UNIVERSIDAD NACIONAL AUTONOMA
          DE MEXICO.




 FACULTAD DE ESTUDIOS SUPERIORES DE ARAGÓN.


             Laboratorio de termodinámica.



   Práctica numero 3: La Ley Cero de la Termodinámica.



                     Grupo: TRM05.



                   Fecha: 05072012.



    Alumno: Fernández Cano Veronico David Ricardo.



              Profesor: Ing. Chico Venancio.
 Objetivo:
    Demostrar la ley cero de la termodinámica.
    Cuantificar la cantidad de energía que un cuerpo cede o recibe de una sustancia de
    trabajo.
    Determinar la temperatura de equilibrio de las sustancias de trabajo.
    Analizar el grado de error al determinar la temperatura de equilibrio.



 Actividades:
  1. Demostrar la Ley Cero de la Termodinámica, poniendo en contacto dos cuerpos
      a diferentes temperaturas.
  2. Determinar la cantidad de energía ganada y cedida de los cuerpos.
  3 .Determinar la temperatura de equilibrio.
          Teóricamente.
          Experimentalmente.



 Material:
        1Vasodeprecipitadode2000ml.
        1Probetade500ml.
        1Matrazde250ml.
        1Tapón bihoradado para el matraz (con perforaciones).
        2Termómetrosde100°C.
        1Parrillaeléctrica.
        1Calorímetro.
        1Cronometro
        1Balanzagranataria.
        1Guantesdeasbesto.
        1Pesade1000gr.
        1Pinzadesujeción.
        Sustancias: AGUA.
Aspectos teóricos:
Equilibrio Termodinámico.

Se define como:

 “El estado en el que se igualan las temperaturas de dos cuerpos que inicialmente tenían
diferentes temperaturas. Al igualarse las temperaturas se suspende el flujo de calor, y el
sistema formados por esos cuerpos llega a su equilibrio térmico.”

A la parte es pacifica que se toma del medio ambiente y que es a la cual se enfoca el
estudio le llamamos sistema; a todo lo demás se le conoce como entorno.
Para los dos sistemas a temperaturas diferentes, que se ponen en contacto, la
temperatura final que ambos alcanzan tiene un valor intermedio entre las dos
temperaturas iniciales de dichos sistemas.
La diferencia de temperatura entre estos sistemas se puede expresar como que, uno de
ellos ha perdido "calor" (ya que la temperatura final es menor que la inicial) y el otro ha
ganado "calor" (su variación de temperatura es positiva). La cantidad de calor (cedida uno
al otro) puede medirse, es una magnitud escalar que suele ser representada mediante la
letra Q. La energía en forma de calor entonces se transfiere del sistema más caliente,
hacia el sistema más frio.
La cantidad de calor (Q) que gana o pierde un cuerpo de masa (m) se encuentra con la
fórmula:



Donde:
Q es la cantidad de calor (que se gana o se pierde), expresada en calorías.
m es la masa del cuerpo en estudio. Se expresa en gramos.
Ce es el calor específico del cuerpo. Su valor se encuentra en tablas conocidas. Se expresa
en cal / gr º C.
Δt es la variación de temperatura = Tf − T0. Léase Temperatura final (Tf) menos
Temperatura inicial (T0), y su fórmula es.



Se sabe que el calor es una onda electromagnética (posee la misma naturaleza que la luz);
y por lo tanto, su emisión depende de la vibración de los electrones de los átomos que
forman el sistema.
Ley Cero de la Termodinámica.

R.H. Fowler, en 1931, enunció la ley cero de la termodinámica:

 “Cuando dos sistemas o cuerpos diferentes están en equilibrio termodinámico con un
tercero, también están en equilibrio entre sí.”

 Si uno de estos sistemas se pone en contacto con un entorno infinito situado a una
determinada temperatura, el sistema acabará alcanzando el equilibrio termodinámico con
su entorno, es decir, llegará a tener la misma temperatura que éste.




                                        Desarrollo:
Actividad I: DEMOSTRACIÓN DE LA LEY CERO DE LA TERMODINÁMICA.

1. Calibrar la Balanza.

2. Medirla masa del matraz. Anotarsuvalorenlatabla3.1A.

3. Con la probeta medir 250ml. De agua y verterlo en el matraz, medir su masa.
Anotarelvalorenlatabla3.1A.

4. Colocar un tapón bihoradado con el termómetro en la boca del matraz.

5. Medir la masa del calorímetro. Anotar en la tabla3.1A.

6. Colocar el matraz en la parrilla. (Tener cuidado de que el termómetro no toque las
paredes del matraz).

7. Conectar la parrilla al suministro de energía eléctrica.

8. Esperar a que el agua alcance una temperatura de 60°C esta se considera como la
temperatura inicial de agua caliente (T1ac).

9. Verter con la probeta, 250ml de agua en el calorímetro.

10. Medir la masa del agua contenida en el calorímetro. Anótala en la tabla3.1A.

11. Medida la masa, coloca el calorímetro dentro del vaso de precipitado de 2000mil.
12. Coloca uno de los termómetros dentro del calorímetro para medir su temperatura, esta
se considera como temperatura inicial del agua fría (T1af) Anotar su valor en la tabla
3.1.1A.

13. Desconectar la parrilla del suministro eléctrico.

14. Con ayuda de las pinzas y con el guante de asbesto puesto, introducir el matraz dentro
del calorímetro, en ese momento, registra la primera lectura de los termómetros. Anotar
su valor en la tabla 3.1.1A.

15. Con el cronometro, tomar las lecturas cada un minuto de las temperaturas registradas
en los termómetros. Anotar las lecturas en la tabla 3.1.2A.

16. Efectuar las lecturas de los termómetros, hasta que estos registren la misma
temperatura.



Actividad II: CANTIDAD DE ENERGIA GANADA Y CEDIDA.

Mientras el Agua se calienta, Procede de la siguiente manera:

Si   Q=m Ce(t2–t1)

Donde: Q=Calor(cal) M=Masa(gr) Ce=Calor especifico (cal/gr°C) t2=temperatura final (°C)
t1=temperatura inicial (°C)

Entonces: Qaf=maf Ceaf (t2af–t1af)

Qac=mac Ceac (t2ac–t1ac)

Donde:

         Qaf=calor absorbido por el agua fría(cal)
         Qac=calor cedido por el agua caliente (cal)
         maf=masa del agua fría (gr)
         mac=masa del agua caliente (gr)
         Ceaf=calor especifico del agua fría (cal/gr°C)
         Ceac=calor especifico del agua caliente (cal/gr°C)
         t2af=tiempo final del agua fría (°C)
         t2ac=tiempo final del agua caliente (°C)
         t1af=tiempo inicial del agua fría (°C)
         t1ac=tiempo inicial del agua caliente (°C)
Anota los resultados en la tabla 3.2B



Actividad lll: DETERMINAR LA TEMPERATURA DE EQUILIBRIO TEORICAMENTE.

La energía que cederá el agua caliente será la misma que recibirá el agua fría, por lo tanto,
la suma de las energías se mantiene constante, es decir, la suma de las energías en
transición es igual a cero. Es decir:

Si: +Qaf=-Qac

Entonces: Qaf + Qac=0

Por lo tanto: maf Ceaf(t2af–t1af)+mac Ceac(t2ac–t1ac)=0

Donde:

         Ceaf=calor especifico del agua fría (cal/gr°C)
         Ceac=calor especifico del agua caliente (cal/gr°C)
         maf=masa del agua fría (gr)
         t2af=tiempo final (o equilibrio) del agua fría (°C)
         t1af=tiempo inicial del agua fría (°C)
         mac=masa del agua caliente (gr)
         t2ac=tiempo final del agua caliente (°C)
         t1ac=tiempo inicial del agua caliente (°C)

Como: t2af=tac=teq

Donde:

         teq= Temperatura del equilibrio (°C)
         Ce=Calor especifico para el agua caliente y fría.

Entonces: maf Ceaf(t2af–t1af)+mac Ceac(t2ac–t1ac)=0

Y como: Ceaf=Ceac

Tenemos: Ce[maf(teq-t1af)+mac Ceac(teq-t1ac)]=0

mafteq-maft1af+macteq-mact1ac=0

maf (t2af–t1af)+mac(teq-t1ac)=0
Agrupando términos:

maf teq+mac teq-(maf t1af+mac t1ac)=0

Factorizando:

Teq (maf+mac) =maf t1af +mac t1ac

Despejamos:

Teq=maf t1af + mac t1ac/maf + mac




ACTIVIDAD IV: COMPROBACION DE MODELO MATEMATICO

Determinar la validez del modelo matemático con:

E1= t1af – t´1af/t1af x100%

E2=t2eq-t´2eq/t2eq x 100%

Donde:

E1= grado de error al inicio del experimento (%)

E2=grado de error en el cálculo d la temperatura de equilibrio del experimento(%)

T1af=temperatura supuesta inicial dl agua fría(en condiciones normales)°C)

T´1AF=temperatura inicial del agua medida durante el experimento.(°C)

T2eq= temperatura supuesta final del agua caliente (temperatura de equilibrio calculada)
(°C).

T´2eq= temperatura de equilibrio del agua caliente durante el experimento.(°C)

Anotar resultados en la tabla 3.4B
TABLAS DE LECTURAS
                                     TABLA 3.1A

                 CONCEPTO                                MASA (GR)
MATRAZ                                                    105.5
CALORIMETRO                                                87.5
MATRAZ CON AGUA                                            349
CALORIMETRO EN EL AGUA                                    333.5
MASA DEL AGUA EN EL MATRAZ                                243.5
MASA DEL AGUA ENEL CALORIMETRO                             246


                                     TABLA3.1.1A

        CONCEPTO                 TEMPERATURA INICIAL       TEMPERATURA FINAL
                                        (°C)                     (°C)
 Agua fría en el calorímetro             27                       45
 Agua caliente en el matraz              60                       45


                                     TABLA 3.1.2A

        CONCEPTO                  TEMPERATURA (°c)          TEMPERATURA (°c)
       TIEMPO (min)               Agua en el matraz        Agua en el calorímetro
            0                            62                         30
            1                            55                         38
            2                            52                         41
            3                            49                         43
            4                            47                         44
            5                            46                         44
            6                            45                         44
            7                            45                         45




NOTA EL ALUMNO DEBERA GRAFICAR T vs t DE LOS VALORES OBTENIDOS AJUSTARA LA GRAFICA
PARA EL MÉTODO DE MINIMOS CUADRADOS.
TABLA 3.1B

     CONCEPTO                masa del agua           masa del agua       masa del agua
                                  Kg                      gr                  Lb
     Calorímetro                 .246                    246                .5466
       matraz                   .2435                   243.5               .5411




                                           TABLA 3.2B

CONCEPTO EXPERIMENTAL EXPERIMENTAL EXPERIMENTAL TEORICO                 TEORICO   TEORICO
              cal           KJ          BTU       cal                      KJ       BTU
 Energía
 ganada
   Qaf
 Energía
  cedida
   Qac




                                           TABLA 3.3B

 CONCEPTO            EXP.   EXP.    EXP.      EXP.      TEORICO TEORICO TEORICO TEORICO
  grados              °C     °K      °R        °F          °C      °K      °R      °F
Temperatura
de equilibrio




                                           TABLA 3.4B

         CONCEPTO                     GRADO DE ERROR                 GRADO DE ERROR
                                      EXPERIMENTAL %                    TEORICO%
                E1
                E2
CUESTIONARIO.

1. ¿Qué es equilibrio térmico?

Cuando en un sistema de baja temperatura se pone en contacto por medio de una pared
diatérmica con otro sistema de mayor temperatura, la temperatura del sistema frio aumenta
mientras la temperatura del sistema caliente disminuye. Si se mantiene este contacto mediante un
periodo largo, se establecerá el equilibrio termodinámico, es decir ambos sistemas tendrán la
misma temperatura.

2. ¿A qué temperatura alcanza el agua la máxima densidad?

Sin embargo el agua pura es una excepción a todo esto ya que alcanza su mayor densidad cuando
se encuentra a 4ºC.

3.¿Cuando se calculo la cantidad de calor teórico y experimental cual es la que se acerca más a la
realidad?

Pues se supone que el que más se debe de acercar a la realidad es el teórico por la exactitud pero
en nuestro caso quedo 1.3℃abajo del calculado e la teoría

4.¿La materia contiene calor?

Cada persona u objeto que está constituido de diferente matera posee cierta cantidad de calor
para poder permanecer en el estado en que se encuentra.

5.¿Qué es la energía interna? la energía interna (U) de un sistema intenta ser un reflejo de la
energía a escala microscópica. Más concretamente, es la suma de:



La energía cinética interna, es decir, de las sumas de las energías cinéticas de las individualidades
que lo forman respecto al centro de masas del sistema, y de la energía potencial interna, que es la
energía potencial asociada a las interacciones entre estas individualidades

 La energía interna no incluye la energía cinética traslacional o rotacional del sistema como un
todo. Tampoco incluye la energía potencial que el cuerpo pueda tener por su localización en
un campo gravitacional o electrostático externo.

6.¿Existe relación entre la temperatura centígrada y el kelvin? Explica.

Me imagino que si ya que la única diferencia es que el kelvin tiene cono rango de cero273 que es
273 grados más que la centígrada algo así como que madamas se recorre

7.¿A que se le conoce como calor especifico?
Cantidad de calor necesaria para elevar la temperatura de una unidad de masa de una sustancia
en un grado. En el Sistema Internacional de unidades, el calor específico se expresa en julios por
kilogramo y kelvin; en ocasiones también se expresa en calorías por gramo y grado centígrado. El
calor específico del agua es una caloría por gramo y grado centígrado, es decir, hay que
suministrar una caloría a un gramo de agua para elevar su temperatura en un grado centígrado.
De acuerdo con la ley formulada por los químicos franceses Pierre Louis Dulong y AlexisThérèse
Petit, para la mayoría de los elementos sólidos, el producto de su calor específico por su masa
atómica es una cantidad aproximadamente constante. Si se expande un gas mientras se le
suministra calor, hacen falta más calorías para aumentar su temperatura en un grado, porque
parte de la energía suministrada se consume en el trabajo de expansión. Por eso, el calor específico
a presión constante es mayor que el calor específico a volumen constante.

8.¿Cuáles son las unidades de energía y trabajo? ¿Qué relación existe entre ellas?

Sistema Internacional de Unidades Artículo principal: Sistema Internacional de Unidades Julio o
joule, unidad de trabajo en el SI Kilojulio: 1 kJ = 103 J Sistema Técnico de Unidades Artículo
principal: Sistema Técnico de Unidades kilográmetro o kilopondímetro(kgm) = 1kilogramo-fuerzax
1metro= 9,80665JSistema Cegesimal de Unidades Artículo principal: Sistema Cegesimal de
UnidadesErgio:1 erg = 10-7 J Sistema anglosajón de unidades Artículo principal: Sistema
anglosajón de unidades Termia inglesa(th), 105 BTU BTU, unidad básica de trabajo de este sistema

9.Explica algunos sistemas reales donde se aplica la ley cero de la termodinámica.

10. ¿Cómo es la capacidad calorífica especifica del agua en comparación con otras sustancias
comunes?

Su capacidad calorífica es superior a la de cualquier otro líquido o sólido, siendo su calor específico
de 1 cal/g, esto significa que una masa de agua puede absorber o desprender grandes cantidades
de calor, sin experimentar apenas cambios de temperatura, lo que tiene gran influencia en el clima
(las grandes masas de agua de los océanos tardan más tiempo en calentarse y enfriarse que
el suelo terrestre). Sus calores latentes de evaporización y de fusión (540 y 80 cal/g,
respectivamente) son también excepcionalmente elevados.
CONCLUSION:
Del experimento anteriormente realizado se puede concluir lo siguiente, respecto a cada una de las
leyes explicadas y su demostración: Ley cero de la termodinámica: se pudo ver que al ingresar el
matraz con agua caliente dentro del calorímetro, ambos Sistemas intentaban llegar a un equilibrio
termodinámico, no sólo entre ellos, sino que también con un tercer sistema que era el aire.
Eventualmente los tres sistemas alcanzarían el equilibrio termodinámico. El mejor ejemplo se ve en
el primer paso, en el cual la temperatura del agua aumentó un poco debido a la temperatura del
aire, cuando debería haber disminuido al brindarle calor al agua del calorímetro. Primera ley de la
termodinámica: Al poner el matraz dentro del calorímetro, el agua caliente cedió calor al agua fría
para poder alcanzar el equilibrio termodinámico, por lo tanto la temperatura del agua bajó; pero la
cantidad de calor no cambió, sino que se distribuyó. Segunda ley de la termodinámica: Se puede
ver claramente que el agua del calorímetro recibe calor del agua del matraz, aumenta su
temperatura. Si tomamos a la entropía como el grado de desorden de las partículas de un sistema,
podemos ver un claro ejemplo de ella. Aquí la entropía no alcanzó su valor máximo. Esta ley se
puede aplicar a las máquinas térmicas, las cuales tienen mayor rendimiento y producen un trabajo
mayor si la diferencia entre la temperatura del sistema 1 y la del sistema 2 es superior. Para esto
las máquinas térmicas utilizan radiadores, que bajan la temperatura del sistema 2, para que así el
intercambio de Calor sea mayor. Estos radiadores son necesarios, sino la entropía aumenta tanto
que el intercambio calórico no es efectivo.

Practica3 termodinamica

  • 1.
    UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO. FACULTAD DE ESTUDIOS SUPERIORES DE ARAGÓN. Laboratorio de termodinámica. Práctica numero 3: La Ley Cero de la Termodinámica. Grupo: TRM05. Fecha: 05072012. Alumno: Fernández Cano Veronico David Ricardo. Profesor: Ing. Chico Venancio.
  • 2.
     Objetivo: Demostrar la ley cero de la termodinámica. Cuantificar la cantidad de energía que un cuerpo cede o recibe de una sustancia de trabajo. Determinar la temperatura de equilibrio de las sustancias de trabajo. Analizar el grado de error al determinar la temperatura de equilibrio.  Actividades: 1. Demostrar la Ley Cero de la Termodinámica, poniendo en contacto dos cuerpos a diferentes temperaturas. 2. Determinar la cantidad de energía ganada y cedida de los cuerpos. 3 .Determinar la temperatura de equilibrio. Teóricamente. Experimentalmente.  Material: 1Vasodeprecipitadode2000ml. 1Probetade500ml. 1Matrazde250ml. 1Tapón bihoradado para el matraz (con perforaciones). 2Termómetrosde100°C. 1Parrillaeléctrica. 1Calorímetro. 1Cronometro 1Balanzagranataria. 1Guantesdeasbesto. 1Pesade1000gr. 1Pinzadesujeción. Sustancias: AGUA.
  • 3.
    Aspectos teóricos: Equilibrio Termodinámico. Sedefine como: “El estado en el que se igualan las temperaturas de dos cuerpos que inicialmente tenían diferentes temperaturas. Al igualarse las temperaturas se suspende el flujo de calor, y el sistema formados por esos cuerpos llega a su equilibrio térmico.” A la parte es pacifica que se toma del medio ambiente y que es a la cual se enfoca el estudio le llamamos sistema; a todo lo demás se le conoce como entorno. Para los dos sistemas a temperaturas diferentes, que se ponen en contacto, la temperatura final que ambos alcanzan tiene un valor intermedio entre las dos temperaturas iniciales de dichos sistemas. La diferencia de temperatura entre estos sistemas se puede expresar como que, uno de ellos ha perdido "calor" (ya que la temperatura final es menor que la inicial) y el otro ha ganado "calor" (su variación de temperatura es positiva). La cantidad de calor (cedida uno al otro) puede medirse, es una magnitud escalar que suele ser representada mediante la letra Q. La energía en forma de calor entonces se transfiere del sistema más caliente, hacia el sistema más frio. La cantidad de calor (Q) que gana o pierde un cuerpo de masa (m) se encuentra con la fórmula: Donde: Q es la cantidad de calor (que se gana o se pierde), expresada en calorías. m es la masa del cuerpo en estudio. Se expresa en gramos. Ce es el calor específico del cuerpo. Su valor se encuentra en tablas conocidas. Se expresa en cal / gr º C. Δt es la variación de temperatura = Tf − T0. Léase Temperatura final (Tf) menos Temperatura inicial (T0), y su fórmula es. Se sabe que el calor es una onda electromagnética (posee la misma naturaleza que la luz); y por lo tanto, su emisión depende de la vibración de los electrones de los átomos que forman el sistema.
  • 4.
    Ley Cero dela Termodinámica. R.H. Fowler, en 1931, enunció la ley cero de la termodinámica: “Cuando dos sistemas o cuerpos diferentes están en equilibrio termodinámico con un tercero, también están en equilibrio entre sí.” Si uno de estos sistemas se pone en contacto con un entorno infinito situado a una determinada temperatura, el sistema acabará alcanzando el equilibrio termodinámico con su entorno, es decir, llegará a tener la misma temperatura que éste. Desarrollo: Actividad I: DEMOSTRACIÓN DE LA LEY CERO DE LA TERMODINÁMICA. 1. Calibrar la Balanza. 2. Medirla masa del matraz. Anotarsuvalorenlatabla3.1A. 3. Con la probeta medir 250ml. De agua y verterlo en el matraz, medir su masa. Anotarelvalorenlatabla3.1A. 4. Colocar un tapón bihoradado con el termómetro en la boca del matraz. 5. Medir la masa del calorímetro. Anotar en la tabla3.1A. 6. Colocar el matraz en la parrilla. (Tener cuidado de que el termómetro no toque las paredes del matraz). 7. Conectar la parrilla al suministro de energía eléctrica. 8. Esperar a que el agua alcance una temperatura de 60°C esta se considera como la temperatura inicial de agua caliente (T1ac). 9. Verter con la probeta, 250ml de agua en el calorímetro. 10. Medir la masa del agua contenida en el calorímetro. Anótala en la tabla3.1A. 11. Medida la masa, coloca el calorímetro dentro del vaso de precipitado de 2000mil.
  • 5.
    12. Coloca unode los termómetros dentro del calorímetro para medir su temperatura, esta se considera como temperatura inicial del agua fría (T1af) Anotar su valor en la tabla 3.1.1A. 13. Desconectar la parrilla del suministro eléctrico. 14. Con ayuda de las pinzas y con el guante de asbesto puesto, introducir el matraz dentro del calorímetro, en ese momento, registra la primera lectura de los termómetros. Anotar su valor en la tabla 3.1.1A. 15. Con el cronometro, tomar las lecturas cada un minuto de las temperaturas registradas en los termómetros. Anotar las lecturas en la tabla 3.1.2A. 16. Efectuar las lecturas de los termómetros, hasta que estos registren la misma temperatura. Actividad II: CANTIDAD DE ENERGIA GANADA Y CEDIDA. Mientras el Agua se calienta, Procede de la siguiente manera: Si Q=m Ce(t2–t1) Donde: Q=Calor(cal) M=Masa(gr) Ce=Calor especifico (cal/gr°C) t2=temperatura final (°C) t1=temperatura inicial (°C) Entonces: Qaf=maf Ceaf (t2af–t1af) Qac=mac Ceac (t2ac–t1ac) Donde: Qaf=calor absorbido por el agua fría(cal) Qac=calor cedido por el agua caliente (cal) maf=masa del agua fría (gr) mac=masa del agua caliente (gr) Ceaf=calor especifico del agua fría (cal/gr°C) Ceac=calor especifico del agua caliente (cal/gr°C) t2af=tiempo final del agua fría (°C) t2ac=tiempo final del agua caliente (°C) t1af=tiempo inicial del agua fría (°C) t1ac=tiempo inicial del agua caliente (°C)
  • 6.
    Anota los resultadosen la tabla 3.2B Actividad lll: DETERMINAR LA TEMPERATURA DE EQUILIBRIO TEORICAMENTE. La energía que cederá el agua caliente será la misma que recibirá el agua fría, por lo tanto, la suma de las energías se mantiene constante, es decir, la suma de las energías en transición es igual a cero. Es decir: Si: +Qaf=-Qac Entonces: Qaf + Qac=0 Por lo tanto: maf Ceaf(t2af–t1af)+mac Ceac(t2ac–t1ac)=0 Donde: Ceaf=calor especifico del agua fría (cal/gr°C) Ceac=calor especifico del agua caliente (cal/gr°C) maf=masa del agua fría (gr) t2af=tiempo final (o equilibrio) del agua fría (°C) t1af=tiempo inicial del agua fría (°C) mac=masa del agua caliente (gr) t2ac=tiempo final del agua caliente (°C) t1ac=tiempo inicial del agua caliente (°C) Como: t2af=tac=teq Donde: teq= Temperatura del equilibrio (°C) Ce=Calor especifico para el agua caliente y fría. Entonces: maf Ceaf(t2af–t1af)+mac Ceac(t2ac–t1ac)=0 Y como: Ceaf=Ceac Tenemos: Ce[maf(teq-t1af)+mac Ceac(teq-t1ac)]=0 mafteq-maft1af+macteq-mact1ac=0 maf (t2af–t1af)+mac(teq-t1ac)=0
  • 7.
    Agrupando términos: maf teq+macteq-(maf t1af+mac t1ac)=0 Factorizando: Teq (maf+mac) =maf t1af +mac t1ac Despejamos: Teq=maf t1af + mac t1ac/maf + mac ACTIVIDAD IV: COMPROBACION DE MODELO MATEMATICO Determinar la validez del modelo matemático con: E1= t1af – t´1af/t1af x100% E2=t2eq-t´2eq/t2eq x 100% Donde: E1= grado de error al inicio del experimento (%) E2=grado de error en el cálculo d la temperatura de equilibrio del experimento(%) T1af=temperatura supuesta inicial dl agua fría(en condiciones normales)°C) T´1AF=temperatura inicial del agua medida durante el experimento.(°C) T2eq= temperatura supuesta final del agua caliente (temperatura de equilibrio calculada) (°C). T´2eq= temperatura de equilibrio del agua caliente durante el experimento.(°C) Anotar resultados en la tabla 3.4B
  • 8.
    TABLAS DE LECTURAS TABLA 3.1A CONCEPTO MASA (GR) MATRAZ 105.5 CALORIMETRO 87.5 MATRAZ CON AGUA 349 CALORIMETRO EN EL AGUA 333.5 MASA DEL AGUA EN EL MATRAZ 243.5 MASA DEL AGUA ENEL CALORIMETRO 246 TABLA3.1.1A CONCEPTO TEMPERATURA INICIAL TEMPERATURA FINAL (°C) (°C) Agua fría en el calorímetro 27 45 Agua caliente en el matraz 60 45 TABLA 3.1.2A CONCEPTO TEMPERATURA (°c) TEMPERATURA (°c) TIEMPO (min) Agua en el matraz Agua en el calorímetro 0 62 30 1 55 38 2 52 41 3 49 43 4 47 44 5 46 44 6 45 44 7 45 45 NOTA EL ALUMNO DEBERA GRAFICAR T vs t DE LOS VALORES OBTENIDOS AJUSTARA LA GRAFICA PARA EL MÉTODO DE MINIMOS CUADRADOS.
  • 9.
    TABLA 3.1B CONCEPTO masa del agua masa del agua masa del agua Kg gr Lb Calorímetro .246 246 .5466 matraz .2435 243.5 .5411 TABLA 3.2B CONCEPTO EXPERIMENTAL EXPERIMENTAL EXPERIMENTAL TEORICO TEORICO TEORICO cal KJ BTU cal KJ BTU Energía ganada Qaf Energía cedida Qac TABLA 3.3B CONCEPTO EXP. EXP. EXP. EXP. TEORICO TEORICO TEORICO TEORICO grados °C °K °R °F °C °K °R °F Temperatura de equilibrio TABLA 3.4B CONCEPTO GRADO DE ERROR GRADO DE ERROR EXPERIMENTAL % TEORICO% E1 E2
  • 10.
    CUESTIONARIO. 1. ¿Qué esequilibrio térmico? Cuando en un sistema de baja temperatura se pone en contacto por medio de una pared diatérmica con otro sistema de mayor temperatura, la temperatura del sistema frio aumenta mientras la temperatura del sistema caliente disminuye. Si se mantiene este contacto mediante un periodo largo, se establecerá el equilibrio termodinámico, es decir ambos sistemas tendrán la misma temperatura. 2. ¿A qué temperatura alcanza el agua la máxima densidad? Sin embargo el agua pura es una excepción a todo esto ya que alcanza su mayor densidad cuando se encuentra a 4ºC. 3.¿Cuando se calculo la cantidad de calor teórico y experimental cual es la que se acerca más a la realidad? Pues se supone que el que más se debe de acercar a la realidad es el teórico por la exactitud pero en nuestro caso quedo 1.3℃abajo del calculado e la teoría 4.¿La materia contiene calor? Cada persona u objeto que está constituido de diferente matera posee cierta cantidad de calor para poder permanecer en el estado en que se encuentra. 5.¿Qué es la energía interna? la energía interna (U) de un sistema intenta ser un reflejo de la energía a escala microscópica. Más concretamente, es la suma de: La energía cinética interna, es decir, de las sumas de las energías cinéticas de las individualidades que lo forman respecto al centro de masas del sistema, y de la energía potencial interna, que es la energía potencial asociada a las interacciones entre estas individualidades La energía interna no incluye la energía cinética traslacional o rotacional del sistema como un todo. Tampoco incluye la energía potencial que el cuerpo pueda tener por su localización en un campo gravitacional o electrostático externo. 6.¿Existe relación entre la temperatura centígrada y el kelvin? Explica. Me imagino que si ya que la única diferencia es que el kelvin tiene cono rango de cero273 que es 273 grados más que la centígrada algo así como que madamas se recorre 7.¿A que se le conoce como calor especifico?
  • 11.
    Cantidad de calornecesaria para elevar la temperatura de una unidad de masa de una sustancia en un grado. En el Sistema Internacional de unidades, el calor específico se expresa en julios por kilogramo y kelvin; en ocasiones también se expresa en calorías por gramo y grado centígrado. El calor específico del agua es una caloría por gramo y grado centígrado, es decir, hay que suministrar una caloría a un gramo de agua para elevar su temperatura en un grado centígrado. De acuerdo con la ley formulada por los químicos franceses Pierre Louis Dulong y AlexisThérèse Petit, para la mayoría de los elementos sólidos, el producto de su calor específico por su masa atómica es una cantidad aproximadamente constante. Si se expande un gas mientras se le suministra calor, hacen falta más calorías para aumentar su temperatura en un grado, porque parte de la energía suministrada se consume en el trabajo de expansión. Por eso, el calor específico a presión constante es mayor que el calor específico a volumen constante. 8.¿Cuáles son las unidades de energía y trabajo? ¿Qué relación existe entre ellas? Sistema Internacional de Unidades Artículo principal: Sistema Internacional de Unidades Julio o joule, unidad de trabajo en el SI Kilojulio: 1 kJ = 103 J Sistema Técnico de Unidades Artículo principal: Sistema Técnico de Unidades kilográmetro o kilopondímetro(kgm) = 1kilogramo-fuerzax 1metro= 9,80665JSistema Cegesimal de Unidades Artículo principal: Sistema Cegesimal de UnidadesErgio:1 erg = 10-7 J Sistema anglosajón de unidades Artículo principal: Sistema anglosajón de unidades Termia inglesa(th), 105 BTU BTU, unidad básica de trabajo de este sistema 9.Explica algunos sistemas reales donde se aplica la ley cero de la termodinámica. 10. ¿Cómo es la capacidad calorífica especifica del agua en comparación con otras sustancias comunes? Su capacidad calorífica es superior a la de cualquier otro líquido o sólido, siendo su calor específico de 1 cal/g, esto significa que una masa de agua puede absorber o desprender grandes cantidades de calor, sin experimentar apenas cambios de temperatura, lo que tiene gran influencia en el clima (las grandes masas de agua de los océanos tardan más tiempo en calentarse y enfriarse que el suelo terrestre). Sus calores latentes de evaporización y de fusión (540 y 80 cal/g, respectivamente) son también excepcionalmente elevados.
  • 12.
    CONCLUSION: Del experimento anteriormenterealizado se puede concluir lo siguiente, respecto a cada una de las leyes explicadas y su demostración: Ley cero de la termodinámica: se pudo ver que al ingresar el matraz con agua caliente dentro del calorímetro, ambos Sistemas intentaban llegar a un equilibrio termodinámico, no sólo entre ellos, sino que también con un tercer sistema que era el aire. Eventualmente los tres sistemas alcanzarían el equilibrio termodinámico. El mejor ejemplo se ve en el primer paso, en el cual la temperatura del agua aumentó un poco debido a la temperatura del aire, cuando debería haber disminuido al brindarle calor al agua del calorímetro. Primera ley de la termodinámica: Al poner el matraz dentro del calorímetro, el agua caliente cedió calor al agua fría para poder alcanzar el equilibrio termodinámico, por lo tanto la temperatura del agua bajó; pero la cantidad de calor no cambió, sino que se distribuyó. Segunda ley de la termodinámica: Se puede ver claramente que el agua del calorímetro recibe calor del agua del matraz, aumenta su temperatura. Si tomamos a la entropía como el grado de desorden de las partículas de un sistema, podemos ver un claro ejemplo de ella. Aquí la entropía no alcanzó su valor máximo. Esta ley se puede aplicar a las máquinas térmicas, las cuales tienen mayor rendimiento y producen un trabajo mayor si la diferencia entre la temperatura del sistema 1 y la del sistema 2 es superior. Para esto las máquinas térmicas utilizan radiadores, que bajan la temperatura del sistema 2, para que así el intercambio de Calor sea mayor. Estos radiadores son necesarios, sino la entropía aumenta tanto que el intercambio calórico no es efectivo.