Qué clase de movimiento tendrá lugar? T mg ∑ = maF mamgT =− g m T a −= 2 m/s08.9 5 49 =−=a movimiento uniforme
  • 5. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica c)  Si la cuerda se aflojase por completo se observaría que el cuerpo recorre aún 2 m hacia arriba antes de detenerse, ¿Con qué velocidad se movía? T mg at+= if vv gt−= i0 v g t iv = ggg gtth 2 i 2 i 2 i2 i 2 1 2 1 2 1 vvv v =−=−= g h 2 i 2 1 v = i 2 4·9.8 6.26 m/sgh= = =v
  • 6. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica Un caballo no quiere tirar de su carro. Las razones que da el caballo son: “De acuerdo con la tercera ley de Newton, la fuerza que yo ejerzo sobre el carro será contrarrestada por una fuerza igual y opuesta que ejercerá dicho carro sobre mí, de manera que la fuerza neta será cero y no tendré posibilidad de acelerar el carro” ¿Cuál es el error de este razonamiento?
  • 7. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica 2.  Dos bloques de masas m1 = 20 kg y m2 = 15 kg, apoyados el uno contra el otro, descansan sobre un suelo perfectamente liso. Se aplica al bloque m1 una fuerza F = 40 N horizontal y se pide: a) Aceleración con la que se mueve el sistema b) Fuerzas de interacción entre ambos bloques. Resolver el mismo problema para el caso en que el coeficiente de rozamiento entre los bloques y el suelo sea de 0.02.
  • 8. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica 2.  Dos bloques de masas m1 = 20 kg y m2 = 15 kg, apoyados el uno contra el otro, descansan sobre un suelo perfectamente liso. Se aplica al bloque m1 una fuerza F = 40 N horizontal y se pide: a) Aceleración con la que se mueve el sistema b) Fuerzas de interacción entre ambos bloques. F m1 m2
  • 9. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica a)  Aceleración con la que se mueve el sistema. b)  Fuerzas de interacción entre ambos bloques. En el bloque de masa m2: F P1 P2 N1 N2 F1 F2 2 21 m/s14.1 1520 40 = + = + = mm F a( )ammF 21 += N1.1714.11522 =⋅== amF En el bloque de masa m1: N1.1721 == FF
  • 10. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica a)  Aceleración con la que se mueve el sistema. b)  Fuerzas de interacción entre ambos bloques. La aceleración de m2: F P1 P2 N1 N2 F1 F2 2 21 m/s14.1 1520 40 = + = + = mm F a( )ammF 21 += 2 2 2 m/s14.1 15 1.17 === m F a N1.172 =F
  • 11. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica a)  Aceleración con la que se mueve el sistema. b)  Fuerzas de interacción entre ambos bloques. La aceleración de m1: F P1 P2 N1 N2 F1 F2 2 21 m/s14.1 1520 40 = + = + = mm F a( )ammF 21 += 2 1 1 m/s14.1 20 9.22 == − = m FF a N9.221.17401 =−=−FF
  • 12. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica a)  Aceleración con la que se mueve el sistema. Resolver el mismo problema cuando el coeficiente de rozamiento entre los bloques y el suelo es de 0.02. F P1 P2 N1 N2F’1 F’2 FR1 FR2 ⎭ ⎬ ⎫ = = gmN gmN 22 11 ⎭ ⎬ ⎫ µ= µ= gmF gmF 22r 11r ( ) '212r1r ammFFF +=−− ( ) 21 21 ' mm mmgF a + +µ− = 2 m/s94.0 35 358.902.040 ' = ⋅⋅− =a
  • 13. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica b)  Fuerzas de interacción entre ambos bloques. Resolver el mismo problema cuando el coeficiente de rozamiento entre los bloques y el suelo es de 0.02. F P1 P2 N1 N2F’1 F’2 FR1 FR2 En el bloque de masa m2: '' 22r2 amFF =− '' 22r2 amFF += N04.17 94.0158.91502.0'2 = ⋅+⋅⋅=F N04.17'' 21 == FF En el bloque de masa m1:
  • 14. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica 3.  Un cuerpo desliza a lo largo de un plano inclinado con un ángulo de 30º y luego continúa moviéndose sobre el plano horizontal. Determinar el coeficiente de rozamiento si se sabe que el cuerpo recorre en el plano inclinado la misma distancia que en el horizontal. v=0v v=0 at a’t’30º
  • 15. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica La velocidad inicial del tramo inclinado y la velocidad final del tramo horizontal son nulas. Plano inclinado: v=0v v=0 at a’t’30º 2 2 1 ate = at+= if vv at=fv 2 i '' 2 1 ''' tate −= v '''' if ta−= vv '''i ta=v Plano horizontal:
  • 16. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica La velocidad al final del tramo inclinado el igual a la velocidad al inicio del tramo horizontal: at=fv '''i ta=v 'if vv = ''taat = La distancia recorrida en el plano inclinado es igual a la distancia recorrida en el tramo horizontal 2222 i 2 '' 2 1 '' 2 1 '''' 2 1 ''' 2 1 tatatatate ate =−=−= = v ' ' tt aa = = 'ee = 22 ''taat =
  • 17. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica Plano inclinado: Plano horizontal: v=0v v=0 at a’t’30º θµ−θ= cossin mgmgF ( )θµ−θ= cossinga mgF µ=' ga µ=' θ+ θ =µ cos1 sin 268.0 º30cos1 º30sin = + =µ
  • 18. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica 4.  Por una pista horizontal cubierta de nieve, se desliza un trineo, de masa m = 105 kg, con velocidad v = 36 km/h. El coeficiente de rozamien- to entre el trineo y la nieve es de µ = 0.025. Calcula: a)  El tiempo que tardará en pararse el trineo. b)  Distancia recorrida antes de pararse. mg N FR v0
  • 19. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica a)  El tiempo que tardará en pararse el trineo. N7.258.9105025.0r =⋅⋅=µ= mgF maF =r 2r m/s24476.0 105 7.25 === m F a 0if =−= atvv s86.40 24476.03600 36000i = ⋅ == a t v mg N FR v0
  • 20. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica b)  Distancia recorrida antes de pararse. mg N FR v0 m3.20486.4024476.0 2 1 86.4010 2 1 22 i =⋅−⋅=−= attx v
  • 21. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica 5.  Un bloque de 16 kg y otro de 8 kg se encuentran sobre una superficie horizontal sin rozamiento unidos por una cuerda A y son arrastrados sobre la superficie por una segunda cuerda B, adquiriendo una aceleración constante de 0.5 m/s2. Calcúlese la tensión de cada cuerda. a A TA mB=16kgTA TB mA=8kg
  • 22. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica a A TA mB=16kgTA TB mA=8kg ⎭ ⎬ ⎫ =− = amTT amT BAB AA ( ) ( ) N125.0168BAB =+=+= ammT N45.08AA =⋅== amT
  • 23. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica 6.  Calcular las aceleraciones de los bloques A y B de masas 200 kg y 100 kg suponiendo que el sistema parte del reposo, que el coeficiente de rozamiento entre el bloque B y el plano es de 0.25 y que se desprecia la masa de las poleas y el rozamiento de las cuerdas. A B 30º
  • 24. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante T’ mA.g T’T’ T A B mB.g mB.g.sen30º 30º FR Dinámica El espacio recorrido por el bloque B es el doble del recorrido por el bloque A. La ec. de Newton para la polea, bloque A y bloque B: ⎪ ⎭ ⎪ ⎬ ⎫ =θ−θµ− =− = BBBB AAA sincos' '2 amgmgmT amTgm TT AB 2aa =
  • 25. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica BBAABBA 2sin2cos2 amamgmgmgm +=θ−θµ− AB 2aa = 2 BA BBA A m/s92.0 4 sin2cos2 = + θ−θµ− = mm gmgmgm a 2 AB m/s84.12 == aa
  • 26. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante a=1m/s2 T M.g _ + Dinámica 7.  Un ascensor que pesa 8 toneladas está sometido a una aceleración dirigida hacia arriba de 1m/s2. a)  Calcular la tensión del cable que lo sostiene. b)  ¿Qué fuerza vertical hacia arriba ejercerá el ascensor sobre un viajero que pesa 80 kg?
  • 27. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica a)  Calcular la tensión del cable que lo sostiene. b)  ¿Qué fuerza vertical hacia arriba ejercerá el ascensor sobre un viajero que pesa 80 kg? maTmg =− ( )180008.98000 −=−⋅ T N864008.108000 =⋅=T maFmg =− ( )agmF −= ( )[ ] N86418.980 =−−=F
  • 28. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante d m.g FN=m.aN=m.v2 /R α e=7.2m α N R=600m Dinámica 8.  Una autopista tiene 7.2 m de ancho. Calcula la diferencia de nivel entre los bordes externo e interno del camino a fin de que un automóvil pueda viajar a 80 km/h (sin experimentar fuerzas laterales) alrededor de una curva cuyo radio es de 600 m.
  • 29. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante d m.g FN=m.aN=m.v2 /R α e=7.2m α N R=600m Dinámica ⎪ ⎭ ⎪ ⎬ ⎫ =α =α mgN mN cos sin R v2 e d ==α gR v2 tan R v2 mmaF NN == ( ) m6.0 6008.9 2.73600/80000 2 = ⋅ ⋅ == gR v2 e d
  • 30. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica 9.  A través de una polea que permanece inmóvil, pasa una cuerda de la cual están suspendidas tres masas de 2 kg cada una. Encuentra la aceleración del sistema y la tensión de la cuerda que une las cargas A y B. A BD
  • 31. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica mA.g TA mB.g mC.g TA TBTC ⎪ ⎭ ⎪ ⎬ ⎫ =− =+− =− maTmg maTTmg mamgT A AB C ag 3= 3 g a = N06.138.92 3 2 3 2 A =⋅==−= mgmamgT Sumando… BC TT =
  • 32. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica 10.  Un punto material de masa m está suspendido de un hilo inextensible y sin masa de longitud L. El otro extremo está fijo al eje vertical que gira con velocidad angular constante ω, arrastrando en su rotación al hilo y a la masa m. Determinar, en función de ω, el ángulo que forman el hilo y la vertical. m.g T FC L R=Lsenθ θ
  • 33. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica m.g T FC L R=Lsenθ θ ⎪ ⎪ ⎭ ⎪⎪ ⎬ ⎫ =θ ω== mg F Rm R mF C 2 2 C tan v ⎭ ⎬ ⎫ θ= θω= tan sin C 2 C mgF LmF θ=θω tansin2 mgLm L g 2 cos ω =θ
  • 34. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica 11.  Una mesa de 26 kg es arrastrada por el suelo por una fuerza constante de 230 N, siendo µ = 0.5 el coeficiente de rozamiento. a)  Hállese la aceleración de la mesa. b)  Calcúlese la fuerza normal sobre cada pata. F G 90 cm 90 cm90 cm 60 cm
  • 35. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica a)  Hállese la aceleración de la mesa. Al arrastrar no deberá volcar: m.g R1 N1 G R2 N2 F maRRF =−− 21 maNNF =µ−µ− 21 mgNN =+ 21 0G =∑M 0906.0609.03.0 1122 =⋅+⋅µ−⋅µ−⋅−⋅− .NN.NNF 042 21 =+− NNF 0.3 0.6 0.9
  • 36. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica a)  Hállese la aceleración de la mesa. m.g R1 N1 G R2 N2 F ⎪ ⎭ ⎪ ⎬ ⎫ =+− =+ =−− 042 22 21 21 21 NNF mgNN maNNF ⎪ ⎭ ⎪ ⎬ ⎫ =+− =+ =−− 042230 8.254 52460 21 21 21 NN NN aNN 2 m/s94.3 52 2.205 ==a
  • 37. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica a)  Calcúlese la fuerza normal sobre cada pata. m.g R1 N1 G R2 N2 F ⎪ ⎭ ⎪ ⎬ ⎫ =+− =+ =−− 042230 8.254 52460 21 21 21 NN NN aNN ⎭ ⎬ ⎫ =− =+ 1152 8.254 21 21 NN NN 8.1393 2 =N N6.462 =N N2.2088.254 21 =−= NN
  • 38. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica 12.  Se deja caer un cuerpo de densidad 0.8 g/cm3 y 1000 cm3 de volumen desde una altura de 78.4 m sobre benceno, de densidad 0.9 g/cm3. Calcula el tiempo que tardará en alcanzar la profundidad máxima. ¿Cómo funciona un termómetro de Galileo? Se trata de una colum- na cilíndrica de vidrio cerrada con un líquido transparente. En el inte- rior hay varias “esferas” de vidrio de distinta densidad, con una cha- pita en la cual se marca una tem- peratura.
  • 39. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica Velocidad con la que llega el cuerpo a la superficie: Tiempo que tarda: Cuando se sumerge, aparece el empuje como fuerza de frenado: m/s2.394.788.922 =⋅⋅== ghv s4 8.9 2.39 1 === g t v maPEF =−= VaVgVg cuerpocuerpobenceno ρ=ρ−ρ 2 cuerpo cuerpobenceno m/s225.18.9 8.0 8.09.0 = − = ρ ρ−ρ = ga
  • 40. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica Tiempo que tarda en parar es: Y por lo tanto, el tiempo total en alcanzar la profundi- dad máxima es la suma de los dos tiempos: 2if 0 at−== vv s32 225.1 2.39i 2 === a t v s3643221total =+=+= ttt
  • 41. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica 13. Una masa puntual de 2 kg describe una curva en el espacio. La curva tiene por ecuaciones: siendo t el tiempo. Calcula al cabo de 2 segundos: a)  Los vectores velocidad y aceleración. b)  El vector cantidad de movimiento. c)  El momento cinético respecto al origen. d)  La fuerza que actúa sobre la masa puntual. 3 2 4 , 2 , 1 4 ,x t y t t z t= = − =
  • 42. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica a)  Los vectores velocidad y aceleración. 3 2 d d 41 d d 3 d d t t z t t y t t x z y x == −== == v v v ( ) ( ) ( ) m/s82 m/s72 m/s122 == −== == t t t z y x v v v ( ) m/s87122 kjiv +−==t
  • 43. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica a)  Los vectores velocidad y aceleración. 2 3 d d 4 d d 6 d d t t a t t a t t a z z y y x x == −== == v v v ( ) ( ) ( ) 2 2 2 m/s122 m/s42 m/s122 == −== == ta ta ta z y x ( ) 2 m/s124122 kjia +−==t
  • 44. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica b)  El vector cantidad de movimiento. ( ) m/skg16142487122 ⋅+−=+−== kjikjivp m ( ) ( )kjikjiprL 161424468 +−×+−=×= s/mkg323240 2 ⋅+−−= kjiL ( ) 2 m/skg24824124122 ⋅+−=+−== kjikjiaF m d)  La fuerza que actúa sobre la masa puntual. c)  El momento cinético respecto al origen.
  • 45. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica 14.  El vector de posición de un punto material de 2 kg, que se desplaza en el plano XY es: Calcula: a)  El momento respecto al origen de coordenadas de la fuerza responsable de su movimiento. b)  El momento lineal de la partícula. c)  El momento angular de la partícula respecto al origen de coordenadas. jir 2 43 tt +=
  • 46. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica a)  El momento respecto al origen de coordenadas de la fuerza responsable de su movimiento. jir 2 43 tt += ( ) m/skg16643 d d d d 2 ⋅+=−=== jiji r vp ttt t m t mm N16 d d j p F == t mN48 0160 043 2 ⋅==×= k kji FrM ttt
  • 47. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica b)  El momento lineal de la partícula. c)  El momento angular de la partícula respecto al origen de coordenadas. ( ) m/skg16643 d d d d 2 ⋅+=−=== jiji r vp ttt t m t mm /smkg24 0166 043 222 ⋅==×= k kji prL t t tt
  • 48. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica 15.  Un proyectil sale por la boca de un arma con una velocidad de 500 m/s. La fuerza resultante ejercida por los gases sobre el proyectil viene dada por: a)  Construye un gráfico de F en función de t. b)  Halla el tiempo que estuvo el proyectil dentro del arma si F en la boca del arma valía sólo 200 N. c)  Halla el impulso ejercido sobre el mismo y su masa. (SI)10·2800 5 tF −=
  • 49. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica a)  Construye un gráfico de F en función de t. t(s) 0 10-7 10-6 10-5 10-4 10-3 F(N) 800 799.98 799.8 798 780 600 F es una recta con pendiente negativa -2·10-5 N/s (decreciente) y ordenada en el origen 800 N. (SI)10·2800 5 tF −=
  • 50. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica b)  Halla el tiempo que estuvo el proyectil dentro del arma si F en la boca del arma valía sólo 200 N. 20010·2800 5 =−= tF ms3s003.0 10·2 200800 5 == − =t
  • 51. J. C. Moreno Marín y S. Heredia Avalos DFISTS Escuela Politécnica Superior Universidad de Alicante Dinámica c)  Halla el impulso ejercido sobre el mismo y su masa. t p F d d = tFp dd = ∫=− t t tFpp 0 d0 ( ) 255 10800d10·2800 0 ttttp t t −=−= ∫ ( ) kg·m/s5.19.04.210·3104.210800 23525 =−=−=−== − ttpI kg003.0 500 5.1 === v I m