SlideShare una empresa de Scribd logo
1 de 17
Universdad Fermin Toro Decanato de Ingenieria Cabudare – Edo. Lara - Venezuela Eglis Pargas de Montero Francisco Rivero Ricardo Hernández Cabudare, Febrero 2011
LEY DE CORRIENTE DE KIRCHHOFF.  Mediante la elección de lazos cerrados o mallas y la aplicación de la segunda ley de Kirchhoff, se ha establecido el método de las corrientes de malla para la solución de los problemas de circuitos. En este apartado se llega a la misma solución planteando un sistema de ecuaciones determinado por la aplicación de la primera ley de Kirchhoff. Este método se llama Método de las tensiones en los nudos.   L.C.K
Un nudo es un punto de un circuito común a dos o más elementos del mismo. Si en un nudo se unen tres o más elementos, tal nudo se llama nudo principal o conjunción. A cada nudo del circuito se le puede asignar un número o una letra. En  la Fig.1 Son nudos A, B, 1,2 , 3 y 1,2 y 3 son nudos principales. La tensión en un nudo es la tensión de este nudo respecto de otro, denominado nudo de referencia. En la Fig.1 Se ha elegido el nudo 3 como nudo de referencia. Entonces V13 es la tensión entre los nudos 1 y 3, y V23 la tensión entre los nudos2 y 3. Como quiera que las tensiones en los nudos se toman siempre respecto de un nudo de referencia dado, se emplea la notación V1 en lugar de V13 y V2 en lugar de V23. TENSIONES  EN LOS NUDOS  Z a Z c Z e A 1 2 B 3 V m V n Z b Z d + +
El método de las tensiones en los nudos consiste en determinar las tensiones en todos los  nudos principales respecto del nudo de referencia. La primera ley de kirchhoff se aplica a los nudos principales 1 y2 , obteniéndose así dos ecuaciones en las incógnitas V1 y V2 . En la Fig.2 se ha dibujado nuevamente el nodo 1 con todas sus ramas de conexión. Se supone que todas las corrientes en las ramas salen del nudo. Como la suma de las corrientes que salen del nudo es cero: Método
Repitiendo el mismo proceso con el nudo2 la ecuación que resulta es : Agrupando en (1) y (2 ) los términos en V1 y V2 , se obtiene el sistema de ecuaciones: Teniendo en cuenta que 1/Z =Y, se puede escribir el sistema (3) en función de las admitancias    Ejemplo
NÚMERO DE ECUACIONES DE TENSIONES EN LOS NUDOS  Se pueden escribir ecuaciones para cada uno de los nudos principales con la excepción del de referencia. En consecuencia, el número de ecuaciones es igual al de nudos principales menos uno. Disponiendo del método de las corrientes de malla y del de las tensiones en los nudos. La elección de uno u otro en cada caso particular depende de la configuración del circuito. En un circuito con muchas ramas en paralelo hay, normalmente, muchos más lazos que nudos, exigiendo menos ecuaciones, por tanto, de nudos para resolverlo. En otros casos, puede haber el mismo número de mallas que de nudos o haber menos mallas que nudos. En todo caso debe elegirse siempre el método  que dé menor número de ecuaciones   Un circuito con cuatro nudos principales exige para su solución tres ecuaciones nodales. En notación general el sistema es : NUDOS
El coeficiente Y 11  se llama admitancia propia del nudo 1 y es la suma de todas las admitancias conectadas al nudo 1. De igual forma, Y 22  y Y 33  son las admitancias de los nudos2 y 3 respectivamente iguales a la suma de las admitancias conectadas a los nudos2 y 3.  El coeficiente Y 12  es la coadmitancia de los nudos 1 y2 y es la suma de todas las admitancias que unen ambos nudos Y 12  tiene signo negativo, como puede verse en la primera de las ecuaciones. De igual forma, Y 23  e Y 13  son las coadmitancias de los elementos que unen los nudos2 y 3, 1 y 3 , respectivamente. Todas las coadmitancias tienen signo negativo. Obsérvese que Y 13  = Y 31 *  Y 23  = Y 32  .  La intensidad I1 es la suma de todas las corrientes de fuentes que pasan por el nudo 1. Una corriente que entra en el nudo tiene signo positivo; a la que sale del nudo se le asigna el negativo. Las intensidades I2 e I3, son las sumas de las corrientes que pasan por los nudos2 y 3, respectivamente.   
Por analogía con la notación matricial para las ecuaciones de las corrientes de malla las tres ecuaciones pueden escribirse en la forma: Ejemplo  Las tensiones en los nodos V1,V2 y V3 vienen dadas por:  
Si el determinante numerador de cada una de las fracciones se desarrolla por los elementos de la columna que contiene las corrientes, se obtienen para las tensiones en los nudos las ecuaciones siguientes Ejemplo
L.V.K LEY DE VOLTAJE DE KIRCHHOFF EN CORRIENTE  ALTERNA. Las fuentes de tensión en un circuito eléctrico originan unas corrientes en las ramas que, a su vez, da lugar a unas caídas de tensión en los componentes de las mismas. Resolver un circuito consiste en hallar las intensidades, con su sentido de circulación, en cada una de aquellas ramas o bien determinar las caídas de tensión en cada uno de dichos componentes.    I 1 I 2 I 3 Z a Z b Z c Z d Z e V A V B + +
MÉTODO DE RESOLUCIÓN POR LAS CORRIENTES DE MALLAS .   Para aplicar este método se eligen, en primer lugar, lazos cerrados o malla, asignándoles una corriente eléctrica. Estos lazos o mallas se llaman corrientes cíclicas de Maxwell o simplemente, corrientes de mallas, como se representa en la Fig. 1. Acto seguido, se escriben las ecuaciones de la segunda ley de kirchhoff para cada malla tomando las intensidades de aquellas corrientes como variables desconocidas, I1, I2, I3, en el ejemplo, y se resuelve el sistema de ecuaciones así formado. Las corrientes en cada malla se hallan mediante la primera ley de kirchhoff y es o bien una corriente de malla (caso en que la rama solo pertenezca a una malla) MALLAS
Por ejemplo, la corriente en elemento ZA es I1, y la corriente en ZB es I1-I2 si I1 es mayor que I2 o bien I2 -I1 en caso contrario (el sentido de la circulación es el correspondiente a la mayor intensidad de las dos mallas contiguas). La caída de tensión en un elemento cualquiera del circuito es el producto de la impedancia compleja del mismo por fasor  intensidad de la corriente que lo atraviesa (el borde del elemento por donde entra la flecha del sentido de la intensidad esta a mas tensión que por donde sale). Vamos a obtener el sistema de ecuaciones del circuito de tres mallas independientes de la: Fig.1 aplicando a cada malla la segunda ley de kirchhoff. En la Fig.2 aparece la primera malla aislada y se ha de verificar que la suma de las fuerzas electromotrices o subidas de tensión es igual a la suma de las caídas de tensión.  Z a I 1 Z b V A +             Z A . I 1 +  Z B.  (I 1 –  I 2 )  =  V A Ejemplo
La segunda malla no contiene fuente de tensión alguna, por lo tanto, la suma de las caídas de tensión a lo largo de ella es cero.  ZC. I 2 +  ZD .  (I 2 +  I 3 )+   ZB. (I 2 –  I 1 ) = 0 Para la tercera malla tendremos ZE. I 3 +  ZD .  (I 3 +  I 2 ) =VB Es decir (ZA  +  ZB) .  I 1  – ZB . I 2  = VA  (I) - ZB . I 1  + (ZB  +  ZC + ZD ) .  I 2  – ZD . I 3  = 0 (II)   ZD . I 2  + (ZD  +  ZE) .  I 3  = VB (III) Ejemplo
Este sistema de ecuaciones se puede obtener directamente, para ello, consideremos la primera malla, que aparece en la Fig.2 la corriente  I 1  tiene el sentido de las agujas del reloj  y las caídas de tensión en todos los elementos de esta malla son todas positivas. Ahora bien, por ZB también circula la corriente  I 2   de la segunda malla, pero con sentido opuesto a  I 1  por tanto, la caída de tensión en ZB debida a  I 2  es – ZB  I 2  La caída de tensión VA es positiva por tener el mismo sentido que   I 1  . En estas condiciones, aplicando la segunda ley de kirchhoff a la primera malla se obtiene la ecuación ( I ). Análogamente resultan las Ecuaciones ( I ) y ( II )  Sistema de ecuaciones
Caida y Subida de Tensión Los términos caída y subida de tensión son más propios de los circuitos de corriente continua (c.c.) en los que significado es más claro que en los de corriente alterna (c.a), en donde los valores instantáneos de tensión y de intensidad de corriente son unas veces positivos y otros negativos. La segunda ley de kirchhoff en régimen permanente senoidal aplicada a una malla o lazo cerrado dice: la suma geométrica de los fasores de tensión de las fuentes activas de la malla es igual a la suma geométrica de los fasores de las caídas de tensión en las impedancias de mallas.
ELECCIÓN DE LAS MALLAS.  La solución de un circuito por el método de las corrientes de mallas se simplifica extraordinariamente eligiendo bien las mallas a considerar. Por ejemplo, supongamos que en circuito de la Fig.1 solo es necesario conocer la corriente que circula por la impedancia ZB; lomas cómodo será resolver el problema de forma que por ZB no circule más que una corriente de malla, es decir, es decir que dicha impedancia no pertenezca mas a una malla.  En estas condiciones, solo habrá que determinar el valor de la corriente de la malla  I 1  en la  Fig.3 se pueden obtener las nuevas mallas elegidas.  ELECCIÓN DE LAS MALLAS Z a Z c Z e V A V B I 1 I 2 I 3 Z b Z d + +
El sistema de ecuaciones correspondientes a la elección de mallas es: (ZA  +  ZB) .  I 1  – ZA . I 2  = VA - ZA . I 1  + (ZA  +  ZC + ZD ) .  I 2  + ZD . I 3  = VA   ZD . I 2  + (ZD  +  ZE) .  I 3  = VB   En cualquier caso, por cada elemento del circuito debe circular al menos una corriente de malla y no tiene por qué haber dos ramas con la misma corriente o igual combinación algebraica de corrientes.  Sistema de ecuaciones

Más contenido relacionado

La actualidad más candente

Analisis de circuitos de corriente abierta
Analisis de circuitos de corriente abiertaAnalisis de circuitos de corriente abierta
Analisis de circuitos de corriente abiertawarrionet
 
Resolución de un circuito de corriente alterna utilizando fasores
Resolución de un circuito de corriente alterna utilizando fasoresResolución de un circuito de corriente alterna utilizando fasores
Resolución de un circuito de corriente alterna utilizando fasoresAndreita Granda C
 
Guia digital Analisis Nodal AC y Divisor de Fuentes AC
Guia digital Analisis Nodal AC y Divisor de Fuentes ACGuia digital Analisis Nodal AC y Divisor de Fuentes AC
Guia digital Analisis Nodal AC y Divisor de Fuentes ACMaille Altuve
 
Metodos de-analisis de mallas
Metodos de-analisis de mallasMetodos de-analisis de mallas
Metodos de-analisis de mallasRaffael R
 
Ejemplos 2 de fasores
Ejemplos 2 de fasoresEjemplos 2 de fasores
Ejemplos 2 de fasoresJavierss Sag
 
Fisica c 2do parcial conceptos
Fisica c 2do parcial conceptosFisica c 2do parcial conceptos
Fisica c 2do parcial conceptosERICK CONDE
 
Clase 4 circuitos en paralelo
Clase 4 circuitos en paraleloClase 4 circuitos en paralelo
Clase 4 circuitos en paraleloTensor
 
analisissssAnálisis de nodos
analisissssAnálisis de nodosanalisissssAnálisis de nodos
analisissssAnálisis de nodosWilson Vargas
 
PROBLEMAS RESUELTO DE CORRIENTE CONTINUA
PROBLEMAS RESUELTO DE CORRIENTE CONTINUAPROBLEMAS RESUELTO DE CORRIENTE CONTINUA
PROBLEMAS RESUELTO DE CORRIENTE CONTINUAjulio ulacio
 
Modelos Matemáticos para la solución de circuitos
Modelos Matemáticos para la solución de circuitosModelos Matemáticos para la solución de circuitos
Modelos Matemáticos para la solución de circuitosFernando Marcos Marcos
 
Ley ohm ejercicios
Ley ohm ejerciciosLey ohm ejercicios
Ley ohm ejerciciosharvinjose
 
Guia Circuitos Eléctricos
Guia Circuitos EléctricosGuia Circuitos Eléctricos
Guia Circuitos EléctricosIgnacio Espinoza
 
Circuitos de corriente directa. ing. carlos moreno (ESPOL)
Circuitos de corriente directa. ing. carlos moreno (ESPOL)Circuitos de corriente directa. ing. carlos moreno (ESPOL)
Circuitos de corriente directa. ing. carlos moreno (ESPOL)Francisco Rivas
 
Circuitos electricos (1)
Circuitos electricos (1)Circuitos electricos (1)
Circuitos electricos (1)Andy Dextre
 

La actualidad más candente (19)

Analisis de circuitos de corriente abierta
Analisis de circuitos de corriente abiertaAnalisis de circuitos de corriente abierta
Analisis de circuitos de corriente abierta
 
Resolución de un circuito de corriente alterna utilizando fasores
Resolución de un circuito de corriente alterna utilizando fasoresResolución de un circuito de corriente alterna utilizando fasores
Resolución de un circuito de corriente alterna utilizando fasores
 
Circuitos Eléctricos CA - Parte 3
Circuitos Eléctricos CA - Parte 3Circuitos Eléctricos CA - Parte 3
Circuitos Eléctricos CA - Parte 3
 
Problemas de circuitos electricos
Problemas de circuitos electricosProblemas de circuitos electricos
Problemas de circuitos electricos
 
Guia digital Analisis Nodal AC y Divisor de Fuentes AC
Guia digital Analisis Nodal AC y Divisor de Fuentes ACGuia digital Analisis Nodal AC y Divisor de Fuentes AC
Guia digital Analisis Nodal AC y Divisor de Fuentes AC
 
Metodos de-analisis de mallas
Metodos de-analisis de mallasMetodos de-analisis de mallas
Metodos de-analisis de mallas
 
Ejemplos 2 de fasores
Ejemplos 2 de fasoresEjemplos 2 de fasores
Ejemplos 2 de fasores
 
Fisica c 2do parcial conceptos
Fisica c 2do parcial conceptosFisica c 2do parcial conceptos
Fisica c 2do parcial conceptos
 
Clase 4 circuitos en paralelo
Clase 4 circuitos en paraleloClase 4 circuitos en paralelo
Clase 4 circuitos en paralelo
 
analisissssAnálisis de nodos
analisissssAnálisis de nodosanalisissssAnálisis de nodos
analisissssAnálisis de nodos
 
PROBLEMAS RESUELTO DE CORRIENTE CONTINUA
PROBLEMAS RESUELTO DE CORRIENTE CONTINUAPROBLEMAS RESUELTO DE CORRIENTE CONTINUA
PROBLEMAS RESUELTO DE CORRIENTE CONTINUA
 
Modelos Matemáticos para la solución de circuitos
Modelos Matemáticos para la solución de circuitosModelos Matemáticos para la solución de circuitos
Modelos Matemáticos para la solución de circuitos
 
Ley ohm ejercicios
Ley ohm ejerciciosLey ohm ejercicios
Ley ohm ejercicios
 
Guia Circuitos Eléctricos
Guia Circuitos EléctricosGuia Circuitos Eléctricos
Guia Circuitos Eléctricos
 
Circuitos de corriente directa. ing. carlos moreno (ESPOL)
Circuitos de corriente directa. ing. carlos moreno (ESPOL)Circuitos de corriente directa. ing. carlos moreno (ESPOL)
Circuitos de corriente directa. ing. carlos moreno (ESPOL)
 
Corriente Alterna Eq 7
Corriente Alterna Eq 7Corriente Alterna Eq 7
Corriente Alterna Eq 7
 
Circuitos electricos (1)
Circuitos electricos (1)Circuitos electricos (1)
Circuitos electricos (1)
 
Resumen
ResumenResumen
Resumen
 
ΩΩ
 

Destacado

Ley de voltaje de kirchoff
Ley de voltaje de kirchoffLey de voltaje de kirchoff
Ley de voltaje de kirchoffAndres Gabriel
 
Clase 8 teorema de norton y thevenin
Clase 8 teorema de norton y theveninClase 8 teorema de norton y thevenin
Clase 8 teorema de norton y theveninTensor
 
Teoremas de thevenin y norton
Teoremas de thevenin y norton Teoremas de thevenin y norton
Teoremas de thevenin y norton Szol
 
Leyes de kirchhoff
Leyes de kirchhoffLeyes de kirchhoff
Leyes de kirchhofftecnologiadp
 
Tema 2 leyes de kirchhoff
Tema 2   leyes de kirchhoffTema 2   leyes de kirchhoff
Tema 2 leyes de kirchhoffantonyrmrz
 
Ley de kirchhoff
Ley de kirchhoffLey de kirchhoff
Ley de kirchhoffgreybili
 
Ley De Ohm
Ley De OhmLey De Ohm
Ley De OhmWAB
 

Destacado (8)

Ley de voltaje de kirchoff
Ley de voltaje de kirchoffLey de voltaje de kirchoff
Ley de voltaje de kirchoff
 
Clase 8 teorema de norton y thevenin
Clase 8 teorema de norton y theveninClase 8 teorema de norton y thevenin
Clase 8 teorema de norton y thevenin
 
Teoremas de thevenin y norton
Teoremas de thevenin y norton Teoremas de thevenin y norton
Teoremas de thevenin y norton
 
Leyes de kirchhoff
Leyes de kirchhoffLeyes de kirchhoff
Leyes de kirchhoff
 
Tema 2 leyes de kirchhoff
Tema 2   leyes de kirchhoffTema 2   leyes de kirchhoff
Tema 2 leyes de kirchhoff
 
Ley de kirchhoff
Ley de kirchhoffLey de kirchhoff
Ley de kirchhoff
 
Ley De Ohm
Ley De OhmLey De Ohm
Ley De Ohm
 
Resolución de circuitos con Kirchoff
Resolución de circuitos con KirchoffResolución de circuitos con Kirchoff
Resolución de circuitos con Kirchoff
 

Similar a Leyes de corriente y voltaje de kirchhoff

Teoremas de circuito eléctricos
Teoremas de circuito eléctricosTeoremas de circuito eléctricos
Teoremas de circuito eléctricosMariRizcala
 
U1 circuitos(1) INSTALACIONES ELECTRICAS DOMICILIARIAS.
U1 circuitos(1) INSTALACIONES ELECTRICAS DOMICILIARIAS.U1 circuitos(1) INSTALACIONES ELECTRICAS DOMICILIARIAS.
U1 circuitos(1) INSTALACIONES ELECTRICAS DOMICILIARIAS.Jhon Edison Quintero Santa
 
U1 circuitos INSTALACIONES ELECTRICAS DOMICILIARIAS.
U1 circuitos INSTALACIONES ELECTRICAS DOMICILIARIAS.U1 circuitos INSTALACIONES ELECTRICAS DOMICILIARIAS.
U1 circuitos INSTALACIONES ELECTRICAS DOMICILIARIAS.Jhon Edison Quintero Santa
 
electrotrecnia y circuitos e.pdf
electrotrecnia y circuitos e.pdfelectrotrecnia y circuitos e.pdf
electrotrecnia y circuitos e.pdfALEJANDROREALPE3
 
Circuitos de corriente continua
Circuitos de corriente continuaCircuitos de corriente continua
Circuitos de corriente continuaxblogvirtual
 
Tema 2 analisis cc
Tema 2  analisis ccTema 2  analisis cc
Tema 2 analisis ccDavid Lugo
 
e_im_6_metodos_de_analisis_de_circuitos_en_cc_y_ca (1).pdf
e_im_6_metodos_de_analisis_de_circuitos_en_cc_y_ca (1).pdfe_im_6_metodos_de_analisis_de_circuitos_en_cc_y_ca (1).pdf
e_im_6_metodos_de_analisis_de_circuitos_en_cc_y_ca (1).pdfDocente361UMECIT
 
Analisis de circuitos: leyes de kirchhoff por zbus
Analisis de circuitos: leyes de kirchhoff por zbusAnalisis de circuitos: leyes de kirchhoff por zbus
Analisis de circuitos: leyes de kirchhoff por zbusJuans Sanabria
 
Mallas y nodos
Mallas y nodosMallas y nodos
Mallas y nodosamerika_09
 
5. xarxes. kirchhoff. mètode malles
5. xarxes. kirchhoff. mètode malles5. xarxes. kirchhoff. mètode malles
5. xarxes. kirchhoff. mètode mallescristian pariona
 
Laboratorios de circuitos eléctricos n3 (1)
Laboratorios de circuitos eléctricos n3 (1)Laboratorios de circuitos eléctricos n3 (1)
Laboratorios de circuitos eléctricos n3 (1)Jose Lope
 
Circuitos serie-y-paralelo-ejercicios
Circuitos serie-y-paralelo-ejerciciosCircuitos serie-y-paralelo-ejercicios
Circuitos serie-y-paralelo-ejerciciosMary
 
Circuitos serie-y-paralelo-ejercicios
Circuitos serie-y-paralelo-ejerciciosCircuitos serie-y-paralelo-ejercicios
Circuitos serie-y-paralelo-ejerciciosPatriciaLaura3
 
Circuitos serie-y-paralelo-ejercicios
Circuitos serie-y-paralelo-ejerciciosCircuitos serie-y-paralelo-ejercicios
Circuitos serie-y-paralelo-ejerciciosJuniorCesar30
 
Circuitos serie-y-paralelo-ejercicios ejercicios resueltos-1
Circuitos serie-y-paralelo-ejercicios ejercicios resueltos-1Circuitos serie-y-paralelo-ejercicios ejercicios resueltos-1
Circuitos serie-y-paralelo-ejercicios ejercicios resueltos-1Drayen Hernandez
 

Similar a Leyes de corriente y voltaje de kirchhoff (20)

Teoremas de circuito eléctricos
Teoremas de circuito eléctricosTeoremas de circuito eléctricos
Teoremas de circuito eléctricos
 
Ley de Ohm y Kirchhoff
Ley de Ohm y Kirchhoff Ley de Ohm y Kirchhoff
Ley de Ohm y Kirchhoff
 
U1 circuitos(1) INSTALACIONES ELECTRICAS DOMICILIARIAS.
U1 circuitos(1) INSTALACIONES ELECTRICAS DOMICILIARIAS.U1 circuitos(1) INSTALACIONES ELECTRICAS DOMICILIARIAS.
U1 circuitos(1) INSTALACIONES ELECTRICAS DOMICILIARIAS.
 
U1 circuitos INSTALACIONES ELECTRICAS DOMICILIARIAS.
U1 circuitos INSTALACIONES ELECTRICAS DOMICILIARIAS.U1 circuitos INSTALACIONES ELECTRICAS DOMICILIARIAS.
U1 circuitos INSTALACIONES ELECTRICAS DOMICILIARIAS.
 
electrotrecnia y circuitos e.pdf
electrotrecnia y circuitos e.pdfelectrotrecnia y circuitos e.pdf
electrotrecnia y circuitos e.pdf
 
Circuitos de corriente continua
Circuitos de corriente continuaCircuitos de corriente continua
Circuitos de corriente continua
 
Tema 2 analisis cc
Tema 2  analisis ccTema 2  analisis cc
Tema 2 analisis cc
 
e_im_6_metodos_de_analisis_de_circuitos_en_cc_y_ca (1).pdf
e_im_6_metodos_de_analisis_de_circuitos_en_cc_y_ca (1).pdfe_im_6_metodos_de_analisis_de_circuitos_en_cc_y_ca (1).pdf
e_im_6_metodos_de_analisis_de_circuitos_en_cc_y_ca (1).pdf
 
Analisis de circuitos: leyes de kirchhoff por zbus
Analisis de circuitos: leyes de kirchhoff por zbusAnalisis de circuitos: leyes de kirchhoff por zbus
Analisis de circuitos: leyes de kirchhoff por zbus
 
Leyes de-kirchhoff vac.
Leyes de-kirchhoff vac.Leyes de-kirchhoff vac.
Leyes de-kirchhoff vac.
 
Mallas y nodos
Mallas y nodosMallas y nodos
Mallas y nodos
 
5. xarxes. kirchhoff. mètode malles
5. xarxes. kirchhoff. mètode malles5. xarxes. kirchhoff. mètode malles
5. xarxes. kirchhoff. mètode malles
 
Laboratorios de circuitos eléctricos n3 (1)
Laboratorios de circuitos eléctricos n3 (1)Laboratorios de circuitos eléctricos n3 (1)
Laboratorios de circuitos eléctricos n3 (1)
 
E L E C T R I C I D A D
E L E C T R I C I D A DE L E C T R I C I D A D
E L E C T R I C I D A D
 
Leyes y circuitos
Leyes y circuitosLeyes y circuitos
Leyes y circuitos
 
Lab 01_CIRCUITO RL RC RLC
Lab 01_CIRCUITO RL RC RLCLab 01_CIRCUITO RL RC RLC
Lab 01_CIRCUITO RL RC RLC
 
Circuitos serie-y-paralelo-ejercicios
Circuitos serie-y-paralelo-ejerciciosCircuitos serie-y-paralelo-ejercicios
Circuitos serie-y-paralelo-ejercicios
 
Circuitos serie-y-paralelo-ejercicios
Circuitos serie-y-paralelo-ejerciciosCircuitos serie-y-paralelo-ejercicios
Circuitos serie-y-paralelo-ejercicios
 
Circuitos serie-y-paralelo-ejercicios
Circuitos serie-y-paralelo-ejerciciosCircuitos serie-y-paralelo-ejercicios
Circuitos serie-y-paralelo-ejercicios
 
Circuitos serie-y-paralelo-ejercicios ejercicios resueltos-1
Circuitos serie-y-paralelo-ejercicios ejercicios resueltos-1Circuitos serie-y-paralelo-ejercicios ejercicios resueltos-1
Circuitos serie-y-paralelo-ejercicios ejercicios resueltos-1
 

Más de eglisp

Diseño estructurado
Diseño estructuradoDiseño estructurado
Diseño estructuradoeglisp
 
Diseño de Sistema de consulta de tesis
Diseño de Sistema de consulta de tesisDiseño de Sistema de consulta de tesis
Diseño de Sistema de consulta de tesiseglisp
 
Aspectos resaltantes de la proposicion
Aspectos resaltantes de la proposicionAspectos resaltantes de la proposicion
Aspectos resaltantes de la proposicioneglisp
 
Ejercicios propuestos de grafos y digrafos
Ejercicios propuestos de grafos y digrafosEjercicios propuestos de grafos y digrafos
Ejercicios propuestos de grafos y digrafoseglisp
 
Eglis pargas cuadro_comparativo_pagina_web
Eglis pargas cuadro_comparativo_pagina_webEglis pargas cuadro_comparativo_pagina_web
Eglis pargas cuadro_comparativo_pagina_webeglisp
 
Transformador.
Transformador.Transformador.
Transformador.eglisp
 
Factor de Potencia
Factor de PotenciaFactor de Potencia
Factor de Potenciaeglisp
 
Factor de Potencia
Factor de PotenciaFactor de Potencia
Factor de Potenciaeglisp
 

Más de eglisp (9)

Diseño estructurado
Diseño estructuradoDiseño estructurado
Diseño estructurado
 
Eglis
EglisEglis
Eglis
 
Diseño de Sistema de consulta de tesis
Diseño de Sistema de consulta de tesisDiseño de Sistema de consulta de tesis
Diseño de Sistema de consulta de tesis
 
Aspectos resaltantes de la proposicion
Aspectos resaltantes de la proposicionAspectos resaltantes de la proposicion
Aspectos resaltantes de la proposicion
 
Ejercicios propuestos de grafos y digrafos
Ejercicios propuestos de grafos y digrafosEjercicios propuestos de grafos y digrafos
Ejercicios propuestos de grafos y digrafos
 
Eglis pargas cuadro_comparativo_pagina_web
Eglis pargas cuadro_comparativo_pagina_webEglis pargas cuadro_comparativo_pagina_web
Eglis pargas cuadro_comparativo_pagina_web
 
Transformador.
Transformador.Transformador.
Transformador.
 
Factor de Potencia
Factor de PotenciaFactor de Potencia
Factor de Potencia
 
Factor de Potencia
Factor de PotenciaFactor de Potencia
Factor de Potencia
 

Último

el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxOscarEduardoSanchezC
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...JAVIER SOLIS NOYOLA
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024IES Vicent Andres Estelles
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIATRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIAAbelardoVelaAlbrecht1
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Baker Publishing Company
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docxAgustinaNuez21
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressionsConsueloSantana3
 
TEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfTEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfDannyTola1
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOweislaco
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxMapyMerma1
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxJUANSIMONPACHIN
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxdanalikcruz2000
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 

Último (20)

el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
 
Sesión La luz brilla en la oscuridad.pdf
Sesión  La luz brilla en la oscuridad.pdfSesión  La luz brilla en la oscuridad.pdf
Sesión La luz brilla en la oscuridad.pdf
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIATRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docx
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressions
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
TEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfTEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdf
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptx
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 

Leyes de corriente y voltaje de kirchhoff

  • 1. Universdad Fermin Toro Decanato de Ingenieria Cabudare – Edo. Lara - Venezuela Eglis Pargas de Montero Francisco Rivero Ricardo Hernández Cabudare, Febrero 2011
  • 2. LEY DE CORRIENTE DE KIRCHHOFF. Mediante la elección de lazos cerrados o mallas y la aplicación de la segunda ley de Kirchhoff, se ha establecido el método de las corrientes de malla para la solución de los problemas de circuitos. En este apartado se llega a la misma solución planteando un sistema de ecuaciones determinado por la aplicación de la primera ley de Kirchhoff. Este método se llama Método de las tensiones en los nudos.   L.C.K
  • 3. Un nudo es un punto de un circuito común a dos o más elementos del mismo. Si en un nudo se unen tres o más elementos, tal nudo se llama nudo principal o conjunción. A cada nudo del circuito se le puede asignar un número o una letra. En la Fig.1 Son nudos A, B, 1,2 , 3 y 1,2 y 3 son nudos principales. La tensión en un nudo es la tensión de este nudo respecto de otro, denominado nudo de referencia. En la Fig.1 Se ha elegido el nudo 3 como nudo de referencia. Entonces V13 es la tensión entre los nudos 1 y 3, y V23 la tensión entre los nudos2 y 3. Como quiera que las tensiones en los nudos se toman siempre respecto de un nudo de referencia dado, se emplea la notación V1 en lugar de V13 y V2 en lugar de V23. TENSIONES EN LOS NUDOS Z a Z c Z e A 1 2 B 3 V m V n Z b Z d + +
  • 4. El método de las tensiones en los nudos consiste en determinar las tensiones en todos los nudos principales respecto del nudo de referencia. La primera ley de kirchhoff se aplica a los nudos principales 1 y2 , obteniéndose así dos ecuaciones en las incógnitas V1 y V2 . En la Fig.2 se ha dibujado nuevamente el nodo 1 con todas sus ramas de conexión. Se supone que todas las corrientes en las ramas salen del nudo. Como la suma de las corrientes que salen del nudo es cero: Método
  • 5. Repitiendo el mismo proceso con el nudo2 la ecuación que resulta es : Agrupando en (1) y (2 ) los términos en V1 y V2 , se obtiene el sistema de ecuaciones: Teniendo en cuenta que 1/Z =Y, se puede escribir el sistema (3) en función de las admitancias   Ejemplo
  • 6. NÚMERO DE ECUACIONES DE TENSIONES EN LOS NUDOS Se pueden escribir ecuaciones para cada uno de los nudos principales con la excepción del de referencia. En consecuencia, el número de ecuaciones es igual al de nudos principales menos uno. Disponiendo del método de las corrientes de malla y del de las tensiones en los nudos. La elección de uno u otro en cada caso particular depende de la configuración del circuito. En un circuito con muchas ramas en paralelo hay, normalmente, muchos más lazos que nudos, exigiendo menos ecuaciones, por tanto, de nudos para resolverlo. En otros casos, puede haber el mismo número de mallas que de nudos o haber menos mallas que nudos. En todo caso debe elegirse siempre el método que dé menor número de ecuaciones   Un circuito con cuatro nudos principales exige para su solución tres ecuaciones nodales. En notación general el sistema es : NUDOS
  • 7. El coeficiente Y 11 se llama admitancia propia del nudo 1 y es la suma de todas las admitancias conectadas al nudo 1. De igual forma, Y 22 y Y 33 son las admitancias de los nudos2 y 3 respectivamente iguales a la suma de las admitancias conectadas a los nudos2 y 3. El coeficiente Y 12 es la coadmitancia de los nudos 1 y2 y es la suma de todas las admitancias que unen ambos nudos Y 12 tiene signo negativo, como puede verse en la primera de las ecuaciones. De igual forma, Y 23 e Y 13 son las coadmitancias de los elementos que unen los nudos2 y 3, 1 y 3 , respectivamente. Todas las coadmitancias tienen signo negativo. Obsérvese que Y 13 = Y 31 * Y 23 = Y 32 . La intensidad I1 es la suma de todas las corrientes de fuentes que pasan por el nudo 1. Una corriente que entra en el nudo tiene signo positivo; a la que sale del nudo se le asigna el negativo. Las intensidades I2 e I3, son las sumas de las corrientes que pasan por los nudos2 y 3, respectivamente.  
  • 8. Por analogía con la notación matricial para las ecuaciones de las corrientes de malla las tres ecuaciones pueden escribirse en la forma: Ejemplo Las tensiones en los nodos V1,V2 y V3 vienen dadas por:  
  • 9. Si el determinante numerador de cada una de las fracciones se desarrolla por los elementos de la columna que contiene las corrientes, se obtienen para las tensiones en los nudos las ecuaciones siguientes Ejemplo
  • 10. L.V.K LEY DE VOLTAJE DE KIRCHHOFF EN CORRIENTE ALTERNA. Las fuentes de tensión en un circuito eléctrico originan unas corrientes en las ramas que, a su vez, da lugar a unas caídas de tensión en los componentes de las mismas. Resolver un circuito consiste en hallar las intensidades, con su sentido de circulación, en cada una de aquellas ramas o bien determinar las caídas de tensión en cada uno de dichos componentes.   I 1 I 2 I 3 Z a Z b Z c Z d Z e V A V B + +
  • 11. MÉTODO DE RESOLUCIÓN POR LAS CORRIENTES DE MALLAS .   Para aplicar este método se eligen, en primer lugar, lazos cerrados o malla, asignándoles una corriente eléctrica. Estos lazos o mallas se llaman corrientes cíclicas de Maxwell o simplemente, corrientes de mallas, como se representa en la Fig. 1. Acto seguido, se escriben las ecuaciones de la segunda ley de kirchhoff para cada malla tomando las intensidades de aquellas corrientes como variables desconocidas, I1, I2, I3, en el ejemplo, y se resuelve el sistema de ecuaciones así formado. Las corrientes en cada malla se hallan mediante la primera ley de kirchhoff y es o bien una corriente de malla (caso en que la rama solo pertenezca a una malla) MALLAS
  • 12. Por ejemplo, la corriente en elemento ZA es I1, y la corriente en ZB es I1-I2 si I1 es mayor que I2 o bien I2 -I1 en caso contrario (el sentido de la circulación es el correspondiente a la mayor intensidad de las dos mallas contiguas). La caída de tensión en un elemento cualquiera del circuito es el producto de la impedancia compleja del mismo por fasor intensidad de la corriente que lo atraviesa (el borde del elemento por donde entra la flecha del sentido de la intensidad esta a mas tensión que por donde sale). Vamos a obtener el sistema de ecuaciones del circuito de tres mallas independientes de la: Fig.1 aplicando a cada malla la segunda ley de kirchhoff. En la Fig.2 aparece la primera malla aislada y se ha de verificar que la suma de las fuerzas electromotrices o subidas de tensión es igual a la suma de las caídas de tensión. Z a I 1 Z b V A +             Z A . I 1 + Z B. (I 1 – I 2 ) = V A Ejemplo
  • 13. La segunda malla no contiene fuente de tensión alguna, por lo tanto, la suma de las caídas de tensión a lo largo de ella es cero. ZC. I 2 + ZD . (I 2 + I 3 )+ ZB. (I 2 – I 1 ) = 0 Para la tercera malla tendremos ZE. I 3 + ZD . (I 3 + I 2 ) =VB Es decir (ZA + ZB) . I 1 – ZB . I 2 = VA (I) - ZB . I 1 + (ZB + ZC + ZD ) . I 2 – ZD . I 3 = 0 (II)   ZD . I 2 + (ZD + ZE) . I 3 = VB (III) Ejemplo
  • 14. Este sistema de ecuaciones se puede obtener directamente, para ello, consideremos la primera malla, que aparece en la Fig.2 la corriente I 1 tiene el sentido de las agujas del reloj y las caídas de tensión en todos los elementos de esta malla son todas positivas. Ahora bien, por ZB también circula la corriente I 2 de la segunda malla, pero con sentido opuesto a I 1 por tanto, la caída de tensión en ZB debida a I 2 es – ZB I 2 La caída de tensión VA es positiva por tener el mismo sentido que I 1 . En estas condiciones, aplicando la segunda ley de kirchhoff a la primera malla se obtiene la ecuación ( I ). Análogamente resultan las Ecuaciones ( I ) y ( II ) Sistema de ecuaciones
  • 15. Caida y Subida de Tensión Los términos caída y subida de tensión son más propios de los circuitos de corriente continua (c.c.) en los que significado es más claro que en los de corriente alterna (c.a), en donde los valores instantáneos de tensión y de intensidad de corriente son unas veces positivos y otros negativos. La segunda ley de kirchhoff en régimen permanente senoidal aplicada a una malla o lazo cerrado dice: la suma geométrica de los fasores de tensión de las fuentes activas de la malla es igual a la suma geométrica de los fasores de las caídas de tensión en las impedancias de mallas.
  • 16. ELECCIÓN DE LAS MALLAS. La solución de un circuito por el método de las corrientes de mallas se simplifica extraordinariamente eligiendo bien las mallas a considerar. Por ejemplo, supongamos que en circuito de la Fig.1 solo es necesario conocer la corriente que circula por la impedancia ZB; lomas cómodo será resolver el problema de forma que por ZB no circule más que una corriente de malla, es decir, es decir que dicha impedancia no pertenezca mas a una malla. En estas condiciones, solo habrá que determinar el valor de la corriente de la malla I 1 en la Fig.3 se pueden obtener las nuevas mallas elegidas. ELECCIÓN DE LAS MALLAS Z a Z c Z e V A V B I 1 I 2 I 3 Z b Z d + +
  • 17. El sistema de ecuaciones correspondientes a la elección de mallas es: (ZA + ZB) . I 1 – ZA . I 2 = VA - ZA . I 1 + (ZA + ZC + ZD ) . I 2 + ZD . I 3 = VA   ZD . I 2 + (ZD + ZE) . I 3 = VB   En cualquier caso, por cada elemento del circuito debe circular al menos una corriente de malla y no tiene por qué haber dos ramas con la misma corriente o igual combinación algebraica de corrientes. Sistema de ecuaciones