TECNOLÓGICO NACIONAL DE
MÉXICO/Instituto Tecnológico de Matamoros
INTRODUCCIÓN AL CONTROL
DIGITAL
Ing. Jorge Alejandro Gallegos de la Cruz
En los últimos 30 años, la tecnología de los
sistemas de control automático se ha
caracterizado por la sustitución de los lazos
de control análogo por sistemas de control
digital.
El empleo de una computadora como
elemento de control ofrece la ventaja de
poder cambiar la acción de control con sólo
modificar algunas instrucciones en el
programa además, la computadora puede
controlar varios procesos simultáneamente
y puede realizar a la vez las funciones de
procesamiento de datos, supervisión y
SISTEMAS DE TIEMPO DISCRETO
Los sistemas de tiempo discreto, son sistemas
dinámicos en los cuales una o más variables
pueden variar únicamente en ciertos instantes,
llamados instantes de muestreo, que se
indican por kT (k = 0, 1, 2, …) y que pueden
especificar el momento en el cual se realiza
una medición física o el tiempo en el cual se
lee la memoria de la computadora.
Los sistemas de tiempo discreto se describen
mediante un conjunto de ecuaciones en
diferencias y se analizan utilizando
transformada z.
La modelación de los sistemas discretos se
puede realizar tomando como base el
concepto de función de transferencia o el
concepto de variables de estado.
Lazo de control digital básico
MUESTREADORES
El muestreador es un elemento que consiste
simplemente en un interruptor que se cierra
cada T segundos para admitir una señal de
entrada. La duración del muestreo debe ser
mucho menor que la constante de tiempo más
significativa de la planta o proceso. La función
del muestreador es convertir una señal
continua en el tiempo (análoga) en un tren de
pulsos en los instantes de muestreo 0, T, 2T…
en donde T es el periodo de muestreo. Entre
dos instantes de muestreo no se transmite
información.

Si la señal continua es muestreada en forma
periódica, la señal de salida del muestreador
se puede expresar como:
En la práctica, las señales o funciones
temporales que se consideran en los
sistemas de control son cero para t<0,
entonces:
De la última ecuación se obtiene:
Cuya transformada de Laplace está dada
por:
Es decir:
Esta última ecuación es poco práctica para
aplicarla en el análisis de sistemas de
control pues genera una serie infinita. Si se
quiere expresar en forma cerrada, se puede
utilizar la integral de convolución de la cual
se obtiene como resultado:
RETENEDORES
En la práctica, la señal en forma muestreada
no se debe aplicar directamente a la planta
por lo tanto es necesario incluir, después
del muestreador, un dispositivo que
reconstruya la señal. Este dispositivo se
conoce con el nombre de retenedor y su
finalidad es convertir la señal muestreada
en una señal continua de tal forma que sea
igual o lo más aproximada posible a la
señal aplicada al muestreador.
El retenedor más elemental convierte la señal
muestreada en una señal que es constante
entre dos instantes de muestreo consecutivos,
este tipo de retenedor se conoce como
“retenedor de orden cero” y es comúnmente el
más utilizado. La exactitud del retenedor de
orden cero en la reconstrucción de la señal
depende de la magnitud del periodo de
muestreo T.
La función de transferencia de un retenedor de
orden cero se puede deducir teniendo en cuenta
que la entrada al retenedor es el tren de pulsos:
La transformada de Laplace de la ecuación
anterior es:
La salida del muestreador se puede expresar
como:
La transformada de Laplace de la ecuación
anterior es:
Pero: Entonces:
De la ecuación anterior se obtiene la Función de
Transferencia del retenedor de orden cero
como:
En la figura se muestra el diagrama básico de
un circuito de muestreo y retención. Todos los
componentes están dentro de un circuito
integrado excepto el condensador C que se
conecta externamente.
EJEMPLO 1
La función f(t) = e-2t + 3 se muestrea cada 0.5
seg. Calcular: a) La función muestreada f*(t),
b) La transformada de Laplace F*(s) de f*(t), c)
Si se hace pasar por un retenedor de orden
cero, obtenga una expresión para la señal de
salida del retenedor.
SOLUCIÓN
(Resolver en pizarrón).
CONVERTIDORES D/A
La conversión de una señal digital a su
correspondiente análoga consiste en
transformar la información contenida en
código digital (binario) en una señal
equivalente de voltaje ó de corriente
proporcional al valor digital.
Elementos básicos de un convertidor D/A
CONVERTIDOR D/A DE
RESISTENCIAS PONDERADAS
La figura muestra el circuito básico para un
convertidor D/A de 4 bits. El amplificador
operacional se emplea como sumador. Las
resistencias de la red están ponderadas en
forma binaria y cada una se conecta mediante
un interruptor electrónico al voltaje de
referencia o a tierra así: cuando aparece un
uno binario en el circuito de conmutación la
resistencia queda conectada al voltaje de
referencia y cuando aparece un cero queda
conectada a tierra.


CONVERTIDOR D/A TIPO R-2R
Análisis

Los parámetros más importantes en la
operación de un convertidor D/A son:
Resolución: Se define como el menor cambio
que puede ocurrir en la salida análoga como
resultado de un cambio en la entrada digital.
Precisión: La precisión relaciona la salida real
obtenida con la salida esperada y se especifica
generalmente como un porcentaje de la salida a
plena escala (PE).
Tiempo de establecimiento: Se define como el
tiempo que emplea la salida para alcanzar el
95% de su nuevo valor. Valores típicos de
tiempo de establecimiento están en el rango de
50 ns y 100 us.
CONVERTIDORES A/D
El convertidor A/D transforma una señal análoga
de voltaje o de corriente en una señal digital o
una palabra codificada numéricamente. El
convertidor A/D realiza sobre la señal de
entrada operaciones de muestreo y retención,
cuantificación y codificación.
En la operación de muestreo el dispositivo toma
muestras de la señal cada T segundos, luego
retiene el valor muestreado hasta que la
conversión se complete.
El nivel de cuantificación corresponde al valor
del bit menos significativo y está dado por:

Proceso de aproximaciones sucesivas
Proceso de Aprox. Suc. para
Vanalog=10V
Se pone en 1 el
MSB
Genera salida
análoga
Salida
>Entra
da
Borrar bit actual
(Bit=0)
Mover el puntero de
orden superior a la
derecha
¿Finaliza
la
palabra?
Fin de la aproximación
No
Si
No
Si
CONVERTIDOR A/D DOBLE RAMPA
CONVERTIDOR A/D TIPO FLASH
El ADC tipo flash utiliza una serie de
comparadores de alta velocidad junto al
codificador que proporciona las
combinaciones binarias únicas para cada
estado.
El diseño de este circuito es bastante
sencillo. Consta de 2n-1 amplificadores
operacionales funcionando como
comparadores, donde n es el número de
bits de salida.
SELECCIÓN DEL PERÍODO DE
MUESTREO
Si se desea muestrear y reconstruir una señal
x(t) puede aplicarse el Teorema de Shannon,
según el cual, si la frecuencia de muestreo es
suficientemente alta, comparada con la
componente de más alta frecuencia que se
incluye en la señal de tiempo continuo, las
características de amplitud de la señal de
tiempo continuo se pueden preservar en la
envolvente de la señal muestreada.

Control digital: Introducción a control digital

  • 1.
    TECNOLÓGICO NACIONAL DE MÉXICO/InstitutoTecnológico de Matamoros INTRODUCCIÓN AL CONTROL DIGITAL Ing. Jorge Alejandro Gallegos de la Cruz
  • 2.
    En los últimos30 años, la tecnología de los sistemas de control automático se ha caracterizado por la sustitución de los lazos de control análogo por sistemas de control digital. El empleo de una computadora como elemento de control ofrece la ventaja de poder cambiar la acción de control con sólo modificar algunas instrucciones en el programa además, la computadora puede controlar varios procesos simultáneamente y puede realizar a la vez las funciones de procesamiento de datos, supervisión y
  • 3.
    SISTEMAS DE TIEMPODISCRETO Los sistemas de tiempo discreto, son sistemas dinámicos en los cuales una o más variables pueden variar únicamente en ciertos instantes, llamados instantes de muestreo, que se indican por kT (k = 0, 1, 2, …) y que pueden especificar el momento en el cual se realiza una medición física o el tiempo en el cual se lee la memoria de la computadora. Los sistemas de tiempo discreto se describen mediante un conjunto de ecuaciones en diferencias y se analizan utilizando transformada z.
  • 4.
    La modelación delos sistemas discretos se puede realizar tomando como base el concepto de función de transferencia o el concepto de variables de estado. Lazo de control digital básico
  • 5.
    MUESTREADORES El muestreador esun elemento que consiste simplemente en un interruptor que se cierra cada T segundos para admitir una señal de entrada. La duración del muestreo debe ser mucho menor que la constante de tiempo más significativa de la planta o proceso. La función del muestreador es convertir una señal continua en el tiempo (análoga) en un tren de pulsos en los instantes de muestreo 0, T, 2T… en donde T es el periodo de muestreo. Entre dos instantes de muestreo no se transmite información.
  • 6.
  • 7.
    Si la señalcontinua es muestreada en forma periódica, la señal de salida del muestreador se puede expresar como: En la práctica, las señales o funciones temporales que se consideran en los sistemas de control son cero para t<0, entonces:
  • 8.
    De la últimaecuación se obtiene: Cuya transformada de Laplace está dada por: Es decir: Esta última ecuación es poco práctica para aplicarla en el análisis de sistemas de control pues genera una serie infinita. Si se quiere expresar en forma cerrada, se puede utilizar la integral de convolución de la cual se obtiene como resultado:
  • 9.
    RETENEDORES En la práctica,la señal en forma muestreada no se debe aplicar directamente a la planta por lo tanto es necesario incluir, después del muestreador, un dispositivo que reconstruya la señal. Este dispositivo se conoce con el nombre de retenedor y su finalidad es convertir la señal muestreada en una señal continua de tal forma que sea igual o lo más aproximada posible a la señal aplicada al muestreador.
  • 10.
    El retenedor máselemental convierte la señal muestreada en una señal que es constante entre dos instantes de muestreo consecutivos, este tipo de retenedor se conoce como “retenedor de orden cero” y es comúnmente el más utilizado. La exactitud del retenedor de orden cero en la reconstrucción de la señal depende de la magnitud del periodo de muestreo T.
  • 11.
    La función detransferencia de un retenedor de orden cero se puede deducir teniendo en cuenta que la entrada al retenedor es el tren de pulsos: La transformada de Laplace de la ecuación anterior es: La salida del muestreador se puede expresar como: La transformada de Laplace de la ecuación anterior es: Pero: Entonces:
  • 12.
    De la ecuaciónanterior se obtiene la Función de Transferencia del retenedor de orden cero como: En la figura se muestra el diagrama básico de un circuito de muestreo y retención. Todos los componentes están dentro de un circuito integrado excepto el condensador C que se conecta externamente.
  • 13.
    EJEMPLO 1 La funciónf(t) = e-2t + 3 se muestrea cada 0.5 seg. Calcular: a) La función muestreada f*(t), b) La transformada de Laplace F*(s) de f*(t), c) Si se hace pasar por un retenedor de orden cero, obtenga una expresión para la señal de salida del retenedor. SOLUCIÓN (Resolver en pizarrón).
  • 14.
    CONVERTIDORES D/A La conversiónde una señal digital a su correspondiente análoga consiste en transformar la información contenida en código digital (binario) en una señal equivalente de voltaje ó de corriente proporcional al valor digital. Elementos básicos de un convertidor D/A
  • 15.
    CONVERTIDOR D/A DE RESISTENCIASPONDERADAS La figura muestra el circuito básico para un convertidor D/A de 4 bits. El amplificador operacional se emplea como sumador. Las resistencias de la red están ponderadas en forma binaria y cada una se conecta mediante un interruptor electrónico al voltaje de referencia o a tierra así: cuando aparece un uno binario en el circuito de conmutación la resistencia queda conectada al voltaje de referencia y cuando aparece un cero queda conectada a tierra.
  • 16.
  • 17.
  • 18.
    CONVERTIDOR D/A TIPOR-2R Análisis
  • 20.
  • 21.
    Los parámetros másimportantes en la operación de un convertidor D/A son: Resolución: Se define como el menor cambio que puede ocurrir en la salida análoga como resultado de un cambio en la entrada digital. Precisión: La precisión relaciona la salida real obtenida con la salida esperada y se especifica generalmente como un porcentaje de la salida a plena escala (PE). Tiempo de establecimiento: Se define como el tiempo que emplea la salida para alcanzar el 95% de su nuevo valor. Valores típicos de tiempo de establecimiento están en el rango de 50 ns y 100 us.
  • 22.
    CONVERTIDORES A/D El convertidorA/D transforma una señal análoga de voltaje o de corriente en una señal digital o una palabra codificada numéricamente. El convertidor A/D realiza sobre la señal de entrada operaciones de muestreo y retención, cuantificación y codificación. En la operación de muestreo el dispositivo toma muestras de la señal cada T segundos, luego retiene el valor muestreado hasta que la conversión se complete. El nivel de cuantificación corresponde al valor del bit menos significativo y está dado por:
  • 23.
  • 24.
    Proceso de aproximacionessucesivas Proceso de Aprox. Suc. para Vanalog=10V Se pone en 1 el MSB Genera salida análoga Salida >Entra da Borrar bit actual (Bit=0) Mover el puntero de orden superior a la derecha ¿Finaliza la palabra? Fin de la aproximación No Si No Si
  • 25.
  • 26.
    CONVERTIDOR A/D TIPOFLASH El ADC tipo flash utiliza una serie de comparadores de alta velocidad junto al codificador que proporciona las combinaciones binarias únicas para cada estado. El diseño de este circuito es bastante sencillo. Consta de 2n-1 amplificadores operacionales funcionando como comparadores, donde n es el número de bits de salida.
  • 28.
    SELECCIÓN DEL PERÍODODE MUESTREO Si se desea muestrear y reconstruir una señal x(t) puede aplicarse el Teorema de Shannon, según el cual, si la frecuencia de muestreo es suficientemente alta, comparada con la componente de más alta frecuencia que se incluye en la señal de tiempo continuo, las características de amplitud de la señal de tiempo continuo se pueden preservar en la envolvente de la señal muestreada.