1. Hallar,paso a paso,los6 primerostérminosde lassiguientessucesiones:
a) 𝑈 𝑛 = ( 𝑛 − 1) 𝑛−1 𝑛 ≥ 3
𝑈3 = (3 − 1)3−1 = (2)2 = 4
𝑈4 = (4 − 1)4−1 = (3)3 = 27
𝑈5 = (5 − 1)5−1 = (4)4 = 256
𝑈6 = (6 − 1)6−1 = (5)5 = 3125
𝑈7 = (7 − 1)7−1 = (6)6 = 46656
𝑈8 = (8 − 1)8−1 = (7)7 = 823543
b) 𝑉𝑛 = (
3𝑛
𝑛+1
) 𝑛 ≥ 1
𝑉1 = (
3(1)
1 + 1
) =
3
2
𝑉2 = (
3(2)
2 + 1
) =
6
3
𝑉3 = (
3(3)
3 + 1
) =
9
4
𝑉4 = (
3(4)
4 + 1
) =
12
5
𝑉5 = (
3(5)
5 + 1
) =
15
6
𝑉6 = (
3(6)
6 + 1
) =
18
7
c) 𝑈𝑛 = ( 𝑛 − 1) 𝑛−2 𝑛 ≥ 1
𝑈1 = (1 − 1)1−2 = (0)−1 = 0
𝑈2 = (2 − 1)2−2 = (1)0 = 1
𝑈3 = (3 − 1)3−2 = (2)1 = 2
𝑈4 = (4 − 1)4−2 = (3)2 = 9
𝑈5 = (5 − 1)5−2 = (4)3 = 64
𝑈6 = (6 − 1)6−2 = (5)4 = 625
2. Determine si la sucesión 𝑊𝑛 = (
𝑛
2𝑛+1
) es convergente o divergente. Demuéstrelo paso a
paso.
Primeros términos de la sucesión:
𝑊1 = (
1
2(1) + 1
) =
1
3
𝑊2 = (
2
2(2) + 1
) =
2
5
𝑊3 = (
3
2(3) + 1
) =
3
7
𝑊4 = (
4
2(4) + 1
) =
4
9
𝑊5 = (
5
2(5) + 1
) =
5
11
𝑊6 = (
6
2(6) + 1
) =
6
13
Entonces el conjunto de los primeros términos de la sucesión es:
𝑊1 = {
1
3
,
2
5
,
3
7
,
4
9
,
5
11
,
6
13
,
7
5
, …… …} = {0,33;0,4;0,4285;0,4444; 0,4545; 0,4615}
Es claro que la sucesión es creciente y tiende a 5 por lo que su cota superior es igual a 0,5. Ahora
aplicando el teorema de convergencia.
lim
𝑛→∞
{ 𝑈 𝑛} ≤ 𝑀
Es decir si el límite de la sucesión cuando tiende a infinito es menor o igual a la cota superior se
podría afirmar que la sucesión converge.
Resolviendo el límite de la sucesión:
lim
𝑛→∞
(
𝑛
2𝑛 + 1
)
lim
𝑛→∞
(
1
2 +
1
𝑛
) =
1
lim
𝑛→∞
(2 +
1
𝑛
)
=
1
lim
𝑛→∞
2 + lim
𝑛→∞
1
𝑛
lim
𝑛→∞
(
𝑛
2𝑛 + 1
) =
1
2 + lim
𝑛→∞
1
𝑛
=
1
2 +
1
lim
𝑛→∞
𝑛
lim
𝑛→∞
(
𝑛
2𝑛 + 1
) =
1
2
El límite de la sucesión es igual a 𝐿 =
1
2
, entonces es igual a la cota superior que es M=0,5 por lo
tanto se puede decir que la sucesión es convergente.
3. Sucesionesacotadas.Halle lascotasde las siguientessucesionesydeterminar,conellas,si
son o no crecientes.
a) 𝑂𝑐 =
3𝑛2+1
6𝑛2+2𝑛+1
𝑂1 =
3(1)2 + 1
6(1)2 + 2(1) + 1
=
4
9
𝑂2 =
3(2)2 + 1
6(2)2 + 2(2) + 1
=
13
29
𝑂3 =
3(3)2 + 1
6(3)2 + 2(3) + 1
=
28
61
𝑂4 =
3(4)2 + 1
6(4)2 + 2(4) + 1
=
7
15
𝑂5 =
3(5)2 + 1
6(5)2 + 2(5) + 1
=
76
161
𝑂6 =
3(6)2 + 1
6(6)2 + 2(6) + 1
=
109
229
𝑂𝑐+1 − 𝑂𝑐 > 0 𝑒𝑠 𝑐𝑟𝑒𝑐𝑖𝑒𝑛𝑡𝑒
𝑂𝑐+1 − 𝑂𝑐 < 0 𝑒𝑠 𝑑𝑒𝑐𝑟𝑒𝑐𝑖𝑒𝑛𝑡𝑒
3(𝑛 + 1)2 + 1
6(𝑛 + 1)2 + 2(𝑛 + 1) + 1
−
3𝑛2 + 1
6𝑛2 + 2𝑛 + 1
[3(𝑛 + 1)2 + 1].[6𝑛2 + 2𝑛 + 1] − [3𝑛2 + 1].[6(𝑛 + 1)2 + 2(𝑛 + 1) + 1]
[6(𝑛 + 1)2 + 2(𝑛 + 1) + 1][6𝑛2 + 2𝑛 + 1]
Denominador:
[6(𝑛 + 1)2 + 2(𝑛 + 1) + 1][6𝑛2 + 2𝑛 + 1]
[6(𝑛2 + 2𝑛 + 1) + 2(𝑛 + 1) + 1][6𝑛2 + 2𝑛 + 1]
[6𝑛2 + 12𝑛 + 6 + 2𝑛 + 2 + 1][6𝑛2 + 2𝑛 + 1]
[6𝑛2 + 14𝑛 + 9][6𝑛2 + 2𝑛 + 1]
Numerador:
[3(𝑛 + 1)2 + 1].[6𝑛2 + 2𝑛 + 1] − [3𝑛2 + 1].[6(𝑛 + 1)2 + 2(𝑛 + 1) + 1]
Del denominador reemplazamos:
[3(𝑛2 + 2𝑛 + 1) + 1].[6𝑛2 + 2𝑛 + 1] − [3𝑛2 + 1].[6𝑛2 + 14𝑛 + 9]
[3𝑛2 + 6𝑛 + 4].[6𝑛2 + 2𝑛 + 1] − [3𝑛2 + 1].[6𝑛2 + 14𝑛 + 9]
[18𝑛4 + 42𝑛3 + 39𝑛2 + 14𝑛 + 4] − [18𝑛4 + 42𝑛3 + 33𝑛2 + 14𝑛 + 9] = [6𝑛2 − 5]
Entonces:
6𝑛2 − 5
[6𝑛2 + 14𝑛 + 9][6𝑛2 + 2𝑛 + 1]
> 0
Comontomavalores igualesalosenterospositivosmayoresquecero,elresultadoesmayor
que cero se dice la sucesión es creciente.
Por análisisse puede verque la sucesión tiene unacotasuperior 𝑀 =
1
2
cuandon crece la
sucesióntiendeaeste valor, ytiene unacota inferior 𝑁 =
4
9
.Sucesiónacotada.
b) 𝑂𝑐 =
5𝑛+1
𝑛2
𝑂1 =
5(1) + 1
(1)2 =
6
1
= 6
𝑂2 =
5(2) + 1
(2)2 =
11
4
𝑂3 =
5(3) + 1
(3)2 =
16
9
𝑂4 =
5(4) + 1
(4)2 =
21
16
𝑂5 =
5(5) + 1
(5)2 =
26
25
𝑂6 =
5(6) + 1
(6)2 =
31
36
𝑂𝑐+1 − 𝑂𝑐 > 0 𝑒𝑠 𝑐𝑟𝑒𝑐𝑖𝑒𝑛𝑡𝑒
𝑂𝑐+1 − 𝑂𝑐 < 0 𝑒𝑠 𝑑𝑒𝑐𝑟𝑒𝑐𝑖𝑒𝑛𝑡𝑒
5(𝑛 + 1) + 1
(𝑛 + 1)2 −
5𝑛 + 1
𝑛2 =
𝑛2(5(𝑛 + 1) + 1) − (5𝑛 + 1)(𝑛 + 1)2
𝑛2(𝑛 + 1)2
𝑛2(5𝑛 + 5 + 1) − (5𝑛 + 1)(𝑛2 + 2𝑛 + 1)
𝑛2(𝑛 + 1)2 =
(5𝑛3 + 6𝑛2) − (5𝑛3 + 11𝑛2 + 7𝑛 + 1)
𝑛2(𝑛 + 1)2
(5𝑛3 + 6𝑛2) − (5𝑛3 + 11𝑛2 + 7𝑛 + 1)
𝑛2(𝑛 + 1)2 =
−(5𝑛2 + 7𝑛 + 1)
𝑛2(𝑛 + 1)2 < 0
Como n toma valores iguales a los enteros positivos mayores que cero el denominador
siempre serámayorque cero peroel numeradortomasiempre valoresnegativosentonces
el resultado es que esta sucesión es decreciente.
La sucesióntiene unacotasuperiorM=6cuando n=1,yuna cotainferiorN=0,yaque cuando
n crece al infinito el valor de la sucesión tiende a ser cero. Así esta sucesión es acotada.
C) 𝑌𝑛 = (
1
𝑛
) 𝑛 ≥ 1
𝑌1 =
1
1
= 1
𝑌2 =
1
2
=
1
2
𝑌3 =
1
3
=
1
3
𝑌4 =
1
4
=
1
4
𝑌5 =
1
5
=
1
5
𝑌6 =
1
6
=
1
6
𝑂𝑐+1 − 𝑂𝑐 > 0 𝑒𝑠 𝑐𝑟𝑒𝑐𝑖𝑒𝑛𝑡𝑒
𝑂𝑐+1 − 𝑂𝑐 < 0 𝑒𝑠 𝑑𝑒𝑐𝑟𝑒𝑐𝑖𝑒𝑛𝑡𝑒
1
𝑛 + 1
−
1
𝑛
=
𝑛 − ( 𝑛 + 1)
𝑛( 𝑛 + 1)
=
−1
𝑛(𝑛 + 1)
Comon solopuede tomarvaloresmayoresoigualesa1 el valorde la relaciónsiempreserá
negativo así pues se puede afirmar que la sucesión es decreciente.
Puede verse que lasucesióntienecomocotasuperiorM=1 y comocota inferiorN=0ya que
a medida que n crece el término de la sucesión tiende a cero.
4. Halle la suma de los números múltiplos de 6 menores o iguales a 9126. Y diga ¿Cuántos
términos hay?
Primer término es 6, y el último es 9126 entonces:
𝑈𝑛 = 𝑈1 + 𝑟(𝑛 − 1)
Reemplazando:
9126 = 6 + 6(𝑛 − 1)
Despejando n:
𝑛 = 1 +
(9126 − 6)
6
= 1521 𝑡𝑒𝑟𝑚𝑖𝑛𝑜𝑠
Suma:
𝑆 𝑛 =
𝑛(𝑈1 + 𝑈 𝑛)
2
=
1521(6 + 9126)
2
= 6944886
5. Halle lasuma de losnúmerosparesde tres cifras.Y diga¿Cuántostérminoshay?
Este problema tiene una razón de 2, el primer término es 100 y el último es 998 entonces:
𝑈𝑛 = 𝑈1 + 𝑟(𝑛 − 1)
Reemplazando:
998 = 100 + 2(𝑛 − 1)
Despejando n:
𝑛 = 1 +
(998 − 100)
2
= 450 𝑡𝑒𝑟𝑚𝑖𝑛𝑜𝑠
Suma:
𝑆 𝑛 =
𝑛(𝑈1 + 𝑈 𝑛)
2
=
450(100 + 998)
2
= 247050
6. En una progresión aritmética el tercer término es 24 y el décimo término es 66. Hallar el
primer término y la diferencia común de la progresión.
𝑈3 = 24 𝑈10 = 66
𝑈𝑛 = 𝑈1 + 𝑟(𝑛 − 1)
24 = 𝑈1 + 𝑟(3 − 1)
(1) 24 = 𝑈1 + 2𝑟
66 = 𝑈1 + 𝑟(10 − 1)
(2) 66 = 𝑈1 + 9𝑟
𝑈1 = −2𝑟 + 24 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑛𝑑𝑜 𝑒𝑛 (2)
66 = (−2𝑟 + 24) + 9𝑟 → 66 = 7𝑟 + 24
66 − 24 = 7𝑟 → 𝑟 =
42
7
= 6
24 = 𝑈1 + 2(6) = 𝑈1 + 12
𝑈1 = 24 − 12 = 12

Ejercicios de susceciones

  • 1.
    1. Hallar,paso apaso,los6 primerostérminosde lassiguientessucesiones: a) 𝑈 𝑛 = ( 𝑛 − 1) 𝑛−1 𝑛 ≥ 3 𝑈3 = (3 − 1)3−1 = (2)2 = 4 𝑈4 = (4 − 1)4−1 = (3)3 = 27 𝑈5 = (5 − 1)5−1 = (4)4 = 256 𝑈6 = (6 − 1)6−1 = (5)5 = 3125 𝑈7 = (7 − 1)7−1 = (6)6 = 46656 𝑈8 = (8 − 1)8−1 = (7)7 = 823543 b) 𝑉𝑛 = ( 3𝑛 𝑛+1 ) 𝑛 ≥ 1 𝑉1 = ( 3(1) 1 + 1 ) = 3 2 𝑉2 = ( 3(2) 2 + 1 ) = 6 3 𝑉3 = ( 3(3) 3 + 1 ) = 9 4 𝑉4 = ( 3(4) 4 + 1 ) = 12 5 𝑉5 = ( 3(5) 5 + 1 ) = 15 6 𝑉6 = ( 3(6) 6 + 1 ) = 18 7 c) 𝑈𝑛 = ( 𝑛 − 1) 𝑛−2 𝑛 ≥ 1 𝑈1 = (1 − 1)1−2 = (0)−1 = 0 𝑈2 = (2 − 1)2−2 = (1)0 = 1 𝑈3 = (3 − 1)3−2 = (2)1 = 2 𝑈4 = (4 − 1)4−2 = (3)2 = 9 𝑈5 = (5 − 1)5−2 = (4)3 = 64 𝑈6 = (6 − 1)6−2 = (5)4 = 625
  • 2.
    2. Determine sila sucesión 𝑊𝑛 = ( 𝑛 2𝑛+1 ) es convergente o divergente. Demuéstrelo paso a paso. Primeros términos de la sucesión: 𝑊1 = ( 1 2(1) + 1 ) = 1 3 𝑊2 = ( 2 2(2) + 1 ) = 2 5 𝑊3 = ( 3 2(3) + 1 ) = 3 7 𝑊4 = ( 4 2(4) + 1 ) = 4 9 𝑊5 = ( 5 2(5) + 1 ) = 5 11 𝑊6 = ( 6 2(6) + 1 ) = 6 13 Entonces el conjunto de los primeros términos de la sucesión es: 𝑊1 = { 1 3 , 2 5 , 3 7 , 4 9 , 5 11 , 6 13 , 7 5 , …… …} = {0,33;0,4;0,4285;0,4444; 0,4545; 0,4615} Es claro que la sucesión es creciente y tiende a 5 por lo que su cota superior es igual a 0,5. Ahora aplicando el teorema de convergencia. lim 𝑛→∞ { 𝑈 𝑛} ≤ 𝑀 Es decir si el límite de la sucesión cuando tiende a infinito es menor o igual a la cota superior se podría afirmar que la sucesión converge. Resolviendo el límite de la sucesión: lim 𝑛→∞ ( 𝑛 2𝑛 + 1 ) lim 𝑛→∞ ( 1 2 + 1 𝑛 ) = 1 lim 𝑛→∞ (2 + 1 𝑛 ) = 1 lim 𝑛→∞ 2 + lim 𝑛→∞ 1 𝑛 lim 𝑛→∞ ( 𝑛 2𝑛 + 1 ) = 1 2 + lim 𝑛→∞ 1 𝑛 = 1 2 + 1 lim 𝑛→∞ 𝑛 lim 𝑛→∞ ( 𝑛 2𝑛 + 1 ) = 1 2
  • 3.
    El límite dela sucesión es igual a 𝐿 = 1 2 , entonces es igual a la cota superior que es M=0,5 por lo tanto se puede decir que la sucesión es convergente. 3. Sucesionesacotadas.Halle lascotasde las siguientessucesionesydeterminar,conellas,si son o no crecientes. a) 𝑂𝑐 = 3𝑛2+1 6𝑛2+2𝑛+1 𝑂1 = 3(1)2 + 1 6(1)2 + 2(1) + 1 = 4 9 𝑂2 = 3(2)2 + 1 6(2)2 + 2(2) + 1 = 13 29 𝑂3 = 3(3)2 + 1 6(3)2 + 2(3) + 1 = 28 61 𝑂4 = 3(4)2 + 1 6(4)2 + 2(4) + 1 = 7 15 𝑂5 = 3(5)2 + 1 6(5)2 + 2(5) + 1 = 76 161 𝑂6 = 3(6)2 + 1 6(6)2 + 2(6) + 1 = 109 229 𝑂𝑐+1 − 𝑂𝑐 > 0 𝑒𝑠 𝑐𝑟𝑒𝑐𝑖𝑒𝑛𝑡𝑒 𝑂𝑐+1 − 𝑂𝑐 < 0 𝑒𝑠 𝑑𝑒𝑐𝑟𝑒𝑐𝑖𝑒𝑛𝑡𝑒 3(𝑛 + 1)2 + 1 6(𝑛 + 1)2 + 2(𝑛 + 1) + 1 − 3𝑛2 + 1 6𝑛2 + 2𝑛 + 1 [3(𝑛 + 1)2 + 1].[6𝑛2 + 2𝑛 + 1] − [3𝑛2 + 1].[6(𝑛 + 1)2 + 2(𝑛 + 1) + 1] [6(𝑛 + 1)2 + 2(𝑛 + 1) + 1][6𝑛2 + 2𝑛 + 1] Denominador: [6(𝑛 + 1)2 + 2(𝑛 + 1) + 1][6𝑛2 + 2𝑛 + 1] [6(𝑛2 + 2𝑛 + 1) + 2(𝑛 + 1) + 1][6𝑛2 + 2𝑛 + 1] [6𝑛2 + 12𝑛 + 6 + 2𝑛 + 2 + 1][6𝑛2 + 2𝑛 + 1] [6𝑛2 + 14𝑛 + 9][6𝑛2 + 2𝑛 + 1] Numerador: [3(𝑛 + 1)2 + 1].[6𝑛2 + 2𝑛 + 1] − [3𝑛2 + 1].[6(𝑛 + 1)2 + 2(𝑛 + 1) + 1] Del denominador reemplazamos: [3(𝑛2 + 2𝑛 + 1) + 1].[6𝑛2 + 2𝑛 + 1] − [3𝑛2 + 1].[6𝑛2 + 14𝑛 + 9] [3𝑛2 + 6𝑛 + 4].[6𝑛2 + 2𝑛 + 1] − [3𝑛2 + 1].[6𝑛2 + 14𝑛 + 9] [18𝑛4 + 42𝑛3 + 39𝑛2 + 14𝑛 + 4] − [18𝑛4 + 42𝑛3 + 33𝑛2 + 14𝑛 + 9] = [6𝑛2 − 5]
  • 4.
    Entonces: 6𝑛2 − 5 [6𝑛2+ 14𝑛 + 9][6𝑛2 + 2𝑛 + 1] > 0 Comontomavalores igualesalosenterospositivosmayoresquecero,elresultadoesmayor que cero se dice la sucesión es creciente. Por análisisse puede verque la sucesión tiene unacotasuperior 𝑀 = 1 2 cuandon crece la sucesióntiendeaeste valor, ytiene unacota inferior 𝑁 = 4 9 .Sucesiónacotada. b) 𝑂𝑐 = 5𝑛+1 𝑛2 𝑂1 = 5(1) + 1 (1)2 = 6 1 = 6 𝑂2 = 5(2) + 1 (2)2 = 11 4 𝑂3 = 5(3) + 1 (3)2 = 16 9 𝑂4 = 5(4) + 1 (4)2 = 21 16 𝑂5 = 5(5) + 1 (5)2 = 26 25 𝑂6 = 5(6) + 1 (6)2 = 31 36 𝑂𝑐+1 − 𝑂𝑐 > 0 𝑒𝑠 𝑐𝑟𝑒𝑐𝑖𝑒𝑛𝑡𝑒 𝑂𝑐+1 − 𝑂𝑐 < 0 𝑒𝑠 𝑑𝑒𝑐𝑟𝑒𝑐𝑖𝑒𝑛𝑡𝑒 5(𝑛 + 1) + 1 (𝑛 + 1)2 − 5𝑛 + 1 𝑛2 = 𝑛2(5(𝑛 + 1) + 1) − (5𝑛 + 1)(𝑛 + 1)2 𝑛2(𝑛 + 1)2 𝑛2(5𝑛 + 5 + 1) − (5𝑛 + 1)(𝑛2 + 2𝑛 + 1) 𝑛2(𝑛 + 1)2 = (5𝑛3 + 6𝑛2) − (5𝑛3 + 11𝑛2 + 7𝑛 + 1) 𝑛2(𝑛 + 1)2 (5𝑛3 + 6𝑛2) − (5𝑛3 + 11𝑛2 + 7𝑛 + 1) 𝑛2(𝑛 + 1)2 = −(5𝑛2 + 7𝑛 + 1) 𝑛2(𝑛 + 1)2 < 0 Como n toma valores iguales a los enteros positivos mayores que cero el denominador siempre serámayorque cero peroel numeradortomasiempre valoresnegativosentonces el resultado es que esta sucesión es decreciente. La sucesióntiene unacotasuperiorM=6cuando n=1,yuna cotainferiorN=0,yaque cuando n crece al infinito el valor de la sucesión tiende a ser cero. Así esta sucesión es acotada.
  • 5.
    C) 𝑌𝑛 =( 1 𝑛 ) 𝑛 ≥ 1 𝑌1 = 1 1 = 1 𝑌2 = 1 2 = 1 2 𝑌3 = 1 3 = 1 3 𝑌4 = 1 4 = 1 4 𝑌5 = 1 5 = 1 5 𝑌6 = 1 6 = 1 6 𝑂𝑐+1 − 𝑂𝑐 > 0 𝑒𝑠 𝑐𝑟𝑒𝑐𝑖𝑒𝑛𝑡𝑒 𝑂𝑐+1 − 𝑂𝑐 < 0 𝑒𝑠 𝑑𝑒𝑐𝑟𝑒𝑐𝑖𝑒𝑛𝑡𝑒 1 𝑛 + 1 − 1 𝑛 = 𝑛 − ( 𝑛 + 1) 𝑛( 𝑛 + 1) = −1 𝑛(𝑛 + 1) Comon solopuede tomarvaloresmayoresoigualesa1 el valorde la relaciónsiempreserá negativo así pues se puede afirmar que la sucesión es decreciente. Puede verse que lasucesióntienecomocotasuperiorM=1 y comocota inferiorN=0ya que a medida que n crece el término de la sucesión tiende a cero. 4. Halle la suma de los números múltiplos de 6 menores o iguales a 9126. Y diga ¿Cuántos términos hay? Primer término es 6, y el último es 9126 entonces: 𝑈𝑛 = 𝑈1 + 𝑟(𝑛 − 1) Reemplazando: 9126 = 6 + 6(𝑛 − 1) Despejando n: 𝑛 = 1 + (9126 − 6) 6 = 1521 𝑡𝑒𝑟𝑚𝑖𝑛𝑜𝑠 Suma: 𝑆 𝑛 = 𝑛(𝑈1 + 𝑈 𝑛) 2 = 1521(6 + 9126) 2 = 6944886 5. Halle lasuma de losnúmerosparesde tres cifras.Y diga¿Cuántostérminoshay? Este problema tiene una razón de 2, el primer término es 100 y el último es 998 entonces:
  • 6.
    𝑈𝑛 = 𝑈1+ 𝑟(𝑛 − 1) Reemplazando: 998 = 100 + 2(𝑛 − 1) Despejando n: 𝑛 = 1 + (998 − 100) 2 = 450 𝑡𝑒𝑟𝑚𝑖𝑛𝑜𝑠 Suma: 𝑆 𝑛 = 𝑛(𝑈1 + 𝑈 𝑛) 2 = 450(100 + 998) 2 = 247050 6. En una progresión aritmética el tercer término es 24 y el décimo término es 66. Hallar el primer término y la diferencia común de la progresión. 𝑈3 = 24 𝑈10 = 66 𝑈𝑛 = 𝑈1 + 𝑟(𝑛 − 1) 24 = 𝑈1 + 𝑟(3 − 1) (1) 24 = 𝑈1 + 2𝑟 66 = 𝑈1 + 𝑟(10 − 1) (2) 66 = 𝑈1 + 9𝑟 𝑈1 = −2𝑟 + 24 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑛𝑑𝑜 𝑒𝑛 (2) 66 = (−2𝑟 + 24) + 9𝑟 → 66 = 7𝑟 + 24 66 − 24 = 7𝑟 → 𝑟 = 42 7 = 6 24 = 𝑈1 + 2(6) = 𝑈1 + 12 𝑈1 = 24 − 12 = 12