SlideShare una empresa de Scribd logo
S3P12) Una mujer sobre una escalera tira pequeños perdigones hacia una
     mancha sobre el piso.
       a)     Muestre que, de acuerdo con principio de incertidumbre, la distancia
                                                       1/2   1/ 4
                                                    H 
            errada debe ser al menos de ∆x =             donde H es la altura
                                                            
                                                 m   2g 
            inicial de cada perdigón sobre el suelo y m es la masa de cada uno.

       b) Si H = 2,0 m y m = 0,50 g ¿Cuál es ∆x?



SOLUCION:

                      Y

                t=0 m       v(0)               g



                     H

                                           t

                      0                x           X

Analizando las componentes de movimiento,



X: x ≡ 0 + v(0)t → x ≡ v (0)t...α


                1           2H
Y:   0 ≡ H + 0 − gt 2 → t ≡    ...β
                2            g

                                     2H
De α y β se obtiene,      x ≡ v(0)      ...γ
                                      g


Transformando γ,

             2H               2H      2H
 x ≡ v(0)       → mx ≡ mv (0)    ≡ px
              g                g       g


                2H
  → m∆x ≡          ∆px
                 g
Ahora, usando el Principio de indeterminación de W Heisenberg,
                    ,
  ∆x∆px ≥
                   2

                          
                             
                                 g
   ∆x∆px ≥            → ∆x  m∆x
                             ≥
                    2      
                             2
                                2H
                 1 2H     2H
→ ( ∆x )
           2
               ≥ ×     ≡
                2 m g    2m g

                     1       1        1    1
          2  2H  4          2  H 4
→ ∆x ≥              → ∆x ≥         
        2m   g              m   2g 



               1         1
       2  H 4
∆x ≥         
      m   2g 



b) Evalúe ∆x para, H= 2,0 , m= 5x10-4 …?
S3P11) a) Suponga que un electrón está confinado dentro de un núcleo de 5.0 x
          10-15 m de diámetro. Emplee el principio de incertidumbre para
          determinar si este electrón es relativista o no relativista.

        b) Si este núcleo contiene sólo protones y neutrones, ¿algunas de estás
           son partículas relativistas? Explique.



 SOLUCION:

 a) Analizando para el electrón mediante el principio de incertidumbre de W
    Heisenberg,

              
    ∆x∆px ≥     ,
              2

                                  
    → ∆x∆px ≥         → ∆x { m∆v} ≥ , m: masa del electrón, m= 9,1x10-31,
                    2              2

               
    → ∆v ≥        , ∆x: confinamiento del electrón, ∆x= 5x10-15,
             2∆xm

                        6, 63 ×10−34
    → ∆v ≥       ≡                          ≡ 0, 012 × 1012 : c
             2∆xm 4π × 9,1× 10 × 5 × 10
                                −31     −15




    → v : c , ¡Por lo tanto el electrón podría ser relativista!



 b) Análogamente, considerando protones mp= 1,67x10-27,



                       6, 63 ×10−34
    → ∆v ≥     ≡                           ≡ 0, 065 ×108 : 0, 022c
           2∆xm 4π ×1, 67 × 10 × 5 ×10
                               −27     −15



    → v : 0, 022c , ¡Por lo tanto los ps o ns no serian necesariamente
    relativistas!
S3P17) Un electrón Un electrón está contenido en una caja unidimensional de
       0,200 nm de ancho.

         a) Dibuje un diagrama de nivel de energía para el electrón en niveles
         hasta n = 4

         b) Encuentre la longitud de onda de todos los fotones que pueden ser
         emitidos por el electrón al hacer transiciones que a la larga lo llevarán
         del estado n = 4 al estado n = 1.



SOLUCION: De acuerdo al modelo de partícula confinada en una caja, los
          niveles de energía accesibles están dados por la siguiente
          ecuación,

      h2  2
En ≡     2
             n , por lo tanto,
      8mL 

a) Para el diagrama de niveles de energía hasta n=4,

               ( 6, 63 ×10−34 )       
                                 2
                                       2
  En ≡                               2
                                         n ≡ 15,1×10−19 ≡ 9, 44n 2 (eV )
        8 ( 9,1× 10 ) ( 0, 2 ×10 ) 
                      −31          −9
                                      

  Calculando,

  E1 ≡ 9, 44 (1) 2 ≡ 9, 44 eV ,

  E2 ≡ 37, 76 ,

  E3 ≡ 84,96 ,

  E4 ≡ 151, 04

   b) Para todas las combinaciones posibles en la desexcitacion electrónica,
      usamos la ecuación,

                         hc ( 6, 63 ×10 ) ( 3 ×10             ) ≡ 1243
                                               −34        8
                 hc
       ∆E ≡ hν ≡    →λ ≡    ≡
                 λ       ∆E            ∆E                         ∆E

                     1243
         λ( nm) ≡              ,
                    ∆E (eV )


       E4 − E3 ≡ 66, 08 → λ1 ≡ 18,8 ,
E3 − E2 ≡ 47, 2 → λ2 ≡ 26,3 ,

E2 − E1 ≡ 28,32 → λ3 ≡ 43,9 ,

E3 − E1 ≡ 75,52 → λ4 ≡ 16,5 ,

E4 − E2 ≡ 113, 28 → λ5 ≡ 11, 0 y

E4 − E1 ≡ 141, 6 → λ6 ≡ 8,8

Más contenido relacionado

La actualidad más candente

Tippens fisica 7e_diapositivas_21
Tippens fisica 7e_diapositivas_21Tippens fisica 7e_diapositivas_21
Tippens fisica 7e_diapositivas_21Robert
 
77535350 fisica-ejercicios-resueltos-soluciones-ondas-electromagneticas-ecuac...
77535350 fisica-ejercicios-resueltos-soluciones-ondas-electromagneticas-ecuac...77535350 fisica-ejercicios-resueltos-soluciones-ondas-electromagneticas-ecuac...
77535350 fisica-ejercicios-resueltos-soluciones-ondas-electromagneticas-ecuac...Jonathan Rivsaide
 
Metodo de imagenes
Metodo de imagenesMetodo de imagenes
Metodo de imagenesfenix10005
 
Tippens fisica 7e_diapositivas_38b
Tippens fisica 7e_diapositivas_38bTippens fisica 7e_diapositivas_38b
Tippens fisica 7e_diapositivas_38bRobert
 
Tippens fisica 7e_diapositivas_23
Tippens fisica 7e_diapositivas_23Tippens fisica 7e_diapositivas_23
Tippens fisica 7e_diapositivas_23Robert
 
Potencial eléctrico
Potencial eléctricoPotencial eléctrico
Potencial eléctricoYuri Milachay
 
Tippens fisica 7e_diapositivas_29
Tippens fisica 7e_diapositivas_29Tippens fisica 7e_diapositivas_29
Tippens fisica 7e_diapositivas_29Robert
 
Ejercicios propuestos Electrostática
Ejercicios propuestos ElectrostáticaEjercicios propuestos Electrostática
Ejercicios propuestos ElectrostáticaKike Prieto
 
Potencial electrico clase 7
Potencial electrico clase 7Potencial electrico clase 7
Potencial electrico clase 7Tensor
 
Principios de quimica y estructura ena3 - ejercicio 02 radios de las órbit...
Principios de quimica y estructura    ena3 - ejercicio 02 radios de las órbit...Principios de quimica y estructura    ena3 - ejercicio 02 radios de las órbit...
Principios de quimica y estructura ena3 - ejercicio 02 radios de las órbit...Triplenlace Química
 
Fisica serway vol.2 (solucionario)
Fisica   serway vol.2 (solucionario)Fisica   serway vol.2 (solucionario)
Fisica serway vol.2 (solucionario)luxeto
 
Campo eléctrico II.pdf
Campo eléctrico II.pdfCampo eléctrico II.pdf
Campo eléctrico II.pdfjolopezpla
 
ICECLASE 3
ICECLASE 3ICECLASE 3
ICECLASE 3Tensor
 

La actualidad más candente (20)

Ecuación de Schrodinger
Ecuación de SchrodingerEcuación de Schrodinger
Ecuación de Schrodinger
 
Tippens fisica 7e_diapositivas_21
Tippens fisica 7e_diapositivas_21Tippens fisica 7e_diapositivas_21
Tippens fisica 7e_diapositivas_21
 
Campo electrico
Campo electricoCampo electrico
Campo electrico
 
Campos Electromagneticos - Tema 6
Campos Electromagneticos - Tema 6Campos Electromagneticos - Tema 6
Campos Electromagneticos - Tema 6
 
77535350 fisica-ejercicios-resueltos-soluciones-ondas-electromagneticas-ecuac...
77535350 fisica-ejercicios-resueltos-soluciones-ondas-electromagneticas-ecuac...77535350 fisica-ejercicios-resueltos-soluciones-ondas-electromagneticas-ecuac...
77535350 fisica-ejercicios-resueltos-soluciones-ondas-electromagneticas-ecuac...
 
Metodo de imagenes
Metodo de imagenesMetodo de imagenes
Metodo de imagenes
 
Tippens fisica 7e_diapositivas_38b
Tippens fisica 7e_diapositivas_38bTippens fisica 7e_diapositivas_38b
Tippens fisica 7e_diapositivas_38b
 
Tippens fisica 7e_diapositivas_23
Tippens fisica 7e_diapositivas_23Tippens fisica 7e_diapositivas_23
Tippens fisica 7e_diapositivas_23
 
Potencial eléctrico
Potencial eléctricoPotencial eléctrico
Potencial eléctrico
 
2 campos electrostaticos
2 campos electrostaticos2 campos electrostaticos
2 campos electrostaticos
 
Tippens fisica 7e_diapositivas_29
Tippens fisica 7e_diapositivas_29Tippens fisica 7e_diapositivas_29
Tippens fisica 7e_diapositivas_29
 
Ejercicios propuestos Electrostática
Ejercicios propuestos ElectrostáticaEjercicios propuestos Electrostática
Ejercicios propuestos Electrostática
 
Potencial electrico clase 7
Potencial electrico clase 7Potencial electrico clase 7
Potencial electrico clase 7
 
Campos Electromagneticos - Tema 3
Campos Electromagneticos - Tema 3Campos Electromagneticos - Tema 3
Campos Electromagneticos - Tema 3
 
Principios de quimica y estructura ena3 - ejercicio 02 radios de las órbit...
Principios de quimica y estructura    ena3 - ejercicio 02 radios de las órbit...Principios de quimica y estructura    ena3 - ejercicio 02 radios de las órbit...
Principios de quimica y estructura ena3 - ejercicio 02 radios de las órbit...
 
Campos Electromagneticos - Tema 4
Campos Electromagneticos - Tema 4Campos Electromagneticos - Tema 4
Campos Electromagneticos - Tema 4
 
Fisica serway vol.2 (solucionario)
Fisica   serway vol.2 (solucionario)Fisica   serway vol.2 (solucionario)
Fisica serway vol.2 (solucionario)
 
Campo eléctrico II.pdf
Campo eléctrico II.pdfCampo eléctrico II.pdf
Campo eléctrico II.pdf
 
Orbitales 2010
Orbitales 2010Orbitales 2010
Orbitales 2010
 
ICECLASE 3
ICECLASE 3ICECLASE 3
ICECLASE 3
 

Similar a Problemas resueltos separata 3. cap 3

Similar a Problemas resueltos separata 3. cap 3 (20)

Problemasresuetos
ProblemasresuetosProblemasresuetos
Problemasresuetos
 
Pd cap 3
Pd cap 3Pd cap 3
Pd cap 3
 
Solucionario-3
 Solucionario-3 Solucionario-3
Solucionario-3
 
Pd cap 5
Pd cap 5Pd cap 5
Pd cap 5
 
Problems resueltos separa 3
Problems resueltos separa 3Problems resueltos separa 3
Problems resueltos separa 3
 
Ejercicios dinamica
Ejercicios dinamicaEjercicios dinamica
Ejercicios dinamica
 
Integrales Indefinidas
Integrales IndefinidasIntegrales Indefinidas
Integrales Indefinidas
 
Limites, ejercicios
Limites, ejerciciosLimites, ejercicios
Limites, ejercicios
 
Integrales
IntegralesIntegrales
Integrales
 
Pd cap 5 (2)
Pd cap 5 (2)Pd cap 5 (2)
Pd cap 5 (2)
 
Aplicaciones de las ed de segundo orden
Aplicaciones de las ed de segundo ordenAplicaciones de las ed de segundo orden
Aplicaciones de las ed de segundo orden
 
Ecparciales
EcparcialesEcparciales
Ecparciales
 
Semana 12 ecuaciones e inecuaciones trigonometricas
Semana 12 ecuaciones e inecuaciones trigonometricasSemana 12 ecuaciones e inecuaciones trigonometricas
Semana 12 ecuaciones e inecuaciones trigonometricas
 
Pd cap 5
Pd cap 5Pd cap 5
Pd cap 5
 
Ecuación schrodinger
Ecuación schrodingerEcuación schrodinger
Ecuación schrodinger
 
Ecuación
EcuaciónEcuación
Ecuación
 
ecuacion de_difusion_esquema_de_crank_nicholson
ecuacion de_difusion_esquema_de_crank_nicholsonecuacion de_difusion_esquema_de_crank_nicholson
ecuacion de_difusion_esquema_de_crank_nicholson
 
Capitulo4 pdf
Capitulo4 pdfCapitulo4 pdf
Capitulo4 pdf
 
Cap2
Cap2Cap2
Cap2
 
Olimpiada internacional de física 33
Olimpiada internacional de física 33Olimpiada internacional de física 33
Olimpiada internacional de física 33
 

Más de uni

Tesis gabriela portuguez
Tesis gabriela portuguezTesis gabriela portuguez
Tesis gabriela portuguezuni
 
Aplicaciones de los rayos 'X' y en el hombre
Aplicaciones de los rayos 'X' y  en el hombreAplicaciones de los rayos 'X' y  en el hombre
Aplicaciones de los rayos 'X' y en el hombreuni
 
SOLUCIONARIO MECÁNICA CUÁNTICA Y FÍSICA ATÓMICA
SOLUCIONARIO MECÁNICA CUÁNTICA Y FÍSICA ATÓMICASOLUCIONARIO MECÁNICA CUÁNTICA Y FÍSICA ATÓMICA
SOLUCIONARIO MECÁNICA CUÁNTICA Y FÍSICA ATÓMICAuni
 
Problemas resueltos separata 3. cap 4
Problemas resueltos separata 3. cap 4Problemas resueltos separata 3. cap 4
Problemas resueltos separata 3. cap 4uni
 
Problemas resueltos separata 3. cap 3
Problemas resueltos separata 3. cap 3Problemas resueltos separata 3. cap 3
Problemas resueltos separata 3. cap 3uni
 
Solucionario separata 3 (1)
Solucionario separata 3 (1)Solucionario separata 3 (1)
Solucionario separata 3 (1)uni
 
Solucionario separata 3 (1)
Solucionario separata 3 (1)Solucionario separata 3 (1)
Solucionario separata 3 (1)uni
 
Física nuclearcap6
Física nuclearcap6Física nuclearcap6
Física nuclearcap6uni
 
Estructura molecular en sólidos cap5 1(cont)
Estructura molecular en sólidos cap5 1(cont)Estructura molecular en sólidos cap5 1(cont)
Estructura molecular en sólidos cap5 1(cont)uni
 
Física molecular cap5
Física molecular cap5Física molecular cap5
Física molecular cap5uni
 
Física atómica cap4
Física atómica cap4Física atómica cap4
Física atómica cap4uni
 
Cementos Lima
Cementos LimaCementos Lima
Cementos Limauni
 

Más de uni (12)

Tesis gabriela portuguez
Tesis gabriela portuguezTesis gabriela portuguez
Tesis gabriela portuguez
 
Aplicaciones de los rayos 'X' y en el hombre
Aplicaciones de los rayos 'X' y  en el hombreAplicaciones de los rayos 'X' y  en el hombre
Aplicaciones de los rayos 'X' y en el hombre
 
SOLUCIONARIO MECÁNICA CUÁNTICA Y FÍSICA ATÓMICA
SOLUCIONARIO MECÁNICA CUÁNTICA Y FÍSICA ATÓMICASOLUCIONARIO MECÁNICA CUÁNTICA Y FÍSICA ATÓMICA
SOLUCIONARIO MECÁNICA CUÁNTICA Y FÍSICA ATÓMICA
 
Problemas resueltos separata 3. cap 4
Problemas resueltos separata 3. cap 4Problemas resueltos separata 3. cap 4
Problemas resueltos separata 3. cap 4
 
Problemas resueltos separata 3. cap 3
Problemas resueltos separata 3. cap 3Problemas resueltos separata 3. cap 3
Problemas resueltos separata 3. cap 3
 
Solucionario separata 3 (1)
Solucionario separata 3 (1)Solucionario separata 3 (1)
Solucionario separata 3 (1)
 
Solucionario separata 3 (1)
Solucionario separata 3 (1)Solucionario separata 3 (1)
Solucionario separata 3 (1)
 
Física nuclearcap6
Física nuclearcap6Física nuclearcap6
Física nuclearcap6
 
Estructura molecular en sólidos cap5 1(cont)
Estructura molecular en sólidos cap5 1(cont)Estructura molecular en sólidos cap5 1(cont)
Estructura molecular en sólidos cap5 1(cont)
 
Física molecular cap5
Física molecular cap5Física molecular cap5
Física molecular cap5
 
Física atómica cap4
Física atómica cap4Física atómica cap4
Física atómica cap4
 
Cementos Lima
Cementos LimaCementos Lima
Cementos Lima
 

Problemas resueltos separata 3. cap 3

  • 1. S3P12) Una mujer sobre una escalera tira pequeños perdigones hacia una mancha sobre el piso. a) Muestre que, de acuerdo con principio de incertidumbre, la distancia 1/2 1/ 4     H  errada debe ser al menos de ∆x =      donde H es la altura   m   2g  inicial de cada perdigón sobre el suelo y m es la masa de cada uno. b) Si H = 2,0 m y m = 0,50 g ¿Cuál es ∆x? SOLUCION: Y t=0 m v(0) g H t 0 x X Analizando las componentes de movimiento, X: x ≡ 0 + v(0)t → x ≡ v (0)t...α 1 2H Y: 0 ≡ H + 0 − gt 2 → t ≡ ...β 2 g 2H De α y β se obtiene, x ≡ v(0) ...γ g Transformando γ, 2H 2H 2H x ≡ v(0) → mx ≡ mv (0) ≡ px g g g 2H → m∆x ≡ ∆px g
  • 2. Ahora, usando el Principio de indeterminación de W Heisenberg,  , ∆x∆px ≥ 2       g ∆x∆px ≥ → ∆x  m∆x ≥ 2    2  2H  1 2H  2H → ( ∆x ) 2 ≥ × ≡ 2 m g 2m g 1 1 1 1    2  2H  4   2  H 4 → ∆x ≥     → ∆x ≥      2m   g   m   2g  1 1   2  H 4 ∆x ≥      m   2g  b) Evalúe ∆x para, H= 2,0 , m= 5x10-4 …?
  • 3. S3P11) a) Suponga que un electrón está confinado dentro de un núcleo de 5.0 x 10-15 m de diámetro. Emplee el principio de incertidumbre para determinar si este electrón es relativista o no relativista. b) Si este núcleo contiene sólo protones y neutrones, ¿algunas de estás son partículas relativistas? Explique. SOLUCION: a) Analizando para el electrón mediante el principio de incertidumbre de W Heisenberg,  ∆x∆px ≥ , 2   → ∆x∆px ≥ → ∆x { m∆v} ≥ , m: masa del electrón, m= 9,1x10-31, 2 2  → ∆v ≥ , ∆x: confinamiento del electrón, ∆x= 5x10-15, 2∆xm  6, 63 ×10−34 → ∆v ≥ ≡ ≡ 0, 012 × 1012 : c 2∆xm 4π × 9,1× 10 × 5 × 10 −31 −15 → v : c , ¡Por lo tanto el electrón podría ser relativista! b) Análogamente, considerando protones mp= 1,67x10-27,  6, 63 ×10−34 → ∆v ≥ ≡ ≡ 0, 065 ×108 : 0, 022c 2∆xm 4π ×1, 67 × 10 × 5 ×10 −27 −15 → v : 0, 022c , ¡Por lo tanto los ps o ns no serian necesariamente relativistas!
  • 4. S3P17) Un electrón Un electrón está contenido en una caja unidimensional de 0,200 nm de ancho. a) Dibuje un diagrama de nivel de energía para el electrón en niveles hasta n = 4 b) Encuentre la longitud de onda de todos los fotones que pueden ser emitidos por el electrón al hacer transiciones que a la larga lo llevarán del estado n = 4 al estado n = 1. SOLUCION: De acuerdo al modelo de partícula confinada en una caja, los niveles de energía accesibles están dados por la siguiente ecuación,  h2  2 En ≡  2 n , por lo tanto,  8mL  a) Para el diagrama de niveles de energía hasta n=4,  ( 6, 63 ×10−34 )  2   2 En ≡  2 n ≡ 15,1×10−19 ≡ 9, 44n 2 (eV )  8 ( 9,1× 10 ) ( 0, 2 ×10 )  −31 −9   Calculando, E1 ≡ 9, 44 (1) 2 ≡ 9, 44 eV , E2 ≡ 37, 76 , E3 ≡ 84,96 , E4 ≡ 151, 04 b) Para todas las combinaciones posibles en la desexcitacion electrónica, usamos la ecuación, hc ( 6, 63 ×10 ) ( 3 ×10 ) ≡ 1243 −34 8 hc ∆E ≡ hν ≡ →λ ≡ ≡ λ ∆E ∆E ∆E 1243 λ( nm) ≡ , ∆E (eV ) E4 − E3 ≡ 66, 08 → λ1 ≡ 18,8 ,
  • 5. E3 − E2 ≡ 47, 2 → λ2 ≡ 26,3 , E2 − E1 ≡ 28,32 → λ3 ≡ 43,9 , E3 − E1 ≡ 75,52 → λ4 ≡ 16,5 , E4 − E2 ≡ 113, 28 → λ5 ≡ 11, 0 y E4 − E1 ≡ 141, 6 → λ6 ≡ 8,8