SlideShare una empresa de Scribd logo
Práctica de CONTROL DE CALIDAD
Gráficos de control por variables e Índices de Capacidad
1. Objetivos de la práctica
Utilización de herramientas estadísticas para el Control de Procesos. En parti-
cular realizaremos:
1. Estudio Inicial del proceso. Utilización de gráficos de control por varia-
bles para evaluar los parámetros del proceso cuando este esta bajo con-
trol.
2. Determinación de Índices de capacidad del proceso. Permiten analizar la
variabilidad del proceso con relación con los requisitos o especificacio-
nes.
3. Control del proceso en línea. Utilización de los gráficos de control por va-
riables para detectar cambios en el proceso.
2. Datos
En procesos de llenado de envases es importante controlar el nivel de llenado,
ya que la ley exige respetar los contenidos mínimos y por otra parte, el sobre-
llenado es motivo de altos costes que pueden comprometer la rentabilidad eco-
nómica de la producción.
Los procesos de llena-
do de envases suelen
estar automatizados.
Se coloca un transmi-
sor de dosificación o
llenado que envía la
señal a una válvula pa-
ra que esta se abra y
cierre (ver figura).
Los datos a utilizar corresponden al nivel de llenado de botellas de agua mine-
ral de 100 cl.
3. Estudio Inicial
El estudio inicial consiste en estimar los parámetros del proceso “bajo control”.
Para ello se toman K muestras del proceso y, mediante un procedimiento itera-
tivo, se eliminan las que son sospechosas de haber sido tomadas cuando el
proceso estaba “fuera de control”.
Procedimiento iterativo:
1. Se extraen K muestras
2. Se estiman los parámetros
3. Se representan las muestras en los gráficos de control
4. Se eliminan las muestras fuera de los gráficos.
5. Se vuelve al paso 2.
Con el Statgraphics realizaremos este procedimiento iterativo de forma automá-
tica.
El proceso de llenado produce 5000 botellas cada hora. Para el estudio inicial
del proceso se tomaron 20 muestras de 5 botellas cada una. Las muestras fue-
ron tomadas en distintos días, y turnos para intentar recoger toda la variabilidad
del proceso. Los datos son presentados en la columna “Llenado”
3.1. Introducción de datos
La realización de los Gráficos de control (Medias y Rangos ó Medias y Desvia-
ciones) con Statgraphics es muy similar. Por tanto, sólo se describirá cómo
hacer el análisis de datos mediante los gráficos de Medias y Rangos.
Desde el menú principal se ha de seleccionar Special / Quality control / Varia-
bles control chart / X-bar and R.
Aparece la ventana:
3.2. Selección de Estudio Inicial
Con el botón derecho del ratón pulsamos Analysis Options. Marcamos la
opción Initial Study.
Se introducen las observaciones
En el caso de tener las medias y los rangos de
cada muestra introduciríamos aquí las colum-
nas correspondientes
Se introduce el tamaño de las muestras o la
columna que indica la muestra (en nuestro
ejemplo, podríamos introducir la columna Sub-
grupo)
3.3. Construcción de Gráficos de Control:
Numéricamente Gráficamente
Tabular Optión
Seleccionamos:
Analysis Summary
Graphics Option
Seleccionamos:
o X-Bar Chart (gráfico de medias)
o Range Chart (gráfico de rangos)
Aparece la siguiente información
X-bar and Range - Initial Study for Llenado
Number of subgroups = 20
Subgroup size = 5,0
0 subgroups excluded
X-bar Chart
-----------
UCL: +3,0 sigma = 100,511
Centerline = 100,005
LCL: -3,0 sigma = 99,4999
4 beyond limits
Range Chart
-----------
UCL: +3,0 sigma = 1,85301
Centerline = 0,876391
LCL: -3,0 sigma = 0,0
1 beyond limits
Estimates
---------
Process mean = 100,005
Process sigma = 0,37678
Mean range = 0,876391
Aparecen los gráficos de control para la media y
para el rango
Veamos a continuación algunos de los cálculos mostrados en esta pantalla de
resumen.
Estimación de la desviación típica del proceso
Como en este gráfico la dispersión se mide a través de los rangos, tenemos
que el estimador insesgado de la desviación típica del proceso es:
2
ˆ
d
R
=
σ
Donde 876391
.
0
=
R y para n=5 tenemos d2=2.326. Por tanto,
37678
.
0
326
.
2
876391
.
0
ˆ
2
=
=
=
d
R
σ
Limites de control del
gráfico de medias
Limites de control de
grafico de rangos
Estimación de paráme-
tros:
- Estimación de µ
- Estimación de σ
Límites de control del gráfico de medias
4999
.
99
5
37678
.
0
3
005
.
100
ˆ
3
511
.
100
5
37678
.
0
3
005
.
100
ˆ
3
=
−
=
−
=
=
+
=
+
=
n
X
LCI
n
X
LCS
σ
σ
Límites de control del gráfico de rangos
0
876391
.
0
*
0
853
.
1
876391
.
0
*
115
.
2
3
4
=
=
=
=
=
=
R
D
LCI
R
D
LCS
3.4. Eliminación de las muestras “fuera de control”
Si queremos estimar los parámetros del proceso “bajo control”, debemos elimi-
nar las muestras que han sido tomado “fuera de control”. Cada vez que se eli-
mina una muestra se deben volver a estimar los parámetros, recalcular los grá-
ficos, y, si alguna muestra se sale del grafico, volver de nuevo a estimar los pa-
rámetros, recalcular los gráficos…, así hasta que todas las muestras están
dentro de los gráficos.
Este proceso iterativo se realiza con el programa de forma automática:
Pulsamos Analysis Options (botón derecho del ratón)
Pulsando el boton Exclude llegamos al siguiente menú:
Opciones:
- Automatic, el programa realiza la operación eliminación/recálculo de
límites recursivamente hasta que todas las observaciones se encuen-
tren dentro de los límites de control. El programa actualizará los grá-
ficos y los análisis. Los subgrupos eliminados aparecen marcados
para poder identificarlos.
- Manual, sirve para que nosotros eliminemos de forma manual las
muestras fuera de control.
o Abrimos el gráfico
o Seleccionamos la muestra (pulsando sobre la muestra con el
ratón, aparecerá en amarillo)
o Con el boton (eliminamos ó incorporamos la mues-
tra)
o Eliminamos las muestras fuera de los limites, una a una, hasta
que todas las muestras, tanto en el grafico de medias como en
el de rangos, estén dentro de los limites de control.
Se puede comprobar como cada vez que eliminamos una muestra el
Statgraphics recalcula los limites de los gráficos.
- Reset, sirve para incluir todos los grupos (solo útil si hubiéramos eli-
minado alguno)
3.5. Resultado
Una vez eliminadas todas las muestras que se salen fuera de los límites de
control tanto del grafico de medias como el de rangos, el Statgraphics nos
proporciona la siguiente información:
Numéricamente
(Tabular Option / Analisys Summary)
Gráficamente
(Graphics Option / X-Bar Chart y Range Chart)
X-bar and Range - Initial Study for Llenado
Number of subgroups = 15
Subgroup size = 5,0
5 subgroups excluded
X-bar Chart
-----------
UCL: +3,0 sigma = 100,429
Centerline = 99,9908
LCL: -3,0 sigma = 99,5526
0 beyond limits
Range Chart
-----------
UCL: +3,0 sigma = 1,60644
Centerline = 0,759776
LCL: -3,0 sigma = 0,0
0 beyond limits
Estimates
---------
Process mean = 99,9908
Process sigma = 0,326645
Mean range = 0,759776
Limites de control del
gráfico de medias
Limites de control de
grafico de rangos
Estimación de parámetros:
- Estimación de µ
- Estimación de σ
Numero de muestras,
tamaño de las muestras
Numero de grupos excluidos
3.6 Conclusión
Se han observado 20 muestras, 5 han sido eliminadas por suponer que fueron
tomadas cuando el proceso estaba fuera de control. Con las 15 restantes se
han estimado los parámetros del proceso:
- La media estimada, del proceso bajo control, es 99.9908
- La desviación típica estimada, del proceso bajo control, es 0.326645
Así, la capacidad del proceso, cuando el proceso está bajo control, definida
como 6σ, se estima como:
95987
.
1
326645
.
0
*
6
ˆ
*
6 =
=
σ
4. Índices de Capacidad del proceso
Permiten analizar la variabilidad del proceso con relación con los requisitos o
especificaciones.
La capacidad del proceso (6σ) es una medida de la dispersión natural de la va-
riable que mide la calidad del producto o servicio. Bajo normalidad, el intervalo
µ ± 3σ (longitud 6σ) recoge al 99,7% de la población, por lo que bajo normali-
dad la capacidad del proceso sí es una medida representativa de cuál es el in-
tervalo en el que estamos produciendo casi toda nuestra producción. Pero no
dice nada sobre si dicha calidad se ajusta o no a las especificaciones. Los índi-
ces de capacidad pretenden comparar la capacidad del proceso con relaciona
a los requisitos o especificaciones.
La especificación suele definirse mediante un Intervalo de Tolerancia (valor
nominal ± Error permitido)= (µ±E). En este apartado se utilizará la siguiente no-
tación:
o LTS= límite de tolerancia superior
o LTI=límite de tolerancia inferior
A continuación se muestran los índices de capacidad más habituales. Para la
interpretación de los índices, se supondrá que la variable de interés se distribu-
ye normalmente.
Indice Notación Fórmula Interpretación
Indice de capacidad Cp
σ
6
LTI
LTS − Compara el intervalo de tolerancia con la
capacidad natural del proceso:
Si Cp>1 se dice que el proceso es capaz
Indice de capacidad unila-
teral - inferior
CpL
σ
3
LTI
X − Se suele utilizar cuando el intervalo de to-
lerancia es unilateral (ejemplo: la tensión
de rotura de cierto material tiene que ser
superior a LTI)
Indice de capacidad unila-
teral -Superior
CpU
σ
3
X
LTS − Se suele utilizar cuando el intervalo de to-
lerancia es unilateral (ejemplo: la tempera-
tura máxima a la que debe funcionar el
proceso es LTS)
Indice de capacidad reci-
proco
Cr
p
C
1
Coeficiente de descentrali-
zación
K
)
(
2
1
LTI
LTS
X
−
− μ Si K >0, el proceso tiene un sesgo hacia
valores superiores al nominal (sesgo posi-
tivo), mientras
que si K < 0, el sesgo es hacia valores in-
feriores al nominal (sesgo negativo). Este
índice no está
relacionado con la capacidad, por lo que
un proceso puede ser no capaz y tener un
valor de K bajo.
Existen algunos analistas que desaconsejan la utilización de estos índices. Su
principal argumento es que resultan un resumen demasiado simplista de la
evolución del proceso.
Supongamos que los requisitos, especificaciones o tolerancias del nivel de lle-
nado de las botellas establecen que ese nivel de llenado debe estar entre los
99 y los 101 cl.
En Tabular Options seleccionamos Capability Indices
Para obtener valores de índices de capacidad debemos introducir las toleran-
cias del proceso. En Pane Options (botón derecho del ratón) obtenemos la si-
guiente ventana de introducción de información
El resultado es :
Capability Indices for Llenado
Specifications
USL = 101,0
Nominal = 100,0
LSL = 99,0
Cp = 1,02048
Cpk = 1,01111
Cpk (upper) = 1,02985
Cpk (lower) = 1,01111
Cr = 0,979935
Cpm = 0,666323
K = -0,00918242
Based on 6.0 sigma limits.
5. Control en línea
Con el fin de monitorizar el proceso de llenado, y así poder detectar rápida-
mente la presencia de causas asignables en el proceso, se decide establecer
un control estadístico del proceso. Para ello se toma una muestra de tamaño 4
cada 20 minutos y se representan las medias y los rangos en los gráficos de
control.
Los datos están en la columna “llenado_linea”.
1. Introducción de datos (idéntico a lo realizado en el estudio inicial)
Menu: Special / Quality control / Variables control chart /X-bar and R
2. Establecer el control en línea o control estándar.
- Establecemos el control estándar. Analysis Options (botón derecho
del ratón)
- Indicamos los parámetros del proceso
3. Análisis de los gráficos
No sólo los puntos fuera de las líneas de control 3 sigma (muestra 50 en
el grafico de rangos) dan la alarma de que el proceso esta fuera de con-
trol. Comportamientos poco aleatorios de los puntos también indican si-
tuaciones de fuera de control (muestra 4 y 5 en el grafico de rangos).
Si queremos la razón de por qué las muestras 4 y 5 están indican situa-
ciones fuera de control, elegimos la opción Runs Test (Test de rachas)
dentro de Tabular Options.
Calculados en el estudio inicial
Obteniendo el siguiente resultado
Runs Tests
Rules
-----
(A) runs above or below centerline of length 8 or greater.
(B) runs up or down of length 8 or greater.
(C) sets of at least 5 subgroups with at least 4 beyond 1,0 sigma.
(D) sets of at least 3 subgroups with at least 2 beyond 2,0 sigma.
Violations
----------
Subgroup X-bar Chart Range Chart
4 D
5 D
50 D
donde se indica la regla (rules) que se ha aplicado en cada uno de esos
cuatro puntos.
Si queremos modificar estas reglas, lo podemos hacer si desde la ven-
tana de resultados seleccionamos Pane Options, con el botón derecho
del ratón. Obtenemos entonces la siguiente ventana de opciones que
nos permite modificar los tests de aleatoriedad (o de rachas) como que-
ramos.
Podemos ver gráficamente el incumplimiento de estas reglas en los grá-
ficos de control si graficamos no sólo las líneas 3 sigma, sino también
las 1 y 2 sigma. Sobre el grafico, pulsamos Pane Options (botón dere-
cho)
Obteniendo los gráficos:
6. Ejercicio de autoevaluación
En el proceso de llenado se decide sustituir el transmisor de dosificación por
un nuevo modelo. Para estimar la capacidad del proceso con el nuevo mo-
delo, se toman 46 muestras de tamaño 4 (columna Llenado_new en el ar-
chivo de datos).
o Estimar la capacidad del proceso
o Determinar los Índices de capacidad del proceso.

Más contenido relacionado

La actualidad más candente

02. graficas por atributo
02. graficas por atributo02. graficas por atributo
02. graficas por atributo
Wilfredo Figueroa Wjfigueroawil
 
Control estadistico de la calidad
Control estadistico de la calidadControl estadistico de la calidad
Control estadistico de la calidad
Yaretzy Cota
 
01. gráficos de control
01. gráficos de control01. gráficos de control
01. gráficos de control
Wilfredo Figueroa Wjfigueroawil
 
Control estadistico de la calidad
Control estadistico de la calidadControl estadistico de la calidad
Control estadistico de la calidad
Yaretzy Cota
 
Grafico d control C ejemplo
Grafico d control C ejemploGrafico d control C ejemplo
Grafico d control C ejemplo
Diann Aguilar
 
Control estadistico procesos para mejora de la performance
Control estadistico procesos para mejora de la performanceControl estadistico procesos para mejora de la performance
Control estadistico procesos para mejora de la performanceDaniel Remondegui
 
04. interpretacion cartas-de-control
04. interpretacion cartas-de-control04. interpretacion cartas-de-control
04. interpretacion cartas-de-control
Wilfredo Figueroa Wjfigueroawil
 
50085926 ntc-iso8258
50085926 ntc-iso825850085926 ntc-iso8258
50085926 ntc-iso8258niapola
 
Cartas de-control lourdes final
Cartas de-control lourdes finalCartas de-control lourdes final
Cartas de-control lourdes final
Ciro Teodor Alvarado
 
Graficas de Control por Atributos
Graficas de Control por AtributosGraficas de Control por Atributos
Graficas de Control por Atributos
franciscoe71
 
Cartas de control
Cartas de controlCartas de control
Cartas de control
Ena Ucles
 
Informe 5 cartas de control p (2)
Informe 5   cartas de control p (2)Informe 5   cartas de control p (2)
Informe 5 cartas de control p (2)
jesusnenji
 
Ejercicios cartas de control p y np, c y u
Ejercicios cartas de control p y np, c y uEjercicios cartas de control p y np, c y u
Ejercicios cartas de control p y np, c y uMarilaguna
 
Informe de control estadistico de calidad de produccion
Informe de control estadistico de calidad de produccionInforme de control estadistico de calidad de produccion
Informe de control estadistico de calidad de produccion
Mantenimiento y Construccion de Obras Civiles
 

La actualidad más candente (16)

02. graficas por atributo
02. graficas por atributo02. graficas por atributo
02. graficas por atributo
 
Spc
SpcSpc
Spc
 
Control estadistico de la calidad
Control estadistico de la calidadControl estadistico de la calidad
Control estadistico de la calidad
 
01. gráficos de control
01. gráficos de control01. gráficos de control
01. gráficos de control
 
Control estadistico de la calidad
Control estadistico de la calidadControl estadistico de la calidad
Control estadistico de la calidad
 
Grafico d control C ejemplo
Grafico d control C ejemploGrafico d control C ejemplo
Grafico d control C ejemplo
 
Control estadistico procesos para mejora de la performance
Control estadistico procesos para mejora de la performanceControl estadistico procesos para mejora de la performance
Control estadistico procesos para mejora de la performance
 
04. interpretacion cartas-de-control
04. interpretacion cartas-de-control04. interpretacion cartas-de-control
04. interpretacion cartas-de-control
 
50085926 ntc-iso8258
50085926 ntc-iso825850085926 ntc-iso8258
50085926 ntc-iso8258
 
Cartas de-control lourdes final
Cartas de-control lourdes finalCartas de-control lourdes final
Cartas de-control lourdes final
 
Control Estadistico De Procesos
Control Estadistico De ProcesosControl Estadistico De Procesos
Control Estadistico De Procesos
 
Graficas de Control por Atributos
Graficas de Control por AtributosGraficas de Control por Atributos
Graficas de Control por Atributos
 
Cartas de control
Cartas de controlCartas de control
Cartas de control
 
Informe 5 cartas de control p (2)
Informe 5   cartas de control p (2)Informe 5   cartas de control p (2)
Informe 5 cartas de control p (2)
 
Ejercicios cartas de control p y np, c y u
Ejercicios cartas de control p y np, c y uEjercicios cartas de control p y np, c y u
Ejercicios cartas de control p y np, c y u
 
Informe de control estadistico de calidad de produccion
Informe de control estadistico de calidad de produccionInforme de control estadistico de calidad de produccion
Informe de control estadistico de calidad de produccion
 

Similar a Pract 6 calidad1

Clase 2 (2016) sección s1
Clase 2 (2016) sección s1Clase 2 (2016) sección s1
Clase 2 (2016) sección s1
Suelen Oseida
 
Presentación Tema 10
Presentación Tema 10Presentación Tema 10
Presentación Tema 10pceciliac
 
Guion controlpor variables
Guion controlpor variablesGuion controlpor variables
Guion controlpor variables
leswil
 
Control estadistico-de-la-calidad
Control estadistico-de-la-calidadControl estadistico-de-la-calidad
Control estadistico-de-la-calidad
JCS95
 
Control estadistico-de-la-calidad
Control estadistico-de-la-calidad Control estadistico-de-la-calidad
Control estadistico-de-la-calidad
Eduardo Gonzalez Valencia
 
Control estadistico-de-la-calidad
Control estadistico-de-la-calidadControl estadistico-de-la-calidad
Control estadistico-de-la-calidad
Paola Payán
 
Graficos de control
Graficos de controlGraficos de control
Graficos de control
Alejando Cepeda
 
Graficos de control
Graficos de controlGraficos de control
Graficos de controlEloen13
 
Clase 2 (2016) sección s ud2
Clase 2 (2016) sección s  ud2Clase 2 (2016) sección s  ud2
Clase 2 (2016) sección s ud2
Suelen Oseida
 
Control_estadistico_de_procesos_12053684.ppt
Control_estadistico_de_procesos_12053684.pptControl_estadistico_de_procesos_12053684.ppt
Control_estadistico_de_procesos_12053684.ppt
BrandonPuentes2
 
Control estadístico de procesos_2023-1 (1).pdf
Control estadístico de procesos_2023-1 (1).pdfControl estadístico de procesos_2023-1 (1).pdf
Control estadístico de procesos_2023-1 (1).pdf
AstridRiveraGuerrero1
 
Clase_Graficos_Control.pptx.ppt
Clase_Graficos_Control.pptx.pptClase_Graficos_Control.pptx.ppt
Clase_Graficos_Control.pptx.ppt
Angel Condori Larico
 
Calculo de cpk
Calculo de cpkCalculo de cpk
Calculo de cpk
esap2014
 
CONTROL ESTADÍSTICO DE LA CALIDAD (HRRTAS).pdf
CONTROL ESTADÍSTICO DE LA CALIDAD (HRRTAS).pdfCONTROL ESTADÍSTICO DE LA CALIDAD (HRRTAS).pdf
CONTROL ESTADÍSTICO DE LA CALIDAD (HRRTAS).pdf
ChristianLopez678874
 
Gráficos de control
Gráficos de controlGráficos de control
Gráficos de controlUTT
 
Semana 12 y 13 - Estadística.pptx
Semana 12 y 13 - Estadística.pptxSemana 12 y 13 - Estadística.pptx
Semana 12 y 13 - Estadística.pptx
MaraAliciaHuamanLLaj
 

Similar a Pract 6 calidad1 (20)

Clase 2 (2016) sección s1
Clase 2 (2016) sección s1Clase 2 (2016) sección s1
Clase 2 (2016) sección s1
 
Spc
SpcSpc
Spc
 
Presentación Tema 10
Presentación Tema 10Presentación Tema 10
Presentación Tema 10
 
Guion controlpor variables
Guion controlpor variablesGuion controlpor variables
Guion controlpor variables
 
Diag
DiagDiag
Diag
 
Control estadistico-de-la-calidad
Control estadistico-de-la-calidadControl estadistico-de-la-calidad
Control estadistico-de-la-calidad
 
Control estadistico-de-la-calidad
Control estadistico-de-la-calidad Control estadistico-de-la-calidad
Control estadistico-de-la-calidad
 
Control estadistico-de-la-calidad
Control estadistico-de-la-calidadControl estadistico-de-la-calidad
Control estadistico-de-la-calidad
 
Graficos de control
Graficos de controlGraficos de control
Graficos de control
 
Graficos de control
Graficos de controlGraficos de control
Graficos de control
 
Clase 2 (2016) sección s ud2
Clase 2 (2016) sección s  ud2Clase 2 (2016) sección s  ud2
Clase 2 (2016) sección s ud2
 
Control_estadistico_de_procesos_12053684.ppt
Control_estadistico_de_procesos_12053684.pptControl_estadistico_de_procesos_12053684.ppt
Control_estadistico_de_procesos_12053684.ppt
 
Control estadístico de procesos_2023-1 (1).pdf
Control estadístico de procesos_2023-1 (1).pdfControl estadístico de procesos_2023-1 (1).pdf
Control estadístico de procesos_2023-1 (1).pdf
 
Clase_Graficos_Control.pptx.ppt
Clase_Graficos_Control.pptx.pptClase_Graficos_Control.pptx.ppt
Clase_Graficos_Control.pptx.ppt
 
Calculo de cpk
Calculo de cpkCalculo de cpk
Calculo de cpk
 
Graficos de control
Graficos de controlGraficos de control
Graficos de control
 
CONTROL ESTADÍSTICO DE LA CALIDAD (HRRTAS).pdf
CONTROL ESTADÍSTICO DE LA CALIDAD (HRRTAS).pdfCONTROL ESTADÍSTICO DE LA CALIDAD (HRRTAS).pdf
CONTROL ESTADÍSTICO DE LA CALIDAD (HRRTAS).pdf
 
Portafolio para subir
Portafolio para subirPortafolio para subir
Portafolio para subir
 
Gráficos de control
Gráficos de controlGráficos de control
Gráficos de control
 
Semana 12 y 13 - Estadística.pptx
Semana 12 y 13 - Estadística.pptxSemana 12 y 13 - Estadística.pptx
Semana 12 y 13 - Estadística.pptx
 

Último

Siemens----Software---Simatic----HMI.pdf
Siemens----Software---Simatic----HMI.pdfSiemens----Software---Simatic----HMI.pdf
Siemens----Software---Simatic----HMI.pdf
RonaldRozoMora
 
Distribución Muestral de Diferencia de Medias
Distribución Muestral de Diferencia de MediasDistribución Muestral de Diferencia de Medias
Distribución Muestral de Diferencia de Medias
arielemelec005
 
Flujograma de gestión de pedidos de usuarios.
Flujograma de gestión de pedidos de usuarios.Flujograma de gestión de pedidos de usuarios.
Flujograma de gestión de pedidos de usuarios.
thatycameron2004
 
Hidrostatica_e_Hidrodinamica.pdggggggggf
Hidrostatica_e_Hidrodinamica.pdggggggggfHidrostatica_e_Hidrodinamica.pdggggggggf
Hidrostatica_e_Hidrodinamica.pdggggggggf
JavierAlejosM
 
FISICA_Hidrostatica_uyhHidrodinamica.pdf
FISICA_Hidrostatica_uyhHidrodinamica.pdfFISICA_Hidrostatica_uyhHidrodinamica.pdf
FISICA_Hidrostatica_uyhHidrodinamica.pdf
JavierAlejosM
 
PRESENTACION REUNION DEL COMITE DE SEGURIDAD
PRESENTACION REUNION DEL COMITE DE SEGURIDADPRESENTACION REUNION DEL COMITE DE SEGURIDAD
PRESENTACION REUNION DEL COMITE DE SEGURIDAD
mirellamilagrosvf
 
1º Caso Practico Lubricacion Rodamiento Motor 10CV
1º Caso Practico Lubricacion Rodamiento Motor 10CV1º Caso Practico Lubricacion Rodamiento Motor 10CV
1º Caso Practico Lubricacion Rodamiento Motor 10CV
CarlosAroeira1
 
UNIVERSIDAD NACIONAL ALTIPLANO PUNO - FACULTAD DE INGENIERIA MECANICA ELECTRICA.
UNIVERSIDAD NACIONAL ALTIPLANO PUNO - FACULTAD DE INGENIERIA MECANICA ELECTRICA.UNIVERSIDAD NACIONAL ALTIPLANO PUNO - FACULTAD DE INGENIERIA MECANICA ELECTRICA.
UNIVERSIDAD NACIONAL ALTIPLANO PUNO - FACULTAD DE INGENIERIA MECANICA ELECTRICA.
HaroldKewinCanaza1
 
Becas de UOC _ Caja Ingenieros 2024-25.pdf
Becas de UOC _ Caja Ingenieros 2024-25.pdfBecas de UOC _ Caja Ingenieros 2024-25.pdf
Becas de UOC _ Caja Ingenieros 2024-25.pdf
UOC Estudios de Informática, Multimedia y Telecomunicación
 
Medicina Peruana en el siglo XX y XXI- Julio Gabriel Pereda Sanchez.pptx
Medicina Peruana en el siglo XX y XXI- Julio Gabriel  Pereda Sanchez.pptxMedicina Peruana en el siglo XX y XXI- Julio Gabriel  Pereda Sanchez.pptx
Medicina Peruana en el siglo XX y XXI- Julio Gabriel Pereda Sanchez.pptx
gabrielperedasanchez
 
Joseph juran aportaciones al control de la calidad
Joseph juran aportaciones al control de la calidadJoseph juran aportaciones al control de la calidad
Joseph juran aportaciones al control de la calidad
KevinCabrera96
 
Bash Script Programacion en la consola.pptx
Bash Script Programacion en la consola.pptxBash Script Programacion en la consola.pptx
Bash Script Programacion en la consola.pptx
SantosCatalinoOrozco
 
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
CarlitosWay20
 
Especificacioes tecnicas.pdfaaaaaaaaaaaaaaaaaaaaaaaaaaa
Especificacioes tecnicas.pdfaaaaaaaaaaaaaaaaaaaaaaaaaaaEspecificacioes tecnicas.pdfaaaaaaaaaaaaaaaaaaaaaaaaaaa
Especificacioes tecnicas.pdfaaaaaaaaaaaaaaaaaaaaaaaaaaa
ssuserebb7f71
 
TEMA 11. FLUIDOS-HIDROSTATICA.TEORIApptx
TEMA 11.  FLUIDOS-HIDROSTATICA.TEORIApptxTEMA 11.  FLUIDOS-HIDROSTATICA.TEORIApptx
TEMA 11. FLUIDOS-HIDROSTATICA.TEORIApptx
maitecuba2006
 
LA SEÑALES ANALOGICAS Y LAS SEÑALES DIGITALES
LA SEÑALES ANALOGICAS Y LAS SEÑALES DIGITALESLA SEÑALES ANALOGICAS Y LAS SEÑALES DIGITALES
LA SEÑALES ANALOGICAS Y LAS SEÑALES DIGITALES
LuisLobatoingaruca
 
Seguridad en mineria los Controles criticos
Seguridad en mineria los Controles criticosSeguridad en mineria los Controles criticos
Seguridad en mineria los Controles criticos
Melvin191754
 
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdfDialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
fernanroq11702
 
Sesiones 3 y 4 Estructuras Ingenieria.pdf
Sesiones 3 y 4 Estructuras Ingenieria.pdfSesiones 3 y 4 Estructuras Ingenieria.pdf
Sesiones 3 y 4 Estructuras Ingenieria.pdf
DeyvisPalomino2
 
choro ciclo de vida anatomía y fisiología
choro ciclo de vida anatomía y fisiologíachoro ciclo de vida anatomía y fisiología
choro ciclo de vida anatomía y fisiología
elvis2000x
 

Último (20)

Siemens----Software---Simatic----HMI.pdf
Siemens----Software---Simatic----HMI.pdfSiemens----Software---Simatic----HMI.pdf
Siemens----Software---Simatic----HMI.pdf
 
Distribución Muestral de Diferencia de Medias
Distribución Muestral de Diferencia de MediasDistribución Muestral de Diferencia de Medias
Distribución Muestral de Diferencia de Medias
 
Flujograma de gestión de pedidos de usuarios.
Flujograma de gestión de pedidos de usuarios.Flujograma de gestión de pedidos de usuarios.
Flujograma de gestión de pedidos de usuarios.
 
Hidrostatica_e_Hidrodinamica.pdggggggggf
Hidrostatica_e_Hidrodinamica.pdggggggggfHidrostatica_e_Hidrodinamica.pdggggggggf
Hidrostatica_e_Hidrodinamica.pdggggggggf
 
FISICA_Hidrostatica_uyhHidrodinamica.pdf
FISICA_Hidrostatica_uyhHidrodinamica.pdfFISICA_Hidrostatica_uyhHidrodinamica.pdf
FISICA_Hidrostatica_uyhHidrodinamica.pdf
 
PRESENTACION REUNION DEL COMITE DE SEGURIDAD
PRESENTACION REUNION DEL COMITE DE SEGURIDADPRESENTACION REUNION DEL COMITE DE SEGURIDAD
PRESENTACION REUNION DEL COMITE DE SEGURIDAD
 
1º Caso Practico Lubricacion Rodamiento Motor 10CV
1º Caso Practico Lubricacion Rodamiento Motor 10CV1º Caso Practico Lubricacion Rodamiento Motor 10CV
1º Caso Practico Lubricacion Rodamiento Motor 10CV
 
UNIVERSIDAD NACIONAL ALTIPLANO PUNO - FACULTAD DE INGENIERIA MECANICA ELECTRICA.
UNIVERSIDAD NACIONAL ALTIPLANO PUNO - FACULTAD DE INGENIERIA MECANICA ELECTRICA.UNIVERSIDAD NACIONAL ALTIPLANO PUNO - FACULTAD DE INGENIERIA MECANICA ELECTRICA.
UNIVERSIDAD NACIONAL ALTIPLANO PUNO - FACULTAD DE INGENIERIA MECANICA ELECTRICA.
 
Becas de UOC _ Caja Ingenieros 2024-25.pdf
Becas de UOC _ Caja Ingenieros 2024-25.pdfBecas de UOC _ Caja Ingenieros 2024-25.pdf
Becas de UOC _ Caja Ingenieros 2024-25.pdf
 
Medicina Peruana en el siglo XX y XXI- Julio Gabriel Pereda Sanchez.pptx
Medicina Peruana en el siglo XX y XXI- Julio Gabriel  Pereda Sanchez.pptxMedicina Peruana en el siglo XX y XXI- Julio Gabriel  Pereda Sanchez.pptx
Medicina Peruana en el siglo XX y XXI- Julio Gabriel Pereda Sanchez.pptx
 
Joseph juran aportaciones al control de la calidad
Joseph juran aportaciones al control de la calidadJoseph juran aportaciones al control de la calidad
Joseph juran aportaciones al control de la calidad
 
Bash Script Programacion en la consola.pptx
Bash Script Programacion en la consola.pptxBash Script Programacion en la consola.pptx
Bash Script Programacion en la consola.pptx
 
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
 
Especificacioes tecnicas.pdfaaaaaaaaaaaaaaaaaaaaaaaaaaa
Especificacioes tecnicas.pdfaaaaaaaaaaaaaaaaaaaaaaaaaaaEspecificacioes tecnicas.pdfaaaaaaaaaaaaaaaaaaaaaaaaaaa
Especificacioes tecnicas.pdfaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
TEMA 11. FLUIDOS-HIDROSTATICA.TEORIApptx
TEMA 11.  FLUIDOS-HIDROSTATICA.TEORIApptxTEMA 11.  FLUIDOS-HIDROSTATICA.TEORIApptx
TEMA 11. FLUIDOS-HIDROSTATICA.TEORIApptx
 
LA SEÑALES ANALOGICAS Y LAS SEÑALES DIGITALES
LA SEÑALES ANALOGICAS Y LAS SEÑALES DIGITALESLA SEÑALES ANALOGICAS Y LAS SEÑALES DIGITALES
LA SEÑALES ANALOGICAS Y LAS SEÑALES DIGITALES
 
Seguridad en mineria los Controles criticos
Seguridad en mineria los Controles criticosSeguridad en mineria los Controles criticos
Seguridad en mineria los Controles criticos
 
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdfDialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
 
Sesiones 3 y 4 Estructuras Ingenieria.pdf
Sesiones 3 y 4 Estructuras Ingenieria.pdfSesiones 3 y 4 Estructuras Ingenieria.pdf
Sesiones 3 y 4 Estructuras Ingenieria.pdf
 
choro ciclo de vida anatomía y fisiología
choro ciclo de vida anatomía y fisiologíachoro ciclo de vida anatomía y fisiología
choro ciclo de vida anatomía y fisiología
 

Pract 6 calidad1

  • 1. Práctica de CONTROL DE CALIDAD Gráficos de control por variables e Índices de Capacidad 1. Objetivos de la práctica Utilización de herramientas estadísticas para el Control de Procesos. En parti- cular realizaremos: 1. Estudio Inicial del proceso. Utilización de gráficos de control por varia- bles para evaluar los parámetros del proceso cuando este esta bajo con- trol. 2. Determinación de Índices de capacidad del proceso. Permiten analizar la variabilidad del proceso con relación con los requisitos o especificacio- nes. 3. Control del proceso en línea. Utilización de los gráficos de control por va- riables para detectar cambios en el proceso. 2. Datos En procesos de llenado de envases es importante controlar el nivel de llenado, ya que la ley exige respetar los contenidos mínimos y por otra parte, el sobre- llenado es motivo de altos costes que pueden comprometer la rentabilidad eco- nómica de la producción. Los procesos de llena- do de envases suelen estar automatizados. Se coloca un transmi- sor de dosificación o llenado que envía la señal a una válvula pa- ra que esta se abra y cierre (ver figura). Los datos a utilizar corresponden al nivel de llenado de botellas de agua mine- ral de 100 cl.
  • 2. 3. Estudio Inicial El estudio inicial consiste en estimar los parámetros del proceso “bajo control”. Para ello se toman K muestras del proceso y, mediante un procedimiento itera- tivo, se eliminan las que son sospechosas de haber sido tomadas cuando el proceso estaba “fuera de control”. Procedimiento iterativo: 1. Se extraen K muestras 2. Se estiman los parámetros 3. Se representan las muestras en los gráficos de control 4. Se eliminan las muestras fuera de los gráficos. 5. Se vuelve al paso 2. Con el Statgraphics realizaremos este procedimiento iterativo de forma automá- tica. El proceso de llenado produce 5000 botellas cada hora. Para el estudio inicial del proceso se tomaron 20 muestras de 5 botellas cada una. Las muestras fue- ron tomadas en distintos días, y turnos para intentar recoger toda la variabilidad del proceso. Los datos son presentados en la columna “Llenado” 3.1. Introducción de datos La realización de los Gráficos de control (Medias y Rangos ó Medias y Desvia- ciones) con Statgraphics es muy similar. Por tanto, sólo se describirá cómo hacer el análisis de datos mediante los gráficos de Medias y Rangos. Desde el menú principal se ha de seleccionar Special / Quality control / Varia- bles control chart / X-bar and R. Aparece la ventana:
  • 3. 3.2. Selección de Estudio Inicial Con el botón derecho del ratón pulsamos Analysis Options. Marcamos la opción Initial Study. Se introducen las observaciones En el caso de tener las medias y los rangos de cada muestra introduciríamos aquí las colum- nas correspondientes Se introduce el tamaño de las muestras o la columna que indica la muestra (en nuestro ejemplo, podríamos introducir la columna Sub- grupo)
  • 4. 3.3. Construcción de Gráficos de Control: Numéricamente Gráficamente Tabular Optión Seleccionamos: Analysis Summary Graphics Option Seleccionamos: o X-Bar Chart (gráfico de medias) o Range Chart (gráfico de rangos) Aparece la siguiente información X-bar and Range - Initial Study for Llenado Number of subgroups = 20 Subgroup size = 5,0 0 subgroups excluded X-bar Chart ----------- UCL: +3,0 sigma = 100,511 Centerline = 100,005 LCL: -3,0 sigma = 99,4999 4 beyond limits Range Chart ----------- UCL: +3,0 sigma = 1,85301 Centerline = 0,876391 LCL: -3,0 sigma = 0,0 1 beyond limits Estimates --------- Process mean = 100,005 Process sigma = 0,37678 Mean range = 0,876391 Aparecen los gráficos de control para la media y para el rango Veamos a continuación algunos de los cálculos mostrados en esta pantalla de resumen. Estimación de la desviación típica del proceso Como en este gráfico la dispersión se mide a través de los rangos, tenemos que el estimador insesgado de la desviación típica del proceso es: 2 ˆ d R = σ Donde 876391 . 0 = R y para n=5 tenemos d2=2.326. Por tanto, 37678 . 0 326 . 2 876391 . 0 ˆ 2 = = = d R σ Limites de control del gráfico de medias Limites de control de grafico de rangos Estimación de paráme- tros: - Estimación de µ - Estimación de σ
  • 5. Límites de control del gráfico de medias 4999 . 99 5 37678 . 0 3 005 . 100 ˆ 3 511 . 100 5 37678 . 0 3 005 . 100 ˆ 3 = − = − = = + = + = n X LCI n X LCS σ σ Límites de control del gráfico de rangos 0 876391 . 0 * 0 853 . 1 876391 . 0 * 115 . 2 3 4 = = = = = = R D LCI R D LCS 3.4. Eliminación de las muestras “fuera de control” Si queremos estimar los parámetros del proceso “bajo control”, debemos elimi- nar las muestras que han sido tomado “fuera de control”. Cada vez que se eli- mina una muestra se deben volver a estimar los parámetros, recalcular los grá- ficos, y, si alguna muestra se sale del grafico, volver de nuevo a estimar los pa- rámetros, recalcular los gráficos…, así hasta que todas las muestras están dentro de los gráficos. Este proceso iterativo se realiza con el programa de forma automática: Pulsamos Analysis Options (botón derecho del ratón) Pulsando el boton Exclude llegamos al siguiente menú:
  • 6. Opciones: - Automatic, el programa realiza la operación eliminación/recálculo de límites recursivamente hasta que todas las observaciones se encuen- tren dentro de los límites de control. El programa actualizará los grá- ficos y los análisis. Los subgrupos eliminados aparecen marcados para poder identificarlos. - Manual, sirve para que nosotros eliminemos de forma manual las muestras fuera de control. o Abrimos el gráfico o Seleccionamos la muestra (pulsando sobre la muestra con el ratón, aparecerá en amarillo)
  • 7. o Con el boton (eliminamos ó incorporamos la mues- tra) o Eliminamos las muestras fuera de los limites, una a una, hasta que todas las muestras, tanto en el grafico de medias como en el de rangos, estén dentro de los limites de control. Se puede comprobar como cada vez que eliminamos una muestra el Statgraphics recalcula los limites de los gráficos. - Reset, sirve para incluir todos los grupos (solo útil si hubiéramos eli- minado alguno) 3.5. Resultado Una vez eliminadas todas las muestras que se salen fuera de los límites de control tanto del grafico de medias como el de rangos, el Statgraphics nos proporciona la siguiente información: Numéricamente (Tabular Option / Analisys Summary) Gráficamente (Graphics Option / X-Bar Chart y Range Chart) X-bar and Range - Initial Study for Llenado Number of subgroups = 15 Subgroup size = 5,0 5 subgroups excluded X-bar Chart ----------- UCL: +3,0 sigma = 100,429 Centerline = 99,9908 LCL: -3,0 sigma = 99,5526 0 beyond limits Range Chart ----------- UCL: +3,0 sigma = 1,60644 Centerline = 0,759776 LCL: -3,0 sigma = 0,0 0 beyond limits Estimates --------- Process mean = 99,9908 Process sigma = 0,326645 Mean range = 0,759776 Limites de control del gráfico de medias Limites de control de grafico de rangos Estimación de parámetros: - Estimación de µ - Estimación de σ Numero de muestras, tamaño de las muestras Numero de grupos excluidos
  • 8. 3.6 Conclusión Se han observado 20 muestras, 5 han sido eliminadas por suponer que fueron tomadas cuando el proceso estaba fuera de control. Con las 15 restantes se han estimado los parámetros del proceso: - La media estimada, del proceso bajo control, es 99.9908 - La desviación típica estimada, del proceso bajo control, es 0.326645 Así, la capacidad del proceso, cuando el proceso está bajo control, definida como 6σ, se estima como: 95987 . 1 326645 . 0 * 6 ˆ * 6 = = σ
  • 9. 4. Índices de Capacidad del proceso Permiten analizar la variabilidad del proceso con relación con los requisitos o especificaciones. La capacidad del proceso (6σ) es una medida de la dispersión natural de la va- riable que mide la calidad del producto o servicio. Bajo normalidad, el intervalo µ ± 3σ (longitud 6σ) recoge al 99,7% de la población, por lo que bajo normali- dad la capacidad del proceso sí es una medida representativa de cuál es el in- tervalo en el que estamos produciendo casi toda nuestra producción. Pero no dice nada sobre si dicha calidad se ajusta o no a las especificaciones. Los índi- ces de capacidad pretenden comparar la capacidad del proceso con relaciona a los requisitos o especificaciones. La especificación suele definirse mediante un Intervalo de Tolerancia (valor nominal ± Error permitido)= (µ±E). En este apartado se utilizará la siguiente no- tación: o LTS= límite de tolerancia superior o LTI=límite de tolerancia inferior A continuación se muestran los índices de capacidad más habituales. Para la interpretación de los índices, se supondrá que la variable de interés se distribu- ye normalmente. Indice Notación Fórmula Interpretación Indice de capacidad Cp σ 6 LTI LTS − Compara el intervalo de tolerancia con la capacidad natural del proceso: Si Cp>1 se dice que el proceso es capaz Indice de capacidad unila- teral - inferior CpL σ 3 LTI X − Se suele utilizar cuando el intervalo de to- lerancia es unilateral (ejemplo: la tensión de rotura de cierto material tiene que ser superior a LTI) Indice de capacidad unila- teral -Superior CpU σ 3 X LTS − Se suele utilizar cuando el intervalo de to- lerancia es unilateral (ejemplo: la tempera- tura máxima a la que debe funcionar el proceso es LTS) Indice de capacidad reci- proco Cr p C 1 Coeficiente de descentrali- zación K ) ( 2 1 LTI LTS X − − μ Si K >0, el proceso tiene un sesgo hacia valores superiores al nominal (sesgo posi- tivo), mientras que si K < 0, el sesgo es hacia valores in- feriores al nominal (sesgo negativo). Este índice no está relacionado con la capacidad, por lo que un proceso puede ser no capaz y tener un valor de K bajo.
  • 10. Existen algunos analistas que desaconsejan la utilización de estos índices. Su principal argumento es que resultan un resumen demasiado simplista de la evolución del proceso. Supongamos que los requisitos, especificaciones o tolerancias del nivel de lle- nado de las botellas establecen que ese nivel de llenado debe estar entre los 99 y los 101 cl. En Tabular Options seleccionamos Capability Indices Para obtener valores de índices de capacidad debemos introducir las toleran- cias del proceso. En Pane Options (botón derecho del ratón) obtenemos la si- guiente ventana de introducción de información El resultado es : Capability Indices for Llenado Specifications USL = 101,0 Nominal = 100,0 LSL = 99,0 Cp = 1,02048 Cpk = 1,01111 Cpk (upper) = 1,02985 Cpk (lower) = 1,01111 Cr = 0,979935 Cpm = 0,666323 K = -0,00918242 Based on 6.0 sigma limits.
  • 11. 5. Control en línea Con el fin de monitorizar el proceso de llenado, y así poder detectar rápida- mente la presencia de causas asignables en el proceso, se decide establecer un control estadístico del proceso. Para ello se toma una muestra de tamaño 4 cada 20 minutos y se representan las medias y los rangos en los gráficos de control. Los datos están en la columna “llenado_linea”. 1. Introducción de datos (idéntico a lo realizado en el estudio inicial) Menu: Special / Quality control / Variables control chart /X-bar and R 2. Establecer el control en línea o control estándar. - Establecemos el control estándar. Analysis Options (botón derecho del ratón)
  • 12. - Indicamos los parámetros del proceso 3. Análisis de los gráficos No sólo los puntos fuera de las líneas de control 3 sigma (muestra 50 en el grafico de rangos) dan la alarma de que el proceso esta fuera de con- trol. Comportamientos poco aleatorios de los puntos también indican si- tuaciones de fuera de control (muestra 4 y 5 en el grafico de rangos). Si queremos la razón de por qué las muestras 4 y 5 están indican situa- ciones fuera de control, elegimos la opción Runs Test (Test de rachas) dentro de Tabular Options. Calculados en el estudio inicial
  • 13. Obteniendo el siguiente resultado Runs Tests Rules ----- (A) runs above or below centerline of length 8 or greater. (B) runs up or down of length 8 or greater. (C) sets of at least 5 subgroups with at least 4 beyond 1,0 sigma. (D) sets of at least 3 subgroups with at least 2 beyond 2,0 sigma. Violations ---------- Subgroup X-bar Chart Range Chart 4 D 5 D 50 D donde se indica la regla (rules) que se ha aplicado en cada uno de esos cuatro puntos. Si queremos modificar estas reglas, lo podemos hacer si desde la ven- tana de resultados seleccionamos Pane Options, con el botón derecho del ratón. Obtenemos entonces la siguiente ventana de opciones que nos permite modificar los tests de aleatoriedad (o de rachas) como que- ramos.
  • 14. Podemos ver gráficamente el incumplimiento de estas reglas en los grá- ficos de control si graficamos no sólo las líneas 3 sigma, sino también las 1 y 2 sigma. Sobre el grafico, pulsamos Pane Options (botón dere- cho) Obteniendo los gráficos: 6. Ejercicio de autoevaluación En el proceso de llenado se decide sustituir el transmisor de dosificación por un nuevo modelo. Para estimar la capacidad del proceso con el nuevo mo- delo, se toman 46 muestras de tamaño 4 (columna Llenado_new en el ar- chivo de datos). o Estimar la capacidad del proceso o Determinar los Índices de capacidad del proceso.